Submitted:
03 September 2024
Posted:
04 September 2024
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
2. The Hawking Radiation Mechanism
- (i)
- The universe is filled with particle-antiparticle pairs popping in and out of existence;
- (ii)
- These pairs of particle-antiparticle exist even in empty space, as a consequence of quantum field theory and the Heisenberg uncertainty relations;
- (iii)
- These pairs always find one another and re-annihilate after a very small time interval;
- (iv)
- Hawking radiation arises from quantum effects near the event horizon of a black hole. The strong gravitational field near the event horizon causes quantum vacuum fluctuations to become real particles;
- (v)
- This mechanism leads to a situation where one member of the pair falls in while a real particle escapes and is emitted with positive mass/energy from just outside the horizon itself;
- (vi)
- The paired member that falls into the event horizon must have negative energy that subtracts from the black hole’s total mass. The flow of particles of negative energy into the black hole reduces its mass until it disappears completely in a final burst of radiation;
2.1. Vacuum fluctuations and Time-Energy Heisenberg’s Uncertainty Relation
3. A (Heuristic) Derivation of the Exact Expressions of Temperature and Entropy for a Schwarzschild Black Hole
- Black Holes and Generalized Second Law (GSL) of Thermodynamics
3.1. Prigogine’s second law of thermodynamics for open systems
3.2. The Second Law of the Black Hole Dynamics
3.3. Link between the Second Law of the Black Hole Dynamics and Prigogine’s Second Law of Thermodynamics
4. EUP and Conciliation with Prigogine’s Second Law of Thermodynamics and the Second Law of Black Hole Dynamics
4.1. GUP and Prigogine’s Second Law of Thermodynamics
4.2. EUP and Prigogine’s Second Law of Thermodynamics
5. Conclusions
Acknowledgments
References
- S. W. Hawking, Nature, 248(5443), 30 (1974).
- S.W. Hawking, Nature, 248, 30 (1974).
- S. W. Hawking, A Brief History of Time: From the Big Bang to Black Holes, (1988), Bantam Books. ISBN 978-0-553-38016-3.
- S. W. Hawking, The Illustrated Brief History of Time, (1986), updated and expanded ed. (Bantam Books, New York.
- I. Prigogine 1954 Thermodynamics of Irreversible processes, (John Wiley & Sons).
- I. Prigogine Etude Thermodynamique des Phénomènes Irréversibles, (Desoer, Liège, 1947).
- I. Prigogine and R. Hansen, Bull. classe sci. Acad. roy. Belg., 28, 301 (1942).
- I. Prigogine, Bull. classe sci. Acad. roy. Belg., 32, 30 (1946).
- C.W. Misner, K.S. C.W. Misner, K.S. Thorne, and J.A. Wheeler, Gravitation, W. H. Freeman and Company, San Francisco (1973).
- M. C. LoPresto, Some Simple Black Hole Thermodynamics, The Physics Teacher, 4 (2003). https://web.stanford.edu/~oas/SI/SRGR/lib/BlackHoleThermoShort.pdf.
- L. Buoninfante, G. G. L. Buoninfante, G. G. Luciano, L. Petruzziello, Eur. Phys. J. C 70, 663 (2019).
- F. Scardigli, J. F. Scardigli, J. Phys. Conf. Ser, 1275, 012004 (2019).
- X. Calmet, M. X. Calmet, M. Graesser, Phys. Rev. Lett. 93, 211101 (2004).
- X.-D. Du and C.-Y. Long, J. X.-D. Du and C.-Y. Long, J. High Energy. Phys., 63, (2022).
- S.-S. Luo and Z.-W. Feng, The gravitational baryogenesis and a new higher-order extended uncertainty principle with parameter adaptability for the minimum length, ArXiv 2023, https://arxiv.org/pdf/2306.10078.
- J. Pinochet, The Hawking temperature, the uncertainty principle, and quantum black holes, Physics Education, (2018).
- M.F. Wondrak, W. D. M.F. Wondrak, W. D. van Suijlekom, and H. Falcke, Gravitational Pair Production and Black Hole Evaporation, (23). https://arxiv.org/pdf/2305.18521.pdf.
- K. Krane (2012), Modern Physics, 3 ed., John Wiley and Sons, Hoboken.
- S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, (1973).
- K. S. Thorne, Black Holes and Time Warps: Einstein’s Outrageous Legacy, WW Norton & Co (1995).
- V. Mukhanov and S. Winitzki, Introduction to Quantum Effects in Gravity, Cambridge University Press, (2007).
- D. Christodoulou and R. Ruffini, Phys. Rev. D, 4, (1971) (received 1st 1971).
- S. Hawking, Phys. Rev. Lett., 26, (1971) (received 11th 1971).
- J. Bekenstein, Physics Today, 25 (1980).
- J. Bekenstein, J. J. Bekenstein, J. (1972a), Baryon Number, Entropy, and Black Holes Physics, Ph.D. Thesis, Princeton University.
- J. Bekenstein, Lett. Nuovo Cimento. 4, 737, (1972b).
- J. Bekenstein, Phys. Rev. D, 7(8), 2333 (1973).
- J. Bekenstein, Physics. Phys. Rev. D, 9(12), 3292 (1974).
- S. Giardino and V. Salzano, The European Physical Journal C, 81(110), (2021).
- E. C.Vagenas, S. M. E. C.Vagenas, S. M. Alsaleh, and A. F. Ali, ArXiv 2018 GUP parameter and black hole temperature. https://arxiv.org/pdf/1801.03670.
- A. N. Tawfik and A. M. Diab, Rep. Prog. Phys. 78 126001 (2015).
- R. Ruffini, Private communication, ICRANet 2023.
- G. W. Gibbons and S.W. Hawking, Phys. Rev.D., 15(10), 2738 (1977).
| 1 | Here, they set and . |
| 2 | Recall that we are in the unit and . |
| 3 | It is easily checked that in Kerr-Newman geometry the black hole entropy production is, in the unit and , . |
| 4 | We have . |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
