Submitted:
28 August 2024
Posted:
28 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Municipal Wastewater Treatment and Sustainability
3. Reducing Greenhouse Gas Emissions in Wastewater Treatment
3.1. Minimization
- Low dissolved oxygen (DO) concentrations: Inadequate oxygen levels during nitrification and the presence of oxygen during denitrification can increase N₂O production.
- High nitrite concentrations: Increased nitrite levels in both the nitrifying and denitrifying phases are associated with increased N₂O emissions.
- Low COD/N ratio: A low ratio of chemical oxygen consumption to nitrogen (COD/N) in the denitrification phase can lead to higher N₂O production.
- Sudden changes in pH and oxygen: Rapid changes in pH, dissolved oxygen, ammonia, and nitrite concentrations can disrupt microbial processes, leading to higher N₂O emissions.
3.2. Treatment Technologies
Carbon Sequestration in the Form of Biochar
Constructed Wetlands
4. Sustainable Municipal Wastewater Treatment
5. Innovative and Novel Treatment Methods
6. Sustainable Techniques for Removal of MPs
7. Sustainable Sludge Management
7.1. Sewage Sludge Disposal
7.2. Sewage Sludge Disposal
8. Energy Optimisation of Municipal Wastewater Treatment Systems
8.1. Overview of Energy Consumption of WWTPs in Europe
8.2. Benchmarking od WWTPs Energy Efficiency
- rough estimate of electricity consumption,
- use of process indicators that can be easily determined,
- evaluation of process indicators in a certain period,
- identification of gaps and errors and
- formulation of possible measures.
- determination of the actual consumption of electricity,
- determination of the sum of the different actual electricity consumption of each part of the equipment,
- determination of ideal values (theoretical calculations), electricity consumption according to the equipment used,
- assessment of the current situation and determination of measures for improvement,
- taking economic aspects into account, electricity savings are calculated, and the efficiency of the municipal treatment plant is improved and
- determine the priorities of work tasks for improvement measures.
- Specific electricity consumption per PE [kWh/PE/year]
- Specific electricity production per PE [kWh/PE/year]
- Electricity consumption rate for aeration [kWh/PE/year] Rate of electricity consumption for aeration [%]
- Level of self-sufficiency [%]
- Specific biogas production [L/PE/day]
8. Future Perspectives
- Implementation of different treatment processes in the existing systems. Treatment methods like trickling filters, lagoons, constructed wetlands, and adsorption-biology systems are comparatively more energy-efficient. However, energy consumption increases with implementation of advanced treatment processes used for nutrient removal and sludge conditioning. The energy demand for advanced biological treatment with nutrient removal and filtration is approximately 50% higher than that of conventional WWTPs [173].
- Adapting the WWTP process to a new energy input from a renewable mix, including, small-scale (less than 10 MW) photovoltaic (PV) and wind energy sources;
- Increased use of the renewable sources (PV and wind) in the WWTP;
- Different models and scenario-based optimization approaches enable engineers to optimize the design of infrastructure and evaluate operational costs, facilitating long-term efficiency planning; and
- Developing an intelligent system capable of managing the input of energy from different sources. It should also be able to regulate the overall energy input according to the precise demand of the WWTP at every stage of the process.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| ABR | Anaerobic baffled reactor |
| AC | activated carbon |
| AD | anaerobic digestion |
| ANAMMOX | ammonium oxidation bacteria |
| AOA | ammonia-oxidizing archaea |
| AOB | ammonia-oxidizing bacteria |
| AOP(s) | Advanced oxidation process(es) |
| BABE | bioaugmentation batch treatment |
| BOD5 | Biochemical oxygen demand |
| CE | circular economy |
| COD | Chemical oxygen demand |
| COMAMMOX | complete ammonia oxidation bacteria |
| CW(s) | Constructed wetland(s) |
| EC | emerging contaminants |
| EmA | emergency analysis |
| EU | European Union |
| FCO(s) | four prospective circular options |
| FEAMMOX | iron-reducing bacteria |
| FNA | free nitric acid |
| FWS | free water bodies |
| GHG | greenhouse gas |
| GTS | grease trap sludge |
| GWP | global warming potential |
| HRT | hydraulic retention time |
| HSSF | horizontal subsurface flow |
| LCA | life cycle analysis |
| LCCA | life cycle costing assessment |
| MABR | membrane anaerated biofilm reactor |
| MFA | material flow analysis |
| MP(s) | micropollutant(s) |
| MWWTP(s) | municipal wastewater treatment plant(s) |
| NOB | nitrite oxidizing bacteria |
| PAO(s) | polyphosphate-accumulating organisms |
| PE | population equivalent |
| PN | partial nitritation |
| PV | photovoltaic |
| SND | simultaneous nitrification-denitrification |
| SRT | solid retention time |
| TKN | Total Kjeldahl Nitrogen |
| TN | Total nitrogen |
| TP | Total phosphorous |
| TSS | Total suspended solids |
| TWS | tidal flow systems |
| UASB | up-flow anaerobic sludge blanket reactor |
| VSSF | vertical subsurface flow |
| WW | wastewater |
| WWTP(s) | wastewater treatment plant(s) |
References
- EUR-Lex - P9_TA(2024)0222 - EN - EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=EP%3AP9_TA%282024%290222 (accessed on 19 August 2024).
