Submitted:
18 December 2024
Posted:
20 December 2024
You are already at the latest version
Abstract
The article reviews the literature on antimicrobial peptides (AMPs) that exhibit unique antimicrobial mechanisms, such as broad-spectrum activity, low development of antimicrobial resistance, and the ability to modulate the immune response of the host organism. Information is provided on the significant potential of AMPs in the fight against pathogens threatening human health and food safety. Enrichment of the human diet with biologically active peptides obtained using the proteolytic activity of lactic acid bacteria (LAB) is proposed as a simple, accessible, and viable alternative to antibiotics that does not have a harmful side effect. The review briefly covers the methods for obtaining AMPs and features of the LAB proteolytic system responsible for producing bioactive peptides in the environment. It has been shown that using various LAB strains makes it possible to produce high-quality whey-based beverages with different directions of antagonistic activity against opportunistic pathogens and helps optimize the gastrointestinal microbiota. It is assumed that such drinks can reduce the dose of antimicrobials in combined therapy of various infectious diseases and be a preventive measure against contagion and the spread of antimicrobial resistance.
Keywords:
1. Introduction
2. Antibiotic Peptide
3. Using AMPs to Combat Antibiotic-Resistant Pathogen
4. Using AMPs for Human Health
5. Production of Bioactive Peptides
6. Whey as a Raw Material for the Production of AMPs
7. Current State and Prospects for the Development of Peptide Science
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vaňková, E.; Julák, J., Machková, A.; Obrová, K.; Klančnik, A.; Smole Možina, S.; Scholtz, V. Overcoming antibiotic resistance: Non-thermal plasma and antibiotics combination inhibits important pathogens. Pathog Dis. 2024, 82, ftae007. [CrossRef]
- Adefisoye, M. A.; Olaniran, A. O. Antimicrobial resistance expansion in pathogens: A review of current mitigation strategies and advances towards innovative therapy. JAC-AMR 2023, 5(6), dlad127. [CrossRef]
- Frieden T. Antibiotic Resistance Threats in the United States. Centers for Disease Control and Prevention (CDC); Atlanta, GA, USA: 2019.
- Lewies, A.; Du Plessis, L. H.; Wentzel, J. F. Antimicrobial peptides: The Achilles’ heel of antibiotic resistance? Probiotics Antimicrob. Proteins 2019, 11, 370-381. [CrossRef]
- Ioannou, P.; Baliou, S.; Kofteridis, D. P. Antimicrobial peptides in infectious diseases and beyond—A narrative review. Life 2023, 13(8), 1651. [CrossRef]
- Chakraborty, S.; Chatterjee, R.; Chakravortty, D. Evolving and assembling to pierce through: Evolutionary and structural aspects of antimicrobial peptides. Comput. Struct. Biotechnol. J. 2022, 20, 2247-2258. [CrossRef]
- Mihaylova-Garnizova, R.; Davidova, S.; Hodzhev, Y.; Satchanska, G. Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria. Int. J. Mol. Sci. 2024, 25(19), 10788. [CrossRef]
- Andrea, A.; Molchanova, N.; Jenssen, H. Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomolecules 2018, 8(2), 27. [CrossRef]
- Haney, E. F.; Straus, S. K.; Hancock, R. E. Reassessing the host defense peptide landscape. Front. Chem. 2019, 7, 435645. [CrossRef]
- Raheem, N.; Straus, S. K.Mechanisms of action for antimicrobial peptides with antibacterial and antibiofilm functions. Front. Microbiol. 2019, 10, 2866. [CrossRef]
- Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020, 40(7), 978-992. [CrossRef]
- Mookherjee, N.; Anderson, M. A.; Haagsman, H. P.; Davidson, D. J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19(5), 311-332. [CrossRef]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Horvat Aleksijević, L.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; Škrlec, I. Antimicrobial peptides—Mechanisms of action, antimicrobial effects and clinical applications. Antibiotics 2022, 11(10), 1417. [CrossRef]
- Bucataru, C.; Ciobanasu, C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol Res. 2024, 286, 127822. [CrossRef]
- Singh, G.; Rana, A.; Smriti.. Decoding antimicrobial resistance: Unraveling molecular mechanisms and targeted strategies. Arch Microbiol. 2024, 206(6), 280. [CrossRef]
- Seyfi, R.; Kahaki, F. A.; Ebrahimi, T.; Montazersaheb, S.; Eyvazi, S.; Babaeipour, V.; Tarhriz, V. Antimicrobial peptides (AMPs): Roles, functions and mechanism of action. Int. J. Pept. Res. Ther. 2020, 26, 1451-1463. [CrossRef]
- Lazzaro, B. P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368(6490), eaau5480. [CrossRef]
- Yan, Y.; Li, Y.; Zhang, Z.; Wang, X.; Niu, Y.; Zhang, S.; Xu, W.; Ren, C. Advances of peptides for antibacterial applications. Colloids Surf. B Biointerfaces 2021, 202, 111682. [CrossRef]
- Saubenova, M.; Oleinikova, Y.; Rapoport, A.; Maksimovich, S.; Yermekbay, Z.; Khamedova, E. Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages. Fermentation 2024, 10, 359. [CrossRef]
- Hancock, R. E.; Haney, E. F.; Gill, E. E. The immunology of host defence peptides: Beyond antimicrobial activity. Nat. Rev. Immunol. 2016, 16(5), 321-334.
