Submitted:
06 June 2025
Posted:
09 June 2025
You are already at the latest version
Abstract
Keywords:
Introduction
- The majority of droplets, typical for high fogging in terms of diameter hit the blading in the first stages. (at least 25 % and up to 98 % of the injected water mass for droplet diameters between 5 and 30 µm).
- Droplet-wall interaction modeling is essential because deposition effectively decreases droplet water mass available for evaporation, while
- Partial deposition (splashing) was shown to be particularly relevant for intermediate and large droplets, as the resulting secondary droplets strongly enhance evaporation and were identified to be the main source of phase change for those cases.
Multi-Phase Flow Modeling
Gas Phase
Droplet Phase
- the parcel exits the computational domain through the compressor outlet,
- the parcel impacts a surface,
- the droplet diameter decreases below , or
- the tracking time exceeds 20 seconds.
Heat Transfer
Mass Transfer
Droplet-Wall Interaction
Films
Casing Films:
Film Re-Entrainment:
Benchmark Compressor
Modeling Approach
Assumptions and Simplifications
Cases Studied
Case 1: Dry Flow:
Case 2: Full Deposition:
Case 3: Partial Deposition:
Case 4: Partial Disintegration:
Case 5. Full Disintegration:
Properties of the Injector
Representative Diameter
Ligament Length
Droplet Temperature
Injector Position
Results
Overall Impact of Re-Entrainment Modeling
Spatial Distribution of Flow Quantities
Discussion of Modeling Assumptions
Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
| Quantities | |||
| absolute velocity (m/s) | temperature (K) | ||
| mass flow rate (kg/s) | latent heat (J/kg) | ||
| pressure (Pa) | R | specific gas constant (J/kg/K) | |
| density (kg/m^3) | D | droplet diameter (m) | |
| surface tension (N/m) | diffusivity (m^2/s) | ||
| h | thickness (m) | dynamic viscosity (Pa s) | |
| specific compression work (J/kg) | ligament length (m) | ||
| r | radius (m) | n | rev per minute (1/min) |
| M | molar mass (g/mol) | critical temperature (K) | |
| s | specific entropy (J/kg/K) | Eötvös constant () | |
| Numbers | |||
| relative film thickness | Reynolds number | ||
| Splashing threshold | Deviation | ||
| Weber number | polytropic efficiency | ||
| w | vapor mass per dry air mass | f | liquid mass per dry air mass |
| total Pressure ratio | total temperature ratio | ||
| Rosin-Rammler function | |||
| Sub-/Superscripts | |||
| ideal mixture | liquid phase | ||
| pure air | parcel | ||
| pure vapor | Sauter mean | ||
| t | total | TE | trailing Edge |
| sat | saturation | I | Impact |
| ~ | modified | in | inlet |
| out | outlet | red | normalized |
| ax | axial direction | depos | deposited mass |
| tr | triple point value | s | static |
Appendix
References
- A.J. White and A. J. Meacock. An evaluation of the effects of water injection on compressor performance. J. Eng. Gas Turb. Power 126, 4 (2004), 145–158. [CrossRef]
- C. Matz, G. Cataldi, W. Kappis, G. Mundinger, S. Bischoff, E. Helland and M. Ripken. Prediction of Evaporative Effects Within the Blading of an Industrial Axial Compressor. Journal of Turbomachinery 132, 4 (2010). [CrossRef]
- J.R. Khan and T. Wang. Implementation of a non-equilibrium heat transfer model in stage-stacking scheme to investigate overspray fog cooling in compressors. International journal of thermal sciences 68 (2013), 63–78. [CrossRef]
- S. Geist and M. Schatz. A generic multistage compressor design for multiphase code and model benchmark. Proc. ETC 15, Budapest, Hungary (2023). [CrossRef]
- I. Day, J. Williams and C. Freeman. Rain Ingestion in Axial Flow Compressors at Part Speed. Journal of Turbomachinery 130 (1) (2008). [CrossRef]
- Z. Naumann and L. Schiller. A drag coefficient correlation. Z. Ver. Deutsch. Ing 77, 318 (1935), 323.
- W. Ranz and W. Marshall. Evaporation from droplets. Chem. Eng. Prog 48, 3 (1952), 141–146.