- Campos, J.L.; Mosquera-Corral, A.; Val del Rio, Á.; Pedrouso, A. Sustainable Wastewater Management and Treatment. Sustainability 2022, 14, 9137. [Google Scholar] [CrossRef]
- Silva, J.A. Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review. Sustainability 2023, 15, 10940. [Google Scholar] [CrossRef]
- Menahem Libhaber; Álvaro Orozco-Jaramillo Sustainable Treatment and Reuse of Municipal Wastewater : For Decision Makers and Practicing Engineers; Iwa Publishing Alliance House: London ; New York, 2012; ISBN 9781780400167.
- Ciobanu, R.; Teodosiu, C.; Almeida, C.M.V.B.; Agostinho, F.; Giannetti, B.F. Sustainability Analysis of a Municipal Wastewater Treatment Plant through Emergy Evaluation. Sustainability 2022, 14, 6461. [Google Scholar] [CrossRef]
- Kiselev, A.; Magaril, E. ; Elena Cristina Rada ENERGY and SUSTAINABILITY ASSESSMENT of MUNICIPAL WASTEWATER TREATMENT under CIRCULAR ECONOMY PARADIGM. Ecology and the Environment 2019, 237, 109–120. [Google Scholar] [CrossRef]
- Qiao, S.; Hou, C.; Wang, X.; Zhou, J. Minimizing Greenhouse Gas Emission from Wastewater Treatment Process by Integrating Activated Sludge and Microalgae Processes. Science of The Total Environment 2020, 732, 139032–139032. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Yu, S.; Hu, Y.; Yang, Y.; Wang, X.C. Applying a Dynamic Membrane Filtration (DMF) Process for Domestic Wastewater Preconcentration: Organics Recovery and Bioenergy Production Potential Analysis. Science of The Total Environment 2019, 680, 35–43. [Google Scholar] [CrossRef]
- Sas, E.; L.M. Hennequin; A. Frémont; A. Jerbi; Legault, N.; Lamontagne, J.; N. Fagoaga; Sarrazin, M.; Hallett, J.P.; Fennell, P.S.; et al. Biorefinery Potential of Sustainable Municipal Wastewater Treatment Using Fast-Growing Willow. Science of The Total Environment 2021, 792, 148146. [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Melinda M.B., Tignor; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M.; et al. Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change - Abstract for Decision-Makers. 2013. [Google Scholar]
- Haas, D.; Hartley, K.J. Greenhouse Gas Emissions from BNR Plant - Do We Have the Right Focus?; 2004; pp. 5–7.
- Alterskjaer, K.; Smith, C.; Colman, R.; Australia, H.; Damon, M.; Ramaswamy, V.; Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; et al. Contributing Authors: Review Editors: Chapter Scientists: The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity. [CrossRef]
- de Haas, D.; Andrews, J. Nitrous Oxide Emissions from Wastewater Treatment - Revisiting the IPCC 2019 Refinement Guidelines. Environmental Challenges 2022, 8, 100557. [Google Scholar] [CrossRef]
- Kampschreur, M.J.; Temmink, H.; Kleerebezem, R.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Nitrous Oxide Emission during Wastewater Treatment. Water Research 2009, 43, 4093–4103. [Google Scholar] [CrossRef]
- Law, Y.; Ye, L.; Pan, Y.; Yuan, Z. Nitrous Oxide Emissions from Wastewater Treatment Processes. Philosophical Transactions of the Royal Society B: Biological Sciences 2012, 367, 1265–1277. [Google Scholar] [CrossRef]
- Law, Y.; Lant, P.; Yuan, Z. The Effect of PH on N2O Production under Aerobic Conditions in a Partial Nitritation System. Water Research 2011, 45, 5934–5944. [Google Scholar] [CrossRef]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, U.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane Emission during Municipal Wastewater Treatment. Water Research 2012, 46, 3657–3670. [Google Scholar] [CrossRef] [PubMed]
- Kyung, D.; Kim, M.; Chang, J.; Lee, W. Estimation of Greenhouse Gas Emissions from a Hybrid Wastewater Treatment Plant. Journal of Cleaner Production 2015, 95, 117–123. [Google Scholar] [CrossRef]
- Ge, H.; Batstone, D.J.; Keller, J. Operating Aerobic Wastewater Treatment at Very Short Sludge Ages Enables Treatment and Energy Recovery through Anaerobic Sludge Digestion. Water Research 2013, 47, 6546–6557. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. Journal of Cleaner Production 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Steiner, C. Considerations in Biochar Characterization. SSSA Special Publications 2015, 87–100. [Google Scholar] [CrossRef]
- Qambrani, N.A.; Rahman, Md.M.; Won, S.; Shim, S.; Ra, C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renewable and Sustainable Energy Reviews 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar Production by Sewage Sludge Pyrolysis. Journal of Analytical and Applied Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Vymazal, J. Constructed Wetlands for Wastewater Treatment. Water 2010, 2, 530–549. [Google Scholar] [CrossRef]
- Jesús de-los-Ríos-Mérida; Guerrero, F.; Arijo, S.; María Muñoz; Inmaculada Álvarez-Manzaneda; García-Márquez, J.; Bautista, B.; Rendón-Martos, M.; Reul, A. Wastewater Discharge through a Stream into a Mediterranean Ramsar Wetland: Evaluation and Proposal of a Nature-Based Treatment System. Sustainability 2021, 13, 3540–3540. [CrossRef]
- Li, Y.; Zhu, G.; Ng, W.J.; Tan, S.K. A Review on Removing Pharmaceutical Contaminants from Wastewater by Constructed Wetlands: Design, Performance and Mechanism. Science of The Total Environment 2014, 468-469, 908–932. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Yan, B.; Shutes, B.; Xing, D.; Banuelos, G.; Cheng, R.; Wang, X. Greenhouse Gas Emissions and Wastewater Treatment Performance by Three Plant Species in Subsurface Flow Constructed Wetland Mesocosms. Chemosphere 2020, 239, 124795. [Google Scholar] [CrossRef]
- Han, W.; Luo, G.; Luo, B.; Yu, C.; Wang, H.; Chang, J.; Ge, Y. Effects of Plant Diversity on Greenhouse Gas Emissions in Microcosms Simulating Vertical Constructed Wetlands with High Ammonium Loading. Journal of Environmental Sciences 2019, 77, 229–237. [Google Scholar] [CrossRef]
- Maucieri, C.; Barbera, A.C.; Vymazal, J.; Borin, M. A Review on the Main Affecting Factors of Greenhouse Gases Emission in Constructed Wetlands. Agricultural and Forest Meteorology 2017, 236, 175–193. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, J.; Yang, X.; He, Q.; Ao, L.; Chen, Y. Impact of Biochar on Greenhouse Gas Emissions from Constructed Wetlands under Various Influent Chemical Oxygen Demand to Nitrogen Ratios. Bioresource Technology 2020, 303, 122908. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wang, C.; Shen, J.; Li, Y.; Wu, J. Response of CH4 Emissions to Straw and Biochar Applications in Double-Rice Cropping Systems: Insights from Observations and Modeling. 2018, 235, 95–103. [CrossRef]
- Yuan, H.; Ding, L.-J.; Eric Fru Zama; Li, P.; Hozzein, W.N.; Zhu, Y. Biochar Modulates Methanogenesis through Electron Syntrophy of Microorganisms with Ethanol as a Substrate. Environmental Science & Technology 2018, 52, 12198–12207. [CrossRef]
- Mander, Ü.; Dotro, G.; Ebie, Y.; Towprayoon, S.; Chiemchaisri, C.; Nogueira, S.F.; Jamsranjav, B.; Kasak, K.; Truu, J.; Tournebize, J.; et al. Greenhouse Gas Emission in Constructed Wetlands for Wastewater Treatment: A Review. Ecological Engineering 2014, 66, 19–35. [Google Scholar] [CrossRef]
- Wu, H.; Lin, L.; Zhang, J.; Guo, W.; Liang, S.; Liu, H. Purification Ability and Carbon Dioxide Flux from Surface Flow Constructed Wetlands Treating Sewage Treatment Plant Effluent. Bioresource Technology 2016, 219, 768–772. [Google Scholar] [CrossRef]
- Ka, S. Impact of Biochar Field Aging on Laboratory Greenhouse Gas Production Potentials. Global Change Biology 2013, 5, 165–176. [Google Scholar]
- Yan, C.; Zhang, H.; Li, B.; Wang, D.; Zhao, Y.; Zheng, Z. Effects of Influent C/N Ratios on CO2 and CH4 Emissions from Vertical Subsurface Flow Constructed Wetlands Treating Synthetic Municipal Wastewater. Journal of Hazardous Materials 2012, 203-204, 188–194. [Google Scholar] [CrossRef]
- Riccardo, B.; Paolo, V.; Davide, L.; Nicoletta, S.; Vincenzo, T.; Marco, R. ; Ionescu Gabriela; Rada Elena Cristina A Study on the Carbon Footprint Contributions from a Large Wastewater Treatment Plant. Energy reports 2023, 9, 274–286. [Google Scholar] [CrossRef]
- Wang, R.; Ji, M.; Zhai, H.; Guo, Y.; Liu, Y. Occurrence of Antibiotics and Antibiotic Resistance Genes in WWTP Effluent-Receiving Water Bodies and Reclaimed Wastewater Treatment Plants. Science of The Total Environment 2021, 796, 148919. [Google Scholar] [CrossRef] [PubMed]
- Jetten, M.S.M.; Horn, S.J.; van Loosdrecht, M.C.M. Towards a More Sustainable Municipal Wastewater Treatment System. Water Science and Technology 1997, 35, 171–180. [Google Scholar] [CrossRef]
- Ortega-Bravo, J.C.; Pavez, J.; Hidalgo, V.; Reyes-Caniupán, I.; Torres-Aravena, Á.; Jeison, D. Biogas Production from Concentrated Municipal Sewage by Forward Osmosis, Micro and Ultrafiltration. Sustainability 2022, 14, 2629. [Google Scholar] [CrossRef]
- Hanqing, Y.; Tay, J.-H.; Wilson, F. A Sustainable Municipal Wastewater Treatment Process for Tropical and Subtropical Regions in Developing Countries. Water Science and Technology 1997, 35, 191–198. [Google Scholar] [CrossRef]
