Preprint
Article

This version is not peer-reviewed.

A Multi-Layer Resilient Architecture for Autonomous Quadcopter Flight Under Environmental Uncertainties

Submitted:

03 December 2025

Posted:

03 December 2025

You are already at the latest version

Abstract
This paper presents a resilient, multi-layer architecture designed to ensure reliable autonomous operation of single and multiple quadcopters. The architecture leverages the resilient spacecraft executive to hierarchically organize trajectory-planning and flight-control functions, and integrates Simplex architectures at each level to provide safety assurance. A compound subsystem expands robustness by employing multiple candidate algorithms for planning and control, while a supervisory program adapts Simplex behavior based on system states and environmental conditions to enable high-level mission management. The architecture is evaluated in simulations involving environmental uncertainties, including varying wind and obstacles, within a bridge-inspection mission using both single- and multi-quadcopter configurations. Results show that the system maintains safe and effective operation across a wide range of conditions, demonstrating scalability for cooperative multi-agent tasks.
Keywords: 
;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated