Preprint Article Version 10 Preserved in Portico This version is not peer-reviewed

Early Universe Plasma Separation and the Creation of a Dual Universe

Version 1 : Received: 14 May 2020 / Approved: 15 May 2020 / Online: 15 May 2020 (09:49:54 CEST)
Version 2 : Received: 18 May 2020 / Approved: 18 May 2020 / Online: 18 May 2020 (11:37:59 CEST)
Version 3 : Received: 12 June 2020 / Approved: 12 June 2020 / Online: 12 June 2020 (14:30:54 CEST)
Version 4 : Received: 25 August 2020 / Approved: 25 August 2020 / Online: 25 August 2020 (13:50:33 CEST)
Version 5 : Received: 23 September 2020 / Approved: 23 September 2020 / Online: 23 September 2020 (10:41:14 CEST)
Version 6 : Received: 7 October 2020 / Approved: 8 October 2020 / Online: 8 October 2020 (09:43:17 CEST)
Version 7 : Received: 12 October 2020 / Approved: 13 October 2020 / Online: 13 October 2020 (09:38:38 CEST)
Version 8 : Received: 16 December 2020 / Approved: 17 December 2020 / Online: 17 December 2020 (11:45:26 CET)
Version 9 : Received: 29 April 2021 / Approved: 29 April 2021 / Online: 29 April 2021 (09:10:40 CEST)
Version 10 : Received: 21 June 2021 / Approved: 21 June 2021 / Online: 21 June 2021 (11:43:55 CEST)

How to cite: Al-Fadhli, M.B. Early Universe Plasma Separation and the Creation of a Dual Universe. Preprints 2020, 2020050250 (doi: 10.20944/preprints202005.0250.v10). Al-Fadhli, M.B. Early Universe Plasma Separation and the Creation of a Dual Universe. Preprints 2020, 2020050250 (doi: 10.20944/preprints202005.0250.v10).

Abstract

The recent Planck Legacy release confirmed the presence of an enhanced lensing amplitude in the cosmic microwave background (CMB) power spectra, which prefers a positively curved early Universe with a confidence level exceeding 99%. In this study, the pre-existing curvature is incorporated to extend the field equations where the derived wavefunction of the Universe is utilised to model Universe evolution with reference to the scale factor of the early Universe and its radius of curvature upon the emission of the CMB. The wavefunction reveals both positive and negative solutions, implying that matter and antimatter of early Universe plasma evolved in opposite directions as distinct Universe sides, corroborating the axis of CMB. The wavefunction indicates that a nascent hyperbolic expansion away from early plasma is followed by a first phase of decelerating expansion during the first 10 Gyr, and then, a second phase of accelerating expansion in reverse directions, whereby both sides free-fall towards each other under gravitational acceleration. The predicted conformal curvature evolution demonstrates the fast orbital speed of outer stars owing to external fields exerted on galaxies as they travel through conformally curved space-time. Finally, the wavefunction predicts an eventual time-reversal phase comprising rapid spatial contraction that culminates in a Big Crunch, signalling a cyclic Universe. These findings show that early plasma could be separated and evolved into distinct sides of the Universe that collectively inducing its evolution, physically explaining the effects attributed to dark energy and dark matter.

Subject Areas

Duality; Antimatter; Extended General Relativity; String Theory Branes.

Comments (1)

Comment 1
Received: 21 June 2021
Commenter: Mohammed Al-Fadhli
Commenter's Conflict of Interests: Author
Comment: Dear Editor, 

I hope you are very well

This version includes extended discussions and further developed mathematical derivations. A new illustrative figure has been added to Section 5.

Lots of thanks and much appreciated 

Kind regards,
Mohammed
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our diversity statement.

Leave a public comment
Send a private comment to the author(s)
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.