- Ghimire, U.; Sarpong, G.; Gude, V.G. Transitioning Wastewater Treatment Plants toward Circular Economy and Energy Sustainability. ACS Omega 2021, 6, 11794–11803. [Google Scholar] [CrossRef]
- El-Khateeb, M.; Hassan, G.K.; Mohamed Azab El-Liethy; El-Khatib, K.M.; Abdel-Shafy, H.I.; Hu, A.; Gad, M. Sustainable Municipal Wastewater Treatment Using an Innovative Integrated Compact Unit: Microbial Communities, Parasite Removal, and Techno-Economic Analysis. Annals of Microbiology 2023, 73. [CrossRef]
- Shanmugam, K.; Gadhamshetty, V.; Tysklind, M.; Bhattacharyya, D.; Upadhyayula, V.K.K. A Sustainable Performance Assessment Framework for Circular Management of Municipal Wastewater Treatment Plants. Journal of Cleaner Production 2022, 339, 130657. [Google Scholar] [CrossRef]
- Khan, S.; Mahmoud Thaher; Abdulquadir, M.; Faisal, M.; Sanjeet Mehariya; Mohammad; Hareb Al-Jabri; Das, P. Utilization of Microalgae for Urban Wastewater Treatment and Valorization of Treated Wastewater and Biomass for Biofertilizer Applications. Sustainability 2023, 15, 16019–16019. [CrossRef]
- Doray, N. Anaerobic Digestion for Sustainability in Waste (Water) Treatment and Reuse. 2023. [Google Scholar] [CrossRef]
- Pan, J.; Li, J.; Zhang, T.; Liu, T.; Xu, K.; Wang, C.; Zheng, M. Complete Ammonia Oxidation (Comammox) at PH 3-4 Supports Stable Production of Ammonium Nitrate from Urine. Water Research 2024, 257, 121686–121686. [Google Scholar] [CrossRef]
- Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the Conventional Biological Wastewater Treatment to Hybrid Processes, the Evaluation of Organic Micropollutant Removal: A Review. Water Research 2017, 111, 297–317. [Google Scholar] [CrossRef]
- Hegemann, W. A Combination of the Activated Sludge Process with Fixed Film Biomass to Increase the Capacity of Waste Water Treatment Plants. Water Science and Technology 1984, 16, 119–130. [Google Scholar] [CrossRef]
- Drtil, M.; Bodík, I.; Tölgyessy, J. Influence of Combined Suspended and FixedFilm Biomass in Anoxic Reactor on NitrificationDenitrification Process. Water Science and Technology 1992, 25, 403–408. [Google Scholar] [CrossRef]
- Niu, C.; Ying, Y.; Zhao, J.; Zheng, M.; Guo, J.; Yuan, Z.; Hu, S.; Liu, T. Superior Mainstream Partial Nitritation in an Acidic Membrane-Aerated Biofilm Reactor. Water Research 2024, 257, 121692–121692. [Google Scholar] [CrossRef]
- Ren, Y.; Hao Ngo, H.; Guo, W.; Wang, D.; Peng, L.; Ni, B.-J.; Wei, W.; Liu, Y. New Perspectives on Microbial Communities and Biological Nitrogen Removal Processes in Wastewater Treatment Systems. Bioresource Technology 2020, 297, 122491. [Google Scholar] [CrossRef] [PubMed]
- Strous, M.; Heijnen, J.J.; Kuenen, J.G.; Jetten, M.S.M. The Sequencing Batch Reactor as a Powerful Tool for the Study of Slowly Growing Anaerobic Ammonium-Oxidizing Microorganisms. Applied Microbiology and Biotechnology 1998, 50, 589–596. [Google Scholar] [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-Scale Partial Nitritation/Anammox Experiences – an Application Survey. Water Research 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Abma, W.R.; Schultz, C.E.; Mulder, J.W.; van der Star, W.R.L.; Strous, M.; Tokutomi, T.; van Loosdrecht, M.C.M. Full-Scale Granular Sludge Anammox Process. Water Science and Technology 2007, 55, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.; Almomani, F.; Qiblawey, H.; Rasool, K. Advances in Nitrogen-Rich Wastewater Treatment: A Comprehensive Review of Modern Technologies. Sustainability 2024, 16, 2112. [Google Scholar] [CrossRef]
- Pedrouso, A.; Fra-Vazquez, A.; Val del Rio, A.; Mosquera-Corral, A. Recovery of Polyhydroxyalkanoates from Cooked Mussel Processing Wastewater at High Salinity and Acidic Conditions. Sustainability 2020, 12, 10386. [Google Scholar] [CrossRef]
- Carvalho, J.M.; Marreiros, B.C.; Reis, M.A.M. Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity. Sustainability 2022, 14, 1346. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, W.; Tao, T.; Li, Y. A Novel AAO-SBSPR Process Based on Phosphorus Mass Balance for Nutrient Removal and Phosphorus Recovery from Municipal Wastewater. Water Research 2018, 144, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ji, B.; Liu, Y. Microalgal-Bacterial Granular Sludge Process: A Game Changer of Future Municipal Wastewater Treatment? Science of The Total Environment 2021, 752, 141957. [Google Scholar] [CrossRef]
- Jenkins, D.; WannerJ. Activated Sludge : 100 Years and Counting; Iwa Pub: London, 2014; ISBN 9781780404936.