- Kormilets, D.Yu.; Polyanovsky, A. D.; Dadalic, V. A.; Maryanovich A. T. Antibiotic Peptides. Zhurnal Jevoljucionnoj Biohimii i Fiziologii 2019, 55(4), 242-248. (In Rus.). [CrossRef]
- Hassan, M.; Flanagan, T. W.; Kharouf, N.; Bertsch, C.; Mancino, D.; Haikel, Y. Antimicrobial proteins: Structure, molecular action, and therapeutic potential. Pharmaceutics 2022, 15(1), 72. [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. microbiol. 2020, 11, 582779. [CrossRef]
- Jung, Y.; Kong, B.; Moon, S.; Yu, S. H.; Chung, J.; Ban, C.; Chung, W.J.; Kim, S.G.; Kweon, D. H. Envelope-deforming antiviral peptide derived from influenza virus M2 protein. Biochem. Biophys. Res. Commun. 2019, 517(3), 507-512. [CrossRef]
- Mabrouk, D. M. Antimicrobial peptides: Features, applications and the potential use against covid-19. Mol. Biol. Rep. 2022, 49(10), 10039-10050.
- Rani, P.; Kapoor, B.; Gulati, M.; Atanasov, A. G.; Alzahrani, Q.; Gupta, R. Antimicrobial peptides: A plausible approach for COVID-19 treatment. Expert Opin Drug Discov. 2022, 17(5), 473-487. [CrossRef]
- de la Fuente-Núñez, C.; Silva, O. N.; Lu, T. K.; Franco, O. L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Therap. 2017, 178, 132-140. [CrossRef]
- Răileanu, M.; Borlan, R.; Campu, A.; Janosi, L.; Turcu, I.; Focsan, M.; Bacalum, M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int. J. Pharm. 2023, 642, 123169. [CrossRef]
- Gera, S.; Kankuri, E.; Kogermann, K. Antimicrobial peptides–unleashing their therapeutic potential using nanotechnology. Pharmacol. Ther. 2022, 232, 107990. [CrossRef]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Botanical Studies 2021, 62(1), 5. [CrossRef]
- Li, S.; Wang, Y.; Xue, Z.; Jia, Y.; Li, R.; He, C.; Chen, H. The structure-mechanism relationship and mode of actions of antimicrobial peptides: A review. Trends Food Sci. 2021, 109, 103-115. [CrossRef]
- Zhang, Q. Y.; Yan, Z. B.; Meng, Y. M.; Hong, X. Y.; Shao, G.; Ma, J. J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C. Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 1-25. [CrossRef]
- Khavinson, V. K.; Popovich, I. G. E.; Linkova, N. S.; Mironova, E. S.; Ilina, A. R. Peptide regulation of gene expression: A systematic review. Molecules 2021, 26(22), 7053. [CrossRef]
- Gagat, P.; Ostrówka, M.; Duda-Madej, A.; Mackiewicz, P. Enhancing antimicrobial peptide activity through modifications of charge, hydrophobicity, and structure. Int. J. Mol. Sci. 2024, 25(19), 10821. [CrossRef]
- Goki, N. H.; Tehranizadeh, Z. A.; Saberi, M. R.; Khameneh, B.; Bazzaz, B. S. Structure, function, and physicochemical properties of pore-forming antimicrobial peptides. Curr. Pharm. Biotechnol. 2024, 25(8), 1041-1057. [CrossRef]
- Rossino, G.; Marchese, E.; Galli, G.; Verde, F.; Finizio, M.; Serra, M.; Linciano, P.; Collina, S. Peptides as therapeutic agents: Challenges and opportunities in the green transition era. Molecules 2023, 28(20), 7165. [CrossRef]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M. D.; Black, D. S.; Walsh, W. R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci. 2020, 21(19), 7047. [CrossRef]
- Musin, H. G. Antimicrobial peptides are a potential replacement for traditional antibiotics. Infection and Immunity 2018, 8(3), 295-308. [CrossRef]
- Bian, X.; Qu, X.; Zhang, J.; Nang, S. C.; Bergen, P. J.; Zhou, Q. T.; Chan, H.K.; Feng, M.; Li, J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Advanced drug delivery reviews 2022, 183, 114171. [CrossRef]
- Deva, A. K.; Adams Jr, W. P.; Vickery, K. The role of bacterial biofilms in device-associated infection. Plast. Reconstr. Surg. 2013, 132(5), 1319-1328. [CrossRef]
- Chung, P. Y.; Khanum, R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J. Microbiol. Immunol. Infect. 2017, 50(4), 405-410. [CrossRef]
- Lopes, B. S.; Hanafiah, A.; Nachimuthu, R.; Muthupandian, S.; Md Nesran, Z. N.; Patil, S. The role of antimicrobial peptides as antimicrobial and antibiofilm agents in tackling the silent pandemic of antimicrobial resistance. Molecules 2022, 27(9), 2995. [CrossRef]
- Cavallo, I.; Sivori, F.; Mastrofrancesco, A.; Abril, E.; Pontone, M.; Di Domenico, E. G.; Pimpinelli, F. Bacterial biofilm in chronic wounds and possible therapeutic approaches. Biology 2024, 13(2), 109. [CrossRef]
- Yasir, M.; Willcox, M. D. P.; Dutta, D. Action of antimicrobial peptides against bacterial biofilms. Materials 2018, 11(12), 2468. [CrossRef]
- Nag, M.; Bhattacharya, D.; Garai, S.; Dutta, B.; Ghosh, S.; Ray, R. R.; Lahiri, D. Immobilised antimicrobial peptides in downregulation of biofilm. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 1-11. [CrossRef]
- Surekha, S.; Lamiyan, A. K.; Gupta, V. Antibiotic resistant biofilms and the quest for novel therapeutic strategies. Indian J. Microbiol. 2024, 64(1), 20-35. [CrossRef]
- Bahar, A. A.; Ren, D. Antimicrobial peptides. Pharmaceuticals 2013, 6(12), 1543-1575. [CrossRef]
- Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and antibiofilm peptides. Biomolecules 2020, 10(4), 652. [CrossRef]
- Pletzer, D.; Coleman, S. R.; Hancock, R. E. Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr. Opin Microbiol. 2016, 33, 35-40. [CrossRef]
- Dawgul, M..; Maciejewska, M.; Jaskiewicz, M.; Karafova, A.; Kamysz, W. Antimicrobial peptides as potential tool to fight bacterial biofilm. Acta Pol. Pharm 2014, 71(1), 39-47.
