Submitted:
18 February 2025
Posted:
18 February 2025
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. Methods and Established Theory
2.1. Review of Stochastic Action Principle (SAC)
2.2. Recovering Classical and Quantum Mechanics from SAC and Fisher Information
2.3. Extending to Fisher Information Geometry
2.4. Kullback-Liebler Divergence
2.5. Computing Divergence in Identifiable Distributions
- Gaussian distributions (same covariance, frame of reference invariance, related to time symmetry),
- location shift families (integrated depends on , related to translation symmetry),
- Caunchy distributions of same family (same scale, Reflection, Scale Invariant, some Mobius transformations),
- Antipodal or Permuted Discrete Distributions (mirror image or group rotation, rotational symmetry),
- Von Mises-Fisher (preferred direction spin up/down, symmetric under mean direction but not concentration),
- Bregman Divergence (exponential family distributions are symmetric when "distance" d is essentially Euclidean, implying no extra gauge or affine structure, also implies connection used is usual (Levi-Civita) (see, e.g., Amari and Nagaoka, 2000 [1])).
2.6. Decomposing Observed Distributions
2.7. Complex Components (Phase Space Projection)
2.8. Path Dependence
2.9. Identifying Multi-Path Dependence
3. Results
3.1. Black Holes
3.2. Expansion Scalar Examination
3.3. Special Conditions
3.4. Temperature Regulation and Dark Matter
3.5. Formatting of Mathematical Components
4. Discussion
Limitations
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Amari, S. & Nagaoka, H. (2000). Methods of information geometry. Oxford University Press. [CrossRef]
- Bardeen, J. M. , Carter, B., & Hawking, S. W. The four laws of black hole mechanics. Commun. Math. Phys. 1973, 31, 161–170. [Google Scholar] [CrossRef]
- Bekenstein, J. D. Black holes and entropy. Phys. Rev. 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bullock, J. S. , & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Caticha, A. Entropic dynamics, time, and quantum theory. J. Phys. A: Math. Theor. 2011, 44, 225303. [Google Scholar] [CrossRef]
- Cepollaro, C. , Akil, A., Cieśliński, P., de la Hamette, A.-C., & Brukner, Č. The sum of entanglement and subsystem coherence is invariant under quantum reference frame transformations. arXiv 2024, arXiv:2406.19448. [Google Scholar] [CrossRef]
- Cover, T. M. Thomas, J. A. Elements of information theory, 2nd ed.; Wiley-Interscience: 2006. [CrossRef]
- Friedan, D. Nonlinear models in 2 + ε dimensions. Ann. Phys. 1985, 163, 318–419. [Google Scholar] [CrossRef]
- Hatano, T. , & Sasa, S.-i. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 2001, 86, 3463–3466. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Hawking, S. W. Ellis, G. F. R. The large scale structure of space-time; Cambridge University Press: 1973. [CrossRef]
- Jacobson, T. Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef]
- Jaynes, E. T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Kaila, V. R. I. , & Annila, A. Natural selection for least action. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2008, 464, 3055–3070. [Google Scholar] [CrossRef]
- Kass, R. E. , & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Kawai, R. , Parrondo, J. M. R., & Van den Broeck, C. Dissipation: The phase-space perspective. Phys. Rev. Lett. 2007, 98, 080602. [Google Scholar] [CrossRef]
- Matsueda, H. Emergent general relativity from Fisher information metric. arXiv 2013, arXiv:1310.1831. [Google Scholar] [CrossRef]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv, 2002; arXiv:math/0211159. [Google Scholar] [CrossRef]
- Pressé, S. , Ghosh, K., Lee, J., & Dill, K. A. Principles of maximum entropy and maximum caliber in statistical physics. Rev. Mod. Phys. 2013, 85, 1115–1141. [Google Scholar] [CrossRef]
- Raychaudhuri, A. K. Relativistic cosmology. I. Phys. Rev. 1955, 98, 1123–1126. [Google Scholar] [CrossRef]
- Reginatto, M. Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys. Rev. A 1998, 58, 1775–1778. [Google Scholar] [CrossRef]
- Roldán, É. , & Parrondo, J. M. R. Entropy production and Kullback–Leibler divergence between stationary trajectories of discrete systems. Phys. Rev. E 2012, 85, 031129. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef]
- Sivak, D. A. , & Crooks, G. E. Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 2012, 108, 190602. [Google Scholar] [CrossRef]
- Vopson, M. M. , & Lepadatu, S. Second law of information dynamics. AIP Adv. 2022, 12, 075310. [Google Scholar] [CrossRef]
- Wang, Q. A. , Tsobnang, F., Bangoup, S., Dzangue, F., Jeatsa, A., & Le Méhauté, A. Stochastic action principle and maximum entropy. Chaos, Solitons Fractals 2009, 40, 2550–2556. [Google Scholar] [CrossRef]
- Yahalom, A. Fisher information perspective of Pauli’s electron. Entropy 2022, 24, 1721. [Google Scholar] [CrossRef] [PubMed]
- Yahalom, A. Dirac equation and Fisher information. Entropy 2024, 26, 971. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).