- Wan, J.; Gu, J.; Zhao, Q.; Liu, Y. COD Capture: A Feasible Option towards Energy Self-Sufficient Domestic Wastewater Treatment. Scientific Reports 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, M.; Liu, H.; Gu, J.; Liu, Y. Environmental Sustainability: A Pressing Challenge to Biological Sewage Treatment Processes. Current Opinion in Environmental Science & Health 2019, 12, 1–5. [Google Scholar] [CrossRef]
- Do, M.H.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Varjani, S.; Kumar, M. Microbial Fuel Cell-Based Biosensor for Online Monitoring Wastewater Quality: A Critical Review. Science of The Total Environment 2020, 712, 135612. [Google Scholar] [CrossRef] [PubMed]
- Rene, E.R.; Ge, J.; Kumar, G.; Singh, R.P.; Varjani, S. Resource Recovery from Wastewater, Solid Waste, and Waste Gas: Engineering and Management Aspects. Environmental Science and Pollution Research 2020. [Google Scholar] [CrossRef]
- Ahn, Y.-H. Sustainable Nitrogen Elimination Biotechnologies: A Review. Process Biochemistry 2006, 41, 1709–1721. [Google Scholar] [CrossRef]
- Shammas, N.K.; Wang, L.K. A/O Phosphorus Removal Biotechnology. Humana Press eBooks 2010, 783–814. [Google Scholar] [CrossRef]
- Lee, E.; Rout, P.R.; Bae, J. The Applicability of Anaerobically Treated Domestic Wastewater as a Nutrient Medium in Hydroponic Lettuce Cultivation: Nitrogen Toxicity and Health Risk Assessment. Science of The Total Environment 2021, 780, 146482. [Google Scholar] [CrossRef]
- Kwak, W.; Rout, P.R.; Lee, E.; Bae, J. Influence of Hydraulic Retention Time and Temperature on the Performance of an Anaerobic Ammonium Oxidation Fluidized Bed Membrane Bioreactor for Low-Strength Ammonia Wastewater Treatment. Chemical Engineering Journal 2020, 386, 123992. [Google Scholar] [CrossRef]
- Jenni, S.; Vlaeminck, S.E.; Morgenroth, E.; Udert, K.M. Successful Application of Nitritation/Anammox to Wastewater with Elevated Organic Carbon to Ammonia Ratios. Water Research 2014, 49, 316–326. [Google Scholar] [CrossRef]
- Sánchez Guillén, J.A.; Jayawardana, L.K.M.C.B.; Lopez Vazquez, C.M.; de Oliveira Cruz, L.M.; Brdjanovic, D.; van Lier, J.B. Autotrophic Nitrogen Removal over Nitrite in a Sponge-Bed Trickling Filter. Bioresource Technology 2015, 187, 314–325. [Google Scholar] [CrossRef]
- Magdum, S.; V, K. Existing Biological Nitrogen Removal Processes and Current Scope of Advancement. RESEARCH JOURNAL OF CHEMISTRY AND ENVIRONMENT 2017, 21, 43–53. [Google Scholar]
- Lukasse, L.J.S. Control and Identification in Activated Sludge Processes; Thesis.; Wageningen Agricultural University: Wageningen, Netherlands, 1999; ISBN 90-5485-956-3.
- Carvalho, G.; Lemos, P.C.; Oehmen, A.; Reis, M.A.M. Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure. Water Research 2007, 41, 4383–4396. [Google Scholar] [CrossRef]
- A.G. Kapagiannidis; I. Zafiriadis; A. Aivasidis Biotechnological Methods for Nutrient Removal from Wastewater with Emphasis on the Denitrifying Phosphorus Removal Process. Elsevier eBooks 2011, 297–306. [CrossRef]
- Sun, L.; Zhao, X.; Zhang, H.; Zhang, Y. Biological Characteristics of a Denitrifying Phosphorus-Accumulating Bacterium. Ecological Engineering 2015, 81, 82–88. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, Q.; Zhang, J.; Wang, C.; Wang, S.; Peng, Y. Enhancement of Denitrifying Phosphorus Removal and Microbial Community of Long-Term Operation in an Anaerobic Anoxic Oxic–Biological Contact Oxidation System. Journal of Bioscience and Bioengineering 2016, 122, 456–466. [Google Scholar] [CrossRef]
- Rout, P.R.; Shahid, M.K.; Dash, R.R.; Bhunia, P.; Liu, D.; Varjani, S.; Zhang, T.C.; Surampalli, R.Y. Nutrient Removal from Domestic Wastewater: A Comprehensive Review on Conventional and Advanced Technologies. Journal of Environmental Management 2021, 296, 113246. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.J.; Saunders, A.M.; Yuan, Z.; Blackall, L.L.; Keller, J. Identification and Comparison of Aerobic and Denitrifying Polyphosphate-Accumulating Organisms. Biotechnology and Bioengineering 2003, 83, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Barak, Y. ; J. van Rijn Atypical Polyphosphate Accumulation by the Denitrifying Bacterium Paracoccus Denitrificans. 2000, 66, 1209–1212. [Google Scholar] [CrossRef]
- Zeng, R.J.; Lemaire, R.; Yuan, Z.; Keller, J. Simultaneous Nitrification, Denitrification, and Phosphorus Removal in a Lab-Scale Sequencing Batch Reactor. Biotechnology and Bioengineering 2003, 84, 170–178. [Google Scholar] [CrossRef]