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. BBA-Biomembranes 2016, 1858(5), 1044-1060. [CrossRef]
- Malanovic, N.; Lohner, K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. BBA-Biomembranes 2016, 1858(5), 936-946. [CrossRef]
- Segev-Zarko, L. A.; Shai, Y. Methods for investigating biofilm inhibition and degradation by antimicrobial peptides. Antimicrobial Peptides: Methods and Protocols 2017, 309-322. [CrossRef]
- Doern, C. D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52(12), 4124-4128. [CrossRef]
- Wu, X.; Li, Z.; Li, X.; Tian, Y.; Fan, Y.; Yu, C.; Zhou, B.; Liu, Y.; Xiang, R.; Yang, L. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des. Dev. Ther. 2017, 939-946. [CrossRef]
- Kampshoff, F.; Willcox, M. D.; Dutta, D. A pilot study of the synergy between two antimicrobial peptides and two common antibiotics. Antibiotics 2019, 8(2), 60. [CrossRef]
- Pizzolato-Cezar, L. R.; Okuda-Shinagawa, N. M.; Machini, M. T. Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Front. microbiol. 2019, 10, 1703. [CrossRef]
- Ruden, S.; Rieder, A.; Chis Ster, I.; Schwartz, T.; Mikut, R.; Hilpert, K. Synergy pattern of short cationic antimicrobial peptides against multidrug-resistant Pseudomonas aeruginosa. Front. Microbiol. 2019, 10, 2740. [CrossRef]
- Chen, C.; Shi, J.; Wang, D.; Kong, P.; Wang, Z.; Liu, Y. Antimicrobial peptides as promising antibiotic adjuvants to combat drug-resistant pathogens. Crit. Rev. Microbiol. 2024, 50(3), 267-284. [CrossRef]
- Hollmann, A.; Martinez, M.; Maturana, P.; Semorile, L. C.; Maffia, P. C. Antimicrobial peptides: Interaction with model and biological membranes and synergism with chemical antibiotics. Front. Chem. 2018, 6, 204. [CrossRef]
- Zhu, Y.; Hao, W.; Wang, X.; Ouyang, J.; Deng, X.; Yu, H.; Wang, Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med. Res. Rev. 2022, 42(4), 1377-1422. [CrossRef]
- Li, J.; Fernández-Millán, P.; Boix, E. Synergism between host defence peptides and antibiotics against bacterial infections. Curr. Top Med. Chem. 2020, 20(14), 1238-1263. [CrossRef]
- Hadjicharalambous, A.; Bournakas, N.; Newman, H.; Skynner, M. J., Beswick, P. Antimicrobial and cell-penetrating peptides: Understanding penetration for the design of novel conjugate antibiotics. Antibiotics 2022, 11(11), 1636. [CrossRef]
- Di Luca, M.; Maccari, G.; Nifosì, R. Treatment of microbial biofilms in the post-antibiotic era: Prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. Pathog. Dis. 2014, 70(3), 257-270. [CrossRef]
- Segev-Zarko, L. A., Saar-Dover, R., Brumfeld, V., Mangoni, M. L., & Shai, Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 2015, 468(2), 259-270. [CrossRef]
- Chen, X.; Su, S.; Yan, Y.; Yin, L.; Liu, L. Anti-Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol. 2023, 14, 1239540. [CrossRef]
- Biswaro, L. S.; da Costa Sousa, M. G.; Rezende, T. M.; Dias, S. C.; Franco, O. L. Antimicrobial peptides and nanotechnology, recent advances and challenges. Front. microbiol. 2018, 9, 855. [CrossRef]
- Wei, D.; Zhang, X. Biosynthesis, bioactivity, biotoxicity and applications of antimicrobial peptides for human health. Biosaf. Health 2022, 4(02), 118-134. [CrossRef]
- Aslanli, A., Domnin, M., Stepanov, N., Senko, O., & Efremenko, E. Action enhancement of antimicrobial peptides by their combination with enzymes hydrolyzing fungal quorum molecules. Int. J. Biol. Macromol. 2024, 280, 136066. [CrossRef]
- Enninful, G. N.; Kuppusamy, R.; Tiburu, E. K.; Kumar, N.; Willcox, M. D. Non-canonical amino acid bioincorporation into antimicrobial peptides and its challenges. J. Pept. Sci. 2024, 30(6), e3560. [CrossRef]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.S; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat. 2023, 68, 100954. [CrossRef]
- Kamel, M.; Aleya, S.; Alsubih, M.; Aleya, L. Microbiome Dynamics: A Paradigm Shift in Combatting Infectious Diseases. J. Pers. Med. 2024, 14(2), 217. [CrossRef]
- Baindara, P.; Mandal, S. M. Gut-antimicrobial peptides: Synergistic co-evolution with antibiotics to combat multi-antibiotic resistance. Antibiotics 2023, 12(12), 1732. [CrossRef]
- Toldrá, F.; Reig, M.; Aristoy, M. C.; Mora, L. Generation of bioactive peptides during food processing. Food Сhem. 2018, 267, 395-404. [CrossRef]