- A. Seck, S. Geist, J. Harbeck, B. Weigand and F. Joos. Evaporation modeling of water droplets in a transonic compressor cascade under fogging conditions. International Journal of Turbomachinery, Propulsion and Power 5,1 (2020). [CrossRef]
- Ansys Inc.. Ansys CFX Solver Theory Guide, R2021 R1. 2021.
- W. Ranz and W. Marshall. Evaporation from droplets—Part 2. Chem. Eng. Prog., 48 (1952) 173–180.
- R. Rodgers and G. Hill. Equations for vapour pressure versus temperature: derivation and use of the Antoine equation on a hand-held programmable calculator. British journal of anaesthesia 50 (5) (1978), 415–424. [CrossRef]
- H. Gomaa. Modeling of liquid dynamics in spray laden compressor flows. Doctoral Thesis, University of Stuttgart (2014).
- C. Mundo, M. Sommerfeld and C. Tropea. On the modeling of liquid sprays impinging on surfaces. Atomization and sprays 8, 6 (1998). [CrossRef]
- G. E. Cossali, M. Marengo and M. Santini. Splashing characteristics of multiple and single drop impacts onto a thin liquid film. Proc. Int. Conf. Multiphase Flows (2007).
- N. Neupert, J. Harbeck and F. Joos. An experimentally derived model to predict the water film in a compressor cascade with droplet laden flow. Journal of Engineering for Gas Turbines and Power 141, 9 (2019). [CrossRef]
- J. Harbeck, S. Geist and M. Schatz. An Approach to Measure Total-Head in Wakes and Near End Walls at High Fogging Conditions”. Proc. ASME Turbo Expo (2021). [CrossRef]
- I. Roumeliotis and K. Mathioudakis. Water Injection Effects on Compressor Stage Operation. Journal of Engineering for Gas Turbines and Power 129 (3) (2006), 778–784. [CrossRef]
- H. J. Dohmen, F.-K. Benra, C. Schepers and S. Schuster. Analysis of the Size of Secondary Droplets due to Film Separation at the Blade Trailing Edge. Proc. ASME Fluids Engineering Division Summer Meeting, Chicago, IL, USA (2014).
- J. Williams and J.B. Young. Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces. Journal of Turbomachinery 129, 2 (2006), 394–403. [CrossRef]
- T. Nikolaidis, P. Pilidis, J. A. Teixeira and V. Pachidis. Water Film Formation on an Axial Flow Compressor Rotor Blade. Proc. ASME Turbo Expo, Berlin, Germany (2008), 79–87.
- T. Nikolaidis and P. Pilidis. The Effect of Water Ingestion on an Axial Flow Compressor Performance. Proc. Inst. Mech. Eng., Part G: Journal of Aerospace Engineering 228 (3) (2014), 411– 423. [CrossRef]
- L. Liu, H. Zhang, J. Li, C. Yu, F. Lin and C. Nie. Measurements and Visualization of Process from Steady State to Stall in an Axial Compressor with Water Ingestion. Proc. ASME Turbo Expo San Antonio, TX, USA (2013).
- P. G. Hill. Aerodynamic and thermodynamic effects of coolant injection on axial compressors. The Aeronautical Quarterly 15, 4 (1963), 331–348. [CrossRef]
- S. Zhluktov, S. Bram and J. de Ruyck. Injection of Water Droplets in an Axial Compressor. Proc. 5th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics. Thessaloniki, Greece (2001), 1415–1420.
- A. J. White and A.J. Meacock. Wet compression analysis including velocity slip effects. Journal of engineering for gas turbines and power 133, 8 (2011). [CrossRef]
- J. Loebig, B. Vittal and M. Booher. Numerical Simulation of Water/Methanol Evaporation in an Axial Flow Gas Turbine Compressor. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, OH, USA (1998). [CrossRef]
- T. Sattelmayer and S. Wittig. Internal Flow Effects in Prefilming Airblast Atomizers: Mechanisms of Atomization and Droplet Spectra. Journal of Engineering for Gas Turbines and Power 108 (3) (1986), 465–472. [CrossRef]
- A. Schlottke and B. Weigand. Two-Phase Flow Phenomena in Gas Turbine Compressors with a Focus on Experimental Investigation of Trailing Edge Disintegration. Aerospace 8 (4) (2021), 91. [CrossRef]
- S. Melekidis. Untersuchung der Tropfenentstehung an Schaufelhinterkanten. Master's Thesis, University of Stuttgart, (2017).