- Shahid, M.K.; Kashif, A.; Rout, P.R.; Aslam, M.; Fuwad, A.; Choi, Y.; Banu J, R.; Park, J.H.; Kumar, G. A Brief Review of Anaerobic Membrane Bioreactors Emphasizing Recent Advancements, Fouling Issues and Future Perspectives. Journal of Environmental Management 2020, 270, 110909. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, J.; Li, Q.X.; Wang, Y.; Li, S.; Ren, T.; Wang, L. Simultaneous Heterotrophic Nitrification and Aerobic Denitrification by Bacterium Rhodococcus Sp. CPZ24. Bioresource Technology 2012, 116, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Ge, Q.; Yue, X.; Wang, G. Simultaneous Heterotrophic Nitrification and Aerobic Denitrification at High Initial Phenol Concentration by Isolated Bacterium Diaphorobacter Sp. PD-7. Chinese Journal of Chemical Engineering 2015, 23, 835–841. [Google Scholar] [CrossRef]
- Padhi, S.K.; Tripathy, S.; Sen, R.; Mahapatra, A.S.; Mohanty, S.; Maiti, N.K. Characterisation of Heterotrophic Nitrifying and Aerobic Denitrifying Klebsiella Pneumoniae CF-S9 Strain for Bioremediation of Wastewater. International Biodeterioration & Biodegradation 2013, 78, 67–73. [Google Scholar] [CrossRef]
- Zhao, B.; An, Q.; He, Y.L.; Guo, J.S. N2O and N2 Production during Heterotrophic Nitrification by Alcaligenes Faecalis Strain NR. Bioresource Technology 2012, 116, 379–385. [Google Scholar] [CrossRef]
- Duan, J.; Fang, H.; Su, B.; Chen, J.; Lin, J. Characterization of a Halophilic Heterotrophic Nitrification–Aerobic Denitrification Bacterium and Its Application on Treatment of Saline Wastewater. Bioresource Technology 2015, 179, 421–428. [Google Scholar] [CrossRef]
- Zheng, H.-Y.; Liu, Y.; Gao, X.-Y.; Ai, G.-M.; Miao, L.-L.; Liu, Z.-P. Characterization of a Marine Origin Aerobic Nitrifying–Denitrifying Bacterium. Journal of Bioscience and Bioengineering 2012, 114, 33–37. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Y.-X.; Zhao, S.-Q.; Liang, X.; Wang, J. Isolation and Characterization of Three Heterotrophic Nitrifying-Aerobic Denitrifying Bacteria from a Sequencing Batch Reactor. Annals of Microbiology 2015, 66, 737–747. [Google Scholar] [CrossRef]
- Ruscalleda Beylier, M.; Balaguer, M.D.; Colprim, J.; Pellicer-Nàcher, C.; Ni, B.-J. .; Smets, B.F.; Sun, S.-P..; Wang, R.-C.. Biological Nitrogen Removal from Domestic Wastewater. Comprehensive Biotechnology 2011, 329–340. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Wang, X.; Wang, E.; Li, B.; He, R.; Yuan, H. Removal of Nitrogen by Heterotrophic Nitrification–Aerobic Denitrification of a Phosphate Accumulating Bacterium Pseudomonas Stutzeri YG-24. Bioresource Technology 2015, 182, 18–25. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Mazumder, D. Simultaneous Nitrification and Denitrification in Moving Bed Bioreactor and Other Biological Systems. Bioprocess and Biosystems Engineering 2021, 44, 635–652. [Google Scholar] [CrossRef] [PubMed]
- Rout, P.R.; Dash, R.R.; Bhunia, P.; Rao, S. Role of Bacillus Cereus GS-5 Strain on Simultaneous Nitrogen and Phosphorous Removal from Domestic Wastewater in an Inventive Single Unit Multi-Layer Packed Bed Bioreactor. Bioresource Technology 2018, 262, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; He, D.; Xue, Z. Removal of Nitrogen and Phosphorus by Heterotrophic Nitrification-Aerobic Denitrification of a Denitrifying Phosphorus-Accumulating Bacterium Enterobacter Cloacae HW-15. Ecological Engineering 2017, 99, 199–208. [Google Scholar] [CrossRef]
- Zou, H.; Wang, Y. Phosphorus Removal and Recovery from Domestic Wastewater in a Novel Process of Enhanced Biological Phosphorus Removal Coupled with Crystallization. Bioresource Technology 2016, 211, 87–92. [Google Scholar] [CrossRef]
- Li, M.; Du, C.; Liu, J.; Quan, X.; Lan, M.; Li, B. Mathematical Modeling on the Nitrogen Removal inside the Membrane-Aerated Biofilm Dominated by Ammonia-Oxidizing Archaea (AOA): Effects of Temperature, Aeration Pressure and COD/N Ratio. Chemical Engineering Journal 2018, 338, 680–687. [Google Scholar] [CrossRef]
- Mohammad Forouhar Vajargah; Mohammad Mahdi Ramzanipour; Seyed Parsa Mousavi An Overview of Municipal Wastewater and Sludge Treatment Process. Ecology & conservation science 2023, 2. [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. Eur. Communities 2020, OJ L 327, 1–73.
- Decision, No. 2455/2001/EC of the European Parliament and of the Council establishing the list of priority substances in the field of water policy and amending Directive 2000/60/EC. Off. J. Eur. Union 2001, OJ L 331, 1–5. [Google Scholar]
- Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L 226, 1–17.
- Directive 2015/495/EÚ.
- United Nations Environment Program. Stockholm Convention Stockholm Convention on Persistent Organic Pollutants; United Nations Environment Program: Stockholm, Sweden, 2001. [Google Scholar]
- Fuerhacker, M. EU Water Framework DirecDirective and Stockholm Convection. Can We Reach the Targets for Priority Substances and Persistent Organic Pollutants? ? Environ. Sci. Pollut. Res. 2009, 16, 92–97. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and Removal of Organic Micropollutants: An Overview of the Watch List of EU Decision 2015/495. Water Research 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Law no. 409/2011 Coll.