- Guzmán-Rodríguez, F.; Gómez-Ruiz, L.; Rodríguez-Serrano, G.; Alatorre-Santamaría, S.; García-Garibay, M.; Cruz-Guerrero, A. Iron binding and antithrombotic peptides released during the fermentation of milk by Lactobacillus casei shirota. Revista Mexicana de Ingeniería Química 2019, 18(3), 1161-1165. [CrossRef]
- Bao, X.; Wu, J. Impact of food-derived bioactive peptides on gut function and health. Food Res. Int. 2021, 147, 110485. [CrossRef]
- Fernandez, M. A.; Marette, A. Novel perspectives on fermented milks and cardiometabolic health with a focus on type 2 diabetes. Nutr. Rev. 2018, 76, 16-28. [CrossRef]
- Hassan, Y. I.; Zhou, T.; Bullerman, L. B. Sourdough lactic acid bacteria as antifungal and mycotoxin-controlling agents. Food Sci. Technol. Int. 2016, 22(1), 79-90. [CrossRef]
- Freitas, C. G.; Franco, O. L. Antifungal peptides with potential against pathogenic fungi. In Recent Trends in Antifungal Agents and Antifungal Therapy; Basak, A., Chakraborty, R., Mandal, S.; Springer, New Delhi, 2016, 75-95. [CrossRef]
- Rouse, S.; Harnett, D.; Vaughan, A.; Sinderen, D. V. Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J. Appl. Microbiol. 2008, 104(3), 915-923. [CrossRef]
- Dalié, D. K. D.; Deschamps, A. M.; Richard-Forget, F. Lactic acid bacteria–Potential for control of mould growth and mycotoxins: A review. Food Control 2010, 21(4), 370-380. [CrossRef]
- Cizeikiene, D.; Juodeikiene, G.; Paskevicius, A.; Bartkiene, E. Antimicrobial activity of lactic acid bacteria against pathogenic and spoilage microorganism isolated from food and their control in wheat bread. Food Cont. 2013, 31(2), 539-545. [CrossRef]
- Crowley, S.; Mahony, J.; van Sinderen, D. Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci. Technol. 2013, 33(2), 93-109. [CrossRef]
- Rautenbach, M.; Troskie, A. M.; Vosloo, J. A. Antifungal peptides: To be or not to be membrane active. Biochimie 2016, 130, 132-145. [CrossRef]
- Fernández de Ullivarri, M.; Arbulu, S.; Garcia-Gutierrez, E.; Cotter, P. D. Antifungal peptides as therapeutic agents. Front. Cell. Infect. Microbiol. 2020, 10, 105. [CrossRef]
- Mokoena, M. P.; Omatola, C. A.; Olaniran, A. O. Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules 2021, 26(22), 7055. [CrossRef]
- Kumariya, R.; Garsa, A. K.; Rajput, Y. S.; Sood, S. K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171-177. [CrossRef]
- Kamal, I.; Ashfaq, U. A.; Hayat, S.; Aslam, B.; Sarfraz, M. H.; Yaseen, H.; Rajoka, M.S.R.; Shah, A.A.; Khurshid, M. Prospects of antimicrobial peptides as an alternative to chemical preservatives for food safety. Biotechnol Lett. 2023, 45(2), 137-162. [CrossRef]
- Luz, C.; Izzo, L.; Ritieni, A.; Mañes, J.; Meca, G. Antifungal and antimycotoxigenic activity of hydrolyzed goat whey on Penicillium spp: An application as biopreservation agent in pita bread. LWT 2020, 118, 108717. [CrossRef]
- Singh, B. P.; Rohit, Manju, K. M.; Sharma, R.; Bhushan, B.; Ghosh, S.; Goel, G. Nano-conjugated food-derived antimicrobial peptides as natural biopreservatives: A review of technology and applications. Antibiotics 2023, 12(2), 244. [CrossRef]
- Barbosa, A. A. T.; Mantovani, H. C.; Jain, S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit. Rev. Biotechnol. 2017, 37(7), 852–864. [CrossRef]
- Cruz-Casas, D. E.; Aguilar, C. N.; Ascacio-Valdés, J. A.; Rodríguez-Herrera, R.; Chávez-González, M. L.; Flores-Gallegos, A. C. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem. Mol. Sci. 2021, 3, 100047. [CrossRef]
- Martínez-Medina, G. A.; Barragán, A. P.; Ruiz, H. A.; Ilyina, A.; Hernández, J. L. M.; Rodríguez-Jasso, R. M.; Hoyos-Concha, J. L.; Aguilar-González, C. N. Fungal proteases and production of bioactive peptides for the food industry. In Enzymes in Food Biotechnology; Ed. Kuddus, M.; Academic Press, 2019, pp. 221-246. [CrossRef]
- Souza, T. S. P. D.; de Andrade, C. J.; Koblitz, M. G. B.; Fai, A. E. C. Microbial peptidase in food processing: Current state of the art and future trends. Catal Lett, 2023, 153(1), 114-137. [CrossRef]
- Rao, M. B.; Tanksale, A. M.; Ghatge, M. S.; Deshpande, V. V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. 1998, 62(3), 597-635. [CrossRef]
- Whitaker, J. R. Principles of enzymology for the food science, 2nd ed.; Routledge, New York, USA, 2018, 648 p. [CrossRef]