- G. Chaussonnet, S. Gepperth, S. Holz, R. Koch and H.-J. Bauer. Influence of the Ambient Pressure on the Liquid Accumulation and on the Primary Spray in Prefilming Airblast Atomization. International Journal of Multiphase Flow 125 (2020). [CrossRef]
- B. Esquivias, B. Hickey and V. McDonell. Investigation of Water Films Shed from an Airfoil in a High-Speed Flow. Proc. ASME Turbo Expo. Rotterdam, Netherlands (2022), GT2022-80350. [CrossRef]
- S. Gepperth, D. Guildenbecher, R. Koch and H.-J. Bauer. Pre-filming Primary Atomization: Experiments and Modeling. 23rd European Conference on Liquid Atomization and Spray Systems (ILASS-Europe). Brno, Cech Republik (2010).
- S. Gepperth, A. Müller, R. Koch and H. Bauer. Ligament and Droplet Characteristics in Prefilming Airblast Atomization. ICLASS, 12th Triennial International Annual Conference on Liquid Atomization and Spray Systems. Heidelberg, Germany (2012).
- S. Gepperth, R. Koch and H.-J. Bauer. Analysis and Comparison of Primary Droplet Characteristics in the Near Field of a Prefilming Airblast Atomizer. Proc. ASME Turbo Expo, San Antonio, TX, USA (2013).
- T. Inamura, N. Katagata, H. Nishikawa, T. Okabe and K. Fumoto. Effects of Prefilmer Edge Thickness on Spray Characteristics in Prefilming Airblast Atomization. International Journal of Multiphase Flow 121 (2019). [CrossRef]
- B. Javed, T. Watanabe, T. Himeno and S. Uzawa. Effect of Trailing Edge Size on the Droplets Size Distribution Downstream of the Blade. Journal of Thermal Science and Technology 12 (2017). [CrossRef]
- B. Javed, T. Watanabe, T. Himeno and S. Uzawa. Experimental Investigation of Droplets Characteristics after the Trailing Edge at Different Angle of Attack. International Journal of Gas Turbine, Propulsion and Power Systems 9 (3) (2017), 32–42. [CrossRef]
- T. Doerr, S. Schuster and D. Brillert. PDA Laser Measurements of Droplet Laden Flows in a Four-Stage Axial Compressor. Journal of Turbomachinery 145 (2) (2022). [CrossRef]
- Ansys inc. Ansys CFX Solver Modeling Guide, R2021 R1. (2021).
- H. D. Baehr and S. Kabelac. Gas-Dampf-Gemische. Feuchte Luft. In: Thermodynamik: Grundlagen und technische Anwendungen. Springer, Berlin Heidelberg, (2012).
- C. B. Meher-Homji and T. R. Mee. Gas Turbine Power Aug¬men¬tation by Fogging Of Inlet Air. Proc. 28th Turbomachinery Symposium. Houston, TX, USA (1999).
- M. Holmgren. X Steam, Thermodynamic properties of water and steam. https: //www.mathworks.com/matlabcentral/fileexchange/ 9817-x-steamthermodynamic-properties-of-water-and-steam. MATLAB Central File Exchange. Last visited: 21.07.2024.
- G. N. Fuller, P. D. Schettler und J. C. Giddings. New Method for Prediction of Binary Gas-phase Diffusion Coefficients. Industrial & Engineering Chemistry 58 (5) (1966), 18–27. [CrossRef]



















| 1 | 5 | 10 | 25 | 50 | |
| rel. ejected mass | 0,00 | 0,18 | 0,36 | 0,70 | 0,91 |
|
|
τ [-] |
n [1/min] |
|
|
| 1.85 | 5000 | 0.904 | 6.11 | |
|
|
Π [-] |
|
|
|
| 247.6 | 7.02 | 1013.25 | 288.15 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).