Preprint Article Version 4 Preserved in Portico This version is not peer-reviewed

Astromechanics of Dual Universe: A New Possible Explanation for the Universe Unsolved Problems

Version 1 : Received: 14 May 2020 / Approved: 15 May 2020 / Online: 15 May 2020 (09:49:54 CEST)
Version 2 : Received: 18 May 2020 / Approved: 18 May 2020 / Online: 18 May 2020 (11:37:59 CEST)
Version 3 : Received: 12 June 2020 / Approved: 12 June 2020 / Online: 12 June 2020 (14:30:54 CEST)
Version 4 : Received: 25 August 2020 / Approved: 25 August 2020 / Online: 25 August 2020 (13:50:33 CEST)

How to cite: Al-Fadhli, M.B. Astromechanics of Dual Universe: A New Possible Explanation for the Universe Unsolved Problems. Preprints 2020, 2020050250 (doi: 10.20944/preprints202005.0250.v4). Al-Fadhli, M.B. Astromechanics of Dual Universe: A New Possible Explanation for the Universe Unsolved Problems. Preprints 2020, 2020050250 (doi: 10.20944/preprints202005.0250.v4).

Abstract

The necessity of the dark energy and dark matter in the present universe could be a consequence of the antimatter elimination assumption in the early universe. Current cosmological models that rely on the dark side have left many unsolved mysteries, remarkably: tension in Hubble parameter measurements, the accelerated expansion, the fast orbital speed of stars, the dark flow observations, cosmic horizon, space flatness, absent of the antimatter, etc. On the other hand, General Relativity (GR) has relied on the spacetime to demonstrate the movement of matter due to a local curvature caused by the presence of matter. Founded on this, I trace the evolution of the spacetime worldlines based on the evolution of the universe spatial scale factor and its evolution time in polar coordinates in order to construct a potential spatial curvature over the temporal dimension or a global spacetime curvature. The mathematical derivations of a positively curved universe governed by only gravity revealed two opposite solutions of the worldline evolution. This possibly implies that the matter and antimatter could be evolving in opposite directions as distinct sides of the universe. By implementing the derived model, we find a decelerated phase of spatial expansion during the first 10 Gyr, that is followed by a second phase of an accelerated expansion; potentially matching the tension in Hubble parameter measurements. In addition, the model predicts a final time-reversal phase of spatial contraction, due to rapid surge in density i.e. reversal entropy, leading to a Big Crunch of a cyclic universe. The predicted density is 1.14. Other predictions are (1) an evolvable curved spacetime at the decelerated phase that is transformed to flatness at the accelerated phase with internal voids which could continuously increase the matter and antimatter densities elsewhere in both sides. (2) the spatial curvature through time dimension along spacetime worldlines was found to increase galaxy orbital speed and (3) a calculable flow rate of the matter side towards the antimatter side at the accelerated phase; conceivably explaining the dark flow observation. These findings may indicate the existence of the antimatter as a distinct side, which influences the evolution of the universe instead of the dark energy or dark matter. These theoretical outcomes and predictions are promising, which can be verified, fine-tuned or disproved using astrometric data in future works.

Subject Areas

Accelerated Expansion; Space Flatness; Cosmic Horizon; Parallel Universe; Antimatter

Comments (1)

Comment 1
Received: 25 August 2020
Commenter: Mohammed Al-Fadhli
Commenter's Conflict of Interests: Author
Comment: Dear Editor,

I hope you are doing very well

This version presents broader research that aims to answer some unsolved universe problems in addition to the cosmic horizon using the same model with further mathematical derivations

Your support is much appreciated 

Kind regards,
Mohammed 
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.