- Song, P.; Zhang, X.; Wang, S.; Xu, W.; Wang, F.; Fu, R.; Wei, F. Microbial proteases and their applications. Front. Microbiol. 2023, 14, 1236368. [CrossRef]
- Chai, K. F.; Voo, A. Y. H.; Chen, W. N. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr. Rev. Food Sci. Food Saf. 2020, 19(6), 3825-3885. [CrossRef]
- Kumari, R.; Sanjukta, S.; Sahoo, D.; Rai, A. K. Functional peptides in Asian protein rich fermented foods: Production and health benefits. Syst. Microbiol. Biomanufacturing 2022, 2(1), 1-13. [CrossRef]
- Christensen, L. F.; García-Béjar, B.; Bang-Berthelsen, C. H.; Hansen, E. B. Extracellular microbial proteases with specificity for plant proteins in food fermentation. Int. J. Food Microbiol. 2022, 381, 109889. [CrossRef]
- Ji, D.; Ma, J.; Xu, M.; Agyei, D. Cell-envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications. Compr. Rev. Food Sci. Food Saf. 2021, 20(1), 369-400. [CrossRef]
- Siezen, R.J. Multi-domain, cell-envelope proteinases of lactic acid bacteria. In: Lactic Acid Bacteria: Genetics, Metabolism and Applications; Konings, W.N., Kuipers, O.P., In’t Veld, J.H.J.H., Eds.; Springer, Dordrecht, Netherlands, 1999, pp. 139-155. [CrossRef]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A. M. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules 2021, 26(7), 1858. [CrossRef]
- Liu, M.; Bayjanov, J. R.; Renckens, B.; Nauta, A.; Siezen, R. J. The proteolytic system of lactic acid bacteria revisited: A genomic comparison. BMC genomics 2010, 11, 1-15. [CrossRef]
- Macwan, S. R.; Dabhi, B. K.; Parmar, K. D. Aparnathi Whey and its Utilization. Int.J.Curr.Microbiol.App.Sci. 2016, 5(8), 134-155. [CrossRef]
- Alves, M. P.; Moreira, R. O.; Júnior, P. H. R.; Martins, M. C. F.; Perrone, I. T.; Carvalho, A. F. Soro de leite: Tecnologias para o processamento de coprodutos. Revista do Instituto de Laticínios Cândido Tostes 2014, 69, 212–226. [CrossRef]
- Batista, M.A.; Campos, N.C.A.; Silvestre, M.P.C. Whey and protein derivatives: Applications in food products development, technological properties and functional effects on child health. Cogent food agric. 2018, 4(1). [CrossRef]
- Smithers, G.W. Whey and whey proteins—From ‘gutter-to-gold’. Int. Dairy J. 2008, 18(7), 695-704. [CrossRef]
- Smithers, G.W. Whey-ing up the options – Yesterday, today and tomorrow. Int. Dairy J. 2015, 48, 2-14. [CrossRef]
- Khan, U.M.; Selamoglu, Z. Nutritional and medical perspectives of whey protein: A historical overview. J. Pharm. Care 2019, 7(4), 112-117. [CrossRef]
- Mehra, R.; Kumar, H.; Kumar, N.; Ranvir, S.; Jana, A.; Buttar, H. S.; Telessy, I.G.; Awuchi, C.G.; Okpala, C.O.R.; Korzeniowska, M.; Guiné, R. P. Whey proteins processing and emergent derivatives: An insight perspective from constituents, bioactivities, functionalities to therapeutic applications. J. Funct. Foods 2021, 87, 104760. [CrossRef]
- Zhao, C.; Chen, N.; Ashaolu, T. J. Whey proteins and peptides in health-promoting functions–A review. Int. Dairy J. 2022, 126, 105269. [CrossRef]
- Chavan, R.S.; Shradda, R.; Kumar, A.; Nalawade, T. Whey based beverage: Its functionality, formulations, health benefits and applications. J. Food Process. Technol. 2015, 6(10). [CrossRef]
- Zotta, T.; Solieri, L.; Iacumin, L.; Picozzi, C.; Gullo, M. Valorization of cheese whey using microbial fermentations. Appl. Microbiol. Biotechnol. 2020, 104(7), 2749-2764. [CrossRef]
- Singh, A. R.; Pathak, S.; Mitra, A.; Verma, M.; Banga, A. Dairy Processing Waste Valorization and Utilization: A Review. IJARESM 2021, 9(11). 780-783.
- Bandara, T. A.; Munasinghe-Arachchige, S. P.; Gamlath, C. J. Fermented whey beverages: A review of process fundamentals, recent developments and nutritional potential. Int. J. Dairy Technol. 2023, 76(4), 737-757. [CrossRef]
- Shukla, M.; Jha, Y. K.; Admassu, S. Development of probiotic beverage from whey and pineapple juice. J. Food Process. Technol. 2013, 4(2), 1-4. [CrossRef]
- Sasi Kumar, R. Development, quality evaluation and shelf life studies of probiotic beverages using whey and Aloe vera juice. J. Food Process. Technol. 2015, 6(9). 486. [CrossRef]
- Faisal, S.; Chakraborty, S.; Devi, W. E.; Hazarika, M. K.; Puranik, V. Sensory evaluation of probiotic whey beverages formulated from orange powder and flavor using fuzzy logic. Int. Food Re.s J. 2017, 24(2), 703-710.