- Ribeiro, A.R.; Nunes, O.C.; Pereira, M.F.R.; Silva, A.M.T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environment International 2015, 75, 33–51. [Google Scholar] [CrossRef]
- Bourgin, M.; Beck, B.; Boehler, M.; Borowska, E.; Fleiner, J.; Salhi, E.; Teichler, R.; von Gunten, U.; Siegrist, H.; McArdell, C.S. Evaluation of a Full-Scale Wastewater Treatment Plant Upgraded with Ozonation and Biological Post-Treatments: Abatement of Micropollutants, Formation of Transformation Products and Oxidation By-Products. Water Research 2018, 129, 486–498. [Google Scholar] [CrossRef]
- Baronti, C.; Curini, R.; D’Ascenzo, G.; Di Corcia, A.; Gentili, A.; Samperi, R. Monitoring Natural and Synthetic Estrogens at Activated Sludge Sewage Treatment Plants and in a Receiving River Water. Environmental Science & Technology 2000, 34, 5059–5066. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A Review on the Occurrence of Micropollutants in the Aquatic Environment and Their Fate and Removal during Wastewater Treatment. Science of The Total Environment 2014, 473-474, 619–641. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Qiang, Z.; Ben, W.; Liu, J. Removal of Endocrine-Disrupting Chemicals and Conventional Pollutants in a Continuous-Operating Activated Sludge Process Integrated with Ozonation for Excess Sludge Reduction. Chemosphere 2014, 105, 133–138. [Google Scholar] [CrossRef]
- Qiang, Z.; Nie, Y.; Ben, W.; Qu, J.; Zhang, H. Degradation of Endocrine-Disrupting Chemicals during Activated Sludge Reduction by Ozone. Chemosphere 2013, 91, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Eggen, R.I.L.; Hollender, J.; Joss, A.; Schärer, M.; Stamm, C. Reducing the Discharge of Micropollutants in the Aquatic Environment: The Benefits of Upgrading Wastewater Treatment Plants. Environmental Science & Technology 2014, 48, 7683–7689. [Google Scholar] [CrossRef]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging Pollutants in Wastewater: A Review of the Literature. International Journal of Hygiene and Environmental Health 2011, 214, 442–448. [Google Scholar] [CrossRef]
- Singh, S.; Seth, R.; Tabe, S.; Yang, P. Oxidation of Emerging Contaminants during Pilot-Scale Ozonation of Secondary Treated Municipal Effluent. Ozone: Science & Engineering 2015, 37, 323–329. [Google Scholar] [CrossRef]
- Marce, M.; Palacios, O.; Bartolomé, A.; Caixach, J.; Baig, S.; Esplugas, S. Application of Ozone on Activated Sludge: Micropollutant Removal and Sludge Quality. Ozone: Science & Engineering 2017, 39, 319–332. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Tian, Y.; Li, N.; Kong, L.; Sun, L.; Yu, M.; Zuo, W. Changes of Physicochemical Properties of Sewage Sludge during Ozonation Treatment: Correlation to Sludge Dewaterability. Chemical engineering journal 2016, 301, 238–248. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Yeom, I.-T.; Park, K.-Y.; Maeng, S.-K.; Lee, Y.; Song, K.-G.; Hwang, J.-H. Reduction of Sludge by Ozone Treatment and Production of Carbon Source for Denitrification. Water Science & Technology 2002, 46, 121–125. [Google Scholar] [CrossRef]
- Chu, L.; Wang, J.; Wang, B.; Xing, X.-H.; Yan, S.; Sun, X.; Jurcik, B. Changes in Biomass Activity and Characteristics of Activated Sludge Exposed to Low Ozone Dose. Chemosphere 2009, 77, 269–272. [Google Scholar] [CrossRef]
- Lee, C.O.; Howe, K.J.; Thomson, B.M. Ozone and Biofiltration as an Alternative to Reverse Osmosis for Removing PPCPs and Micropollutants from Treated Wastewater. Water Research 2012, 46, 1005–1014. [Google Scholar] [CrossRef]
- Lee, Y.; von Gunten, U. Oxidative Transformation of Micropollutants during Municipal Wastewater Treatment: Comparison of Kinetic Aspects of Selective (Chlorine, Chlorine Dioxide, FerrateVI, and Ozone) and Non-Selective Oxidants (Hydroxyl Radical). Water Research 2010, 44, 555–566. [Google Scholar] [CrossRef]
- Ak, M.S.; M. Muz, M.; O.T. Komesli, O.T.; Gökçay, C.F. Enhancement of Bio-Gas Production and Xenobiotics Degradation during Anaerobic Sludge Digestion by Ozone Treated Feed Sludge. Chemical Engineering Journal 2013, 230, 499–505. [CrossRef]
- Franco, M.; Chairez, I.; Poznyak, T.; Poznyak, A. BTEX Decomposition by Ozone in Gaseous Phase. Journal of Environmental Management 2012, 95, S55–S60. [Google Scholar] [CrossRef]
- Deng, H. Ozonation Mechanism of Carbamazepine and Ketoprofen in RO Concentrate from Municipal Wastewater Treatment: Kinetic Regimes, Removal Efficiency and Matrix Effect. Science of The Total Environment 2020, 717, 137150. [Google Scholar] [CrossRef]
- Gotvajn, A.Ž.; Rozman, U.; Antončič, T.; Urbanc, T.; Vrabeľ, M.; Derco, J. Fe2+ and UV Catalytically Enhanced Ozonation of Selected Environmentally Persistent Antibiotics. Processes 2021, 9, 521. [Google Scholar] [CrossRef]
- Ekblad, M.; Juárez, R.; Falås, P.; Bester, K.; Hagman, M.; Cimbritz, M. Influence of Operational Conditions and Wastewater Properties on the Removal of Organic Micropollutants through Ozonation. Journal of Environmental Management 2021, 286, 112205. [Google Scholar] [CrossRef] [PubMed]
- Dogruel, S.; Cetinkaya Atesci, Z.; Aydin, E.; Pehlivanoglu-Mantas, E. Ozonation in Advanced Treatment of Secondary Municipal Wastewater Effluents for the Removal of Micropollutants. Environmental Science and Pollution Research 2020, 27, 45460–45475. [Google Scholar] [CrossRef] [PubMed]
- Ullberg, M.; Lavonen, E.; Köhler, S.J.; Golovko, O.; Wiberg, K. Pilot-Scale Removal of Organic Micropollutants and Natural Organic Matter from Drinking Water Using Ozonation Followed by Granular Activated Carbon. Environmental Science: Water Research & Technology 2021, 7, 535–548. [Google Scholar] [CrossRef]
- Removal of Micropollutants by Application of Multiple Point Ozonation and Powder Activated Carbon; Jensen, N.W., Faraji, T., Ospina, A.G., Guillosso, R., Perrin , F.P., Kristensen, P.K., Hansen, S.H., Koustrup, M., Andersen, M.B.O., Tranekær, C., Lind-Frendsen, M., Eds.; The Danish Environmental Protection Agency, 2021; ISBN 978-87-7038-412-4.