- Rosa, L. S.; Santos, M. L.; Abreu, J. P.; Rocha, R. S.; Esmerino, E. A.; Freitas, M. Q.; Mársico, E. T.; Campelo, P.H.; Pimentel, T.C.; Silva, M. C.; Souza, A.A.; Nogueira, F. C.S.; Teodoro, A. J. Probiotic fermented whey-milk beverages: Effect of different probiotic strains on the physicochemical characteristics, biological activity, and bioactive peptides. Int. Food Res. 2023, 164, 112396. [CrossRef]
- Quintieri, L.; Fanelli, F.; Monaci, L.; Fusco, V. Milk and its derivatives as sources of components and microorganisms with health-promoting properties: Probiotics and bioactive peptides. Foods 2024, 13(4), 601. [CrossRef]
- Liutkevičius, A.; Speičienė, V.; Kaminskas, A.; Jablonskienė, V.; Alenčikienė, G.; Mieželienė, A.; Bagdonaitė, L.: Vitkus, D.; Garmienė, G. Development of a functional whey beverage, containing calcium, vitamin D, and prebiotic dietary fiber, and its influence on human health. CyTA-J. Food 2016, 14(2), 309-316. [CrossRef]
- Moreno-Montoro, M., Olalla-Herrera, M.; Rufián-Henares, J. Á.; Martínez, R. G.; Miralles, B.; Bergillos, T.; Navarro-Alarcón, M.; Jauregi, P. Antioxidant, ACE-inhibitory and antimicrobial activity of fermented goat milk: Activity and physicochemical property relationship of the peptide components. Food Funct. 2017, 8(8), 2783-2791. [CrossRef]
- Silva e Alves, A. T.; Spadoti, L. M.; Zacarchenco, P. B.; Trento, F. K. Probiotic functional carbonated whey beverages: Development and quality evaluation. Beverages 2018, 4(3), 49. [CrossRef]
- Turkmen, N.; Akal, C.; Özer, B. Probiotic dairy-based beverages: A review. J. Funct. Foods 2019, 53, 62-75. [CrossRef]
- Skryplonek, K.; Dmytrów, I.; Mituniewicz-Małek, A. Probiotic fermented beverages based on acid whey. JDS 2019, 102(9), 7773-7780. [CrossRef]
- Gulec, H. A.; Cinar, K.; Bagci, U.; Bagci, P. O. Production of concentrated whey beverage by osmotic membrane distillation: Comparative evaluation of feed effect on process efficiency and product quality. Int. Dairy J. 2021, 121, 105115. [CrossRef]
- Karabegović, I.; Stamenković, S. S.; Lazić, M.; Đorđević, N.; Danilović, B. Antimicrobial activity and overall sensory acceptance of fermented goat whey beverage: Process conditions optimization using response surface approach. Advanced Technologies 2022, 11(2), 26-35. [CrossRef]
- Naik, B.; Kohli, D.; Walter, N.; Gupta, A. K.; Mishra, S.; Khan, J. M.; Joakim Saris, P.E.; Irfan, M.; Rustagi, S.; Kumar, V. Whey-carrot based functional beverage: Development and storage study. J. King Saud Univ. Sci. 2023, 35(6), 102775. [CrossRef]
- Vargas-Díaz, S.; Ciro-Velasquez, H. J.; Sepúlveda-Valencia, J. U. Development and characterization of a fermented dairy beverage from permeated and concentrated sweet whey sweetened with tagatose. RFNAM 2023, 76(1), 10201-10212. [CrossRef]
- Hernández; T.; Vélez-Ruiz, J.F. Development, characterization, and stability of a functional beverage from whey. MOJ Food Process Technols. 2024, 12(2), 140-147. [CrossRef]
- Vélez, N.; Argel, A.; Kissmann, A. K.; Alpízar-Pedraza, D.; Escandón, P.; Rosenau, F.; Ständker. L.; Firacative, C. Pore-forming peptide C14R exhibits potent antifungal activity against clinical isolates of Candida albicans and Candida auris. Front. cell. infect. microbiol. 2024, 14, 1389020. [CrossRef]
- Panghal, A.; Patidar, R.; Jaglan, S.; Chhikara, N.; Khatkar, S. K.; Gat, Y.; Sindhu, N. Whey valorization: Current options and future scenario – A critical review. Nutr. Food Sci. 2018, 48(3), 520–535. [CrossRef]
- Sharma, V.; Singh, A.; Thakur, M. Valorization of Whey in Manufacturing of Functional Beverages: A Dairy Industry Perspective. In Whey Valorization: Innovations, Technological Advancements and Sustainable Exploitation; Springer, Singapore, 2023, pp. 355-369. [CrossRef]
- Abish, Z. A.; Alibekov, R. S.; Tarapoulouzi, M.; Bakhtybekova, A. R.; Kobzhasarova, Z. I. Review in deep processing of whey. Cogent Food & Agriculture 2024, 10(1), 2415380. [CrossRef]
- Brandenburg, K.; Heinbockel, L.; Correa, W.; Lohner, K. Peptides with dual mode of action: Killing bacteria and preventing endotoxin-induced sepsis. BBA-Biomembranes 2016, 1858(5), 971-979. [CrossRef]
- Fernandes, A.; Jobby, R. Bacteriocins from lactic acid bacteria and their potential clinical applications. Appl. Biochem. Biotechnol. 2022, 194(10), 4377-4399. [CrossRef]
- Bakare, O. O.; Gokul, A.; Niekerk, L. A.; Aina, O.; Abiona, A.; Barker, A. M.; Basson, G.; Nkomo, M.; Otomo, L.; Keyster, M.; Klein, A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int. J. Mol. Sci. 2023, 24(14), 11864. [CrossRef]