- Rima, K.; Rima, J. Improvement of Spectrophotometric Method for the Determination of Atrazine in Contaminated Water by Inducing of Mannich Reaction. Journal of Food Research 2012, 1, 17. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Science of The Total Environment 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Rulkens, W.H. Sustainable Sludge Management - What Are the Challenges for the Future? Water Science and Technology 2004, 49, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Rorat, A.; Courtois, P.; Vandenbulcke, F.; Lemiere, S. Sanitary and Environmental Aspects of Sewage Sludge Management. Industrial and Municipal Sludge 2019, 155–180. [Google Scholar] [CrossRef]
- Metcalf, L.; Eddy, H.P.; Tchobanoglous, G. Wastewater Engineering : Treatment and Reuse; Mcgraw-Hill: Boston, 2004; ISBN 9780071241403. [Google Scholar]
- Zhang, G.; Yang, J.; Liu, H.; Zhang, J. Sludge Ozonation: Disintegration, Supernatant Changes and Mechanisms. Bioresource Technology 2009, 100, 1505–1509. [Google Scholar] [CrossRef]
- Crutchik, D.; Franchi, O.; Jeison, D.; Vidal, G.; Pinto, A.; Pedrouso, A.; Campos, J.L. Techno-Economic Evaluation of Ozone Application to Reduce Sludge Production in Small Urban WWTPs. Sustainability 2022, 14, 2480. [Google Scholar] [CrossRef]
- Carrère, H.; Dumas, C.; Battimelli, A.; Batstone, D.J.; Delgenès, J.P.; Steyer, J.P.; Ferrer, I. Pretreatment Methods to Improve Sludge Anaerobic Degradability: A Review. Journal of Hazardous Materials 2010, 183, 1–15. [Google Scholar] [CrossRef]
- Meegoda, J.; Li, B.; Patel, K.; Wang, L. A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion. International Journal of Environmental Research and Public Health 2018, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- V. Khanh Nguyen; Dhiraj Kumar Chaudhary; Ram Hari Dahal; N. Hoang Trinh; Kim, J.; S. Woong Chang; Hong, Y.; Duong Duc La; X. Cuong Nguyen; H. Hao Ngo; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel 2021, 285, 119105. [CrossRef]
- Oladejo, J.; Shi, K.; Luo, X.; Yang, G.; Wu, T. A Review of Sludge-To-Energy Recovery Methods. Energies 2018, 12, 60. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations. Renewable and Sustainable Energy Reviews 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C. (Charles); Champagne, P.; Mabee, W. Overview of Current Biological and Thermo-Chemical Treatment Technologies for Sustainable Sludge Management. Waste Management & Research 2014, 32, 586–600. [Google Scholar] [CrossRef]
- Schnell, M.; Horst, T.; Quicker, P. Thermal Treatment of Sewage Sludge in Germany: A Review. Journal of Environmental Management 2020, 263, 110367. [Google Scholar] [CrossRef]
- Crine, M.; Leonard, A. Drying of Wastewater Sludge’s, Common Practice and Challenges. In Proceedings of the Annual Drying Symposium of the Dutch Drying Group, Utrecht, the Netherlands, 20 November 2008. [Google Scholar]
- Horttanainen, M.; Juha Kaikko; Bergman, R.; Pasila-Lehtinen, M.; Janne Nerg Performance Analysis of Power Generating Sludge Combustion Plant and Comparison against Other Sludge Treatment Technologies. Applied Thermal Engineering 2010, 30, 110–118. [CrossRef]
- Werther, J.; Ogada, T. Sewage Sludge Combustion. Progress in Energy and Combustion Science 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Boesch, M.E.; Koehler, A.; Hellweg, S. Model for Cradle-To-Gate Life Cycle Assessment of Clinker Production. Environmental Science & Technology 2009, 43, 7578–7583. [Google Scholar] [CrossRef]
- Stasta, P.; Boran, J.; Bebar, L.; Stehlik, P.; Oral, J. Thermal Processing of Sewage Sludge. Applied Thermal Engineering 2006, 26, 1420–1426. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage Sludge Pyrolysis for Liquid Production: A Review. Renewable and Sustainable Energy Reviews 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Kim, Y.; Parker, W. A Technical and Economic Evaluation of the Pyrolysis of Sewage Sludge for the Production of Bio-Oil. Bioresource Technology 2008, 99, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chemical Engineering Journal 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Danish, A.; Ali Mosaberpanah, M.; Usama Salim, M.; Ahmad, N.; Ahmad, F.; Ahmad, A. Reusing Biochar as a Filler or Cement Replacement Material in Cementitious Composites: A Review. Construction and Building Materials 2021, 300, 124295. [Google Scholar] [CrossRef]
- Legan, M.; Gotvajn, A.Ž.; Zupan, K. Potential of Biochar Use in Building Materials. Journal of Environmental Management 2022, 309, 114704. [Google Scholar] [CrossRef]