- Mehraj, I.; Hamid, A.; Gani, U.; Iralu, N.; Manzoor, T.; Saleem Bhat, S. Combating antimicrobial resistance by employing antimicrobial peptides: Immunomodulators and therapeutic agents against infectious diseases. ACS Appl. Bio Mater. 2024, 7(4), 2023-2035. [CrossRef]
- Strempel, N.; Strehmel, J.; Overhage, J. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr. Pharm. Des. 2015, 21(1), 67-84. [CrossRef]
- Newstead, L. L.; Varjonen, K.; Nuttall, T.; Paterson, G. K. Staphylococcal-produced bacteriocins and antimicrobial peptides: Their potential as alternative treatments for Staphylococcus aureus infections. Antibiotics 2020, 9(2), 40. [CrossRef]
- Pang, X.; Song, X., Chen, M.; Tian, S.; Lu, Z.; Sun, J.; Li, X.; Lu, Y.; Yuk, H. G. Combating biofilms of foodborne pathogens with bacteriocins by lactic acid bacteria in the food industry. Compr Rev Food Sci Food Saf. 2022, 21(2), 1657-1676. [CrossRef]
- Nowicka, J.; Janczura, A.; Pajączkowska, M.; Chodaczek, G.; Szymczyk-Ziółkowska, P.; Walczuk, U.; Gościniak, G. Effect of camel peptide on the biofilm of Staphylococcus epidermidis and Staphylococcus haemolyticus formed on orthopedic implants. Antibiotics 2023, 12(12), 1671. [CrossRef]
- Chen, X.; Yang, J.; Qu, C.; Zhang, Q.; Sun, S.; Liu, L. Anti-Staphylococcus aureus effects of natural antimicrobial peptides and the underlying mechanisms. Future Microbiol. 2024, 19(4), 355-372. [CrossRef]
- Huang, M. B.; Brena, D.; Wu, J. Y.; Shelton, M.; Bond, V. C. SMR peptide antagonizes Staphylococcus aureus biofilm formation. Microbiol. Spectr. 2024, 12(2), e02583-23. [CrossRef]
- Daba, G. M.; Elkhateeb, W. A. Ribosomally synthesized bacteriocins of lactic acid bacteria: Simplicity yet having wide potentials–A review. Int. J. Biol. Macromol. 2024, 256, 128325. [CrossRef]
- Patent No. 35266 KZ. Population-resistant consortium of lactic acid bacteria Lactobacillus delbrueckii 5, Lactobacillus gallinarum 1, Lactobacillus paracasei 33-4, Lactobacillus parabuchneri 3, acetic acid bacteria Acetobacter syzygii 2 and yeast Kluyveromyces marxianus 19 with high antagonistic activity against a wide range of yeasts of the genus Candida – causative agents of candidiasis of various localizations, mold fungi isolated from the human intestinal tract in dysbacteriosis, as well as the most common representatives of opportunistic bacteria. Sadanov A.K., Saubenova M.G., Oleinikova E.A., Aitzhanova A.A., Baimakhanova B.B. Applicant and patent holder: Research and Production Center of Microbiology and Virology, LLP, No. 2020/0468.1; declared 10.07.2020; published 24.12.2021. Bulletin No. 51. (In Rus.).
- Patent No. 35463 KZ. Sadanov A.K., Saubenova M.G., Oleinikova E.A., Aitzhanova A.A. Consortium of lactic acid bacteria Lactobacillus fermentum A15, Lactobacillus paracasei 4m-2b, acetic acid bacteria Acetobacter fabarum 4-4M and lactose-fermenting yeast Kluyveromyces marxianus 4MA, antagonistically active against fungal and bacterial microorganisms, intended for fermentation of milk whey. Applicant and patent holder: Research and Production Center of Microbiology and Virology LLP, No. 2020/0558.1; declared 14.08.2020; published 14.01.2022. (In Rus.).
- Aitzhanova, A.; Oleinikova, Y.; Mounier, J.; Hymery, N.; Leyva Salas, M.; Amangeldi, A.; Saubenova, M.; Alimzhanova, M.; Ashimuly, K.; Sadanov, A. Dairy associations for the targeted control of opportunistic Candida. World J. Microbiol. Biotechno. 2021, 37, 1-18. [CrossRef]
- Oleinikova, Y.; Alybayeva, A.; Daugaliyeva, S.; Alimzhanova, M.; Ashimuly, K.; Yermekbay, Z.; Khadzhibayeva, I.; Saubenova, M. Development of an antagonistic active beverage based on a starter including Acetobacter and assessment of its volatile profile. Int. Dairy J. 2024, 148, 105789. [CrossRef]
- Patent No. 35394 KZ. Sadanov A.K., Saubenova M.G., Oleinikova E.A., Aitzhanova A.A., Baimakhanova B.B. Method for preparing a functional fermented milk drink based on whey. Applicant and patent holder: Research and Production Center of Microbiology and Virology LLP, No. 2020/0467.1; declared 10.07.2020; published 24.12.2021. Bulletin No. 51. (In Rus.).
- Patent No. 35461 KZ. Sadanov A.K., Saubenova M.G., Oleinikova E.A., Aitzhanova A.A. Method for producing a synbiotic drink based on milk whey. Applicant and patent holder: Research and Production Center of Microbiology and Virology LLP, No. 2020/0557.1; declared 14.08.2020; published 18.02.2022. (In Rus.).
- Oleinikova Y.; Amangeldi A.; Aitzhanova A.; Saubenova M.; Yelubaeva M. Influence of dairy microorganisms and their consortia on indigenous microflora. Int. J. Eng. Res. Appl. 2019, 9(7), Series V, 46-49. https://www.ijera.com/papers/vol9no7/Series-5/F0907054649.pdf.
- Chizhayeva, A.; Oleinikova, Y.; Saubenova, M.; Sadanov, A.; Amangeldi, A.; Aitzhanova, A.; Alybaeva, A.; Yelubaeva, M. Impact of probiotics and their metabolites in enhancement the functional properties of whey-based beverages. AIMS Agric. Food 2020, 5(3), 521-542. [CrossRef]
- Oleinikova, Y.; Amangeldi, A.; Yelubaeva, M.; Alybaeva, A.; Amankeldy, S.; Saubenova, M.; Chizhaeva, A.; Aitzhanova, A.; Berzhanova, R. Immobilization effects of wheat bran on enhanced viability of dairy starters under acid and bile salts stresses. Appl. Food Biotechnol. 2020, 7(4), 215-223. [CrossRef]
- Ji, S.; An, F.; Zhang, T.; Lou, M.; Guo, J.; Liu, K.; Zhu, Y.; Wu, J.; Wu, R. Antimicrobial peptides: An alternative to traditional antibiotics. Eur. J. Med. Chem. 2023, 116072. [CrossRef]
- Sukmarini, L.; Atikana, A.; Hertiani, T. Antibiofilm activity of marine microbial natural products: Potential peptide-and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J. Nat. Med. 2024, 78(1), 1-20. [CrossRef]
- Goel, N.; Fatima, S. W.; Kumar, S.; Sinha, R.; Khare, S. K. Antimicrobial resistance in biofilms: Exploring marine actinobacteria as a potential source of antibiotics and biofilm inhibitors. Biotechnol. Rep. 2021, 30, e00613. [CrossRef]
- Davoudi, M.; Gavlighi, H. A.; Javanmardi, F.; Benjakul, S.; Nikoo, M. Antimicrobial peptides derived from food byproducts: Sources, production, purification, applications, and challenges. Compr. Rev. Food Sci. Food Saf. 2024, 23(5), e13422. [CrossRef]
- Chauhan, V., & Kanwar, S. S. Bioactive peptides: Synthesis, functions and biotechnological applications. In Biotechnological production of bioactive compounds; Elsevier, 2020, pp. 107-137. [CrossRef]
- Arasu, M. V.; Al-Dhabi, N. A. Antibacterial activity of peptides and bio-safety evaluation: In vitro and in vivo studies against bacterial and fungal pathogens. J. Infect. Public Health. 2023, 16(12), 2031-2037. [CrossRef]
- Wang, X.; Yang, X.; Wang, Q.; Meng, D. Unnatural amino acids: Promising implications for the development of new antimicrobial peptides. Crit. Rev. Microbiol. 2023, 49(2), 231-255. [CrossRef]
- Erdem Büyükkiraz, M.; Kesmen, Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. J. Appl. Microbiol. 2022, 132(3), 1573-1596. [CrossRef]
- Zhang, F.; Yang, P.; Mao, W.; Zhong, C.; Zhang, J.; Chang, L.; Wu, X.; Liu, H.; Zhang, Y.; Gou, S.; Ni, J. Short, mirror-symmetric antimicrobial peptides centered on “RRR” have broad-spectrum antibacterial activity with low drug resistance and toxicity. Acta Biomaterialia 2022, 154, 145-167. [CrossRef]
- Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol. 2020, 40(7), 978-992. [CrossRef]
- Sowers, A.; Wang, G.; Xing, M.; Li, B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023, 11, 1129. [CrossRef]
- Almaaytah, A. Antimicrobial peptides as potential therapeutics: Advantages, challenges and recent advances. Farmacia 2022, 70(6), 991-1003. [CrossRef]
- Dullius, A.; Goettert, M. I.; de Souza, C. F. V. Whey protein hydrolysates as a source of bioactive peptides for functional foods–Biotechnological facilitation of industrial scale-up. J. Funct. Foods 2018, 42, 58-74. [CrossRef]
- Purohit, K.; Reddy, N.; Sunna, A. Exploring the potential of bioactive peptides: From natural sources to therapeutics. Int. J. Mol. Sci. 2024, 25(3), 1391. [CrossRef]
- Barati, M., Javanmardi, F., Mousavi Jazayeri, S. M. H., Jabbari, M., Rahmani, J., Barati, F.; Nickho, H.; Davoodi, S. H.; Mousavi Khaneghah, A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr. Rev. Food Sci. Food Saf. 2020, 19(4), 1488-1520. [CrossRef]
- Tsai, C. T.; Lin, C. W.; Ye, G. L.; Wu, S. C.; Yao, P.; Lin, C. T.; Wan, L.; Tsai, H. H. G. Accelerating antimicrobial peptide discovery for who priority pathogens through predictive and interpretable machine learning models. ACS omega 2024, 9(8), 9357-9374. [CrossRef]
- Martínez-Culebras, P. V.; Gandía, M.; Garrigues, S.; Marcos, J. F.; Manzanares, P. Antifungal peptides and proteins to control toxigenic fungi and mycotoxin biosynthesis. Int. J. Mol. Sci. 2021, 22(24), 13261. [CrossRef]
- Corrêa, J. A. F.; de Melo Nazareth, T.; Rocha, G. F. D.; Luciano, F. B. Bioactive antimicrobial peptides from food proteins: Perspectives and challenges for controlling foodborne pathogens. Pathogens 2023, 12(3), 477. [CrossRef]
- Ahmed, T. A.; Hammami, R. Recent insights into structure–function relationships of antimicrobial peptides. J. Food Biochem. 2019, 43(1), e12546. [CrossRef]
- Grassi, L.; Maisetta, G.; Esin, S.; Batoni, G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front. microbiol. 2017, 8, 2409. [CrossRef]
- Aransiola, S. A.; Selvaraj, B.; Maddela, N. R. Bacterial biofilm formation and anti-biofilm strategies. Res. Microbiol. 2024, 175(3), 104172. [CrossRef]
- Juszczuk-Kubiak, E. Molecular aspects of the functioning of pathogenic bacteria biofilm based on Quorum Sensing (QS) signal-response system and innovative non-antibiotic strategies for their elimination. Int. J. Mol. Sci. 2024, 25(5), 2655. [CrossRef]
- Hussaini, I. M.; Oyewole, O. A.; Sulaiman, M. A.; Dabban, A. I.; Sulaiman, A. N.; Tarek, R. Microbial anti-biofilms: Types and mechanism of action. Res. Microbiol. 2024, 175(3), 104111. [CrossRef]
- Manobala, T. Peptide-based strategies for overcoming biofilm-associated infections: A comprehensive review. Crit. Rev. Microbiol. 2024, 1-18. [CrossRef]
- Perfect, J. R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16(9), 603-616. [CrossRef]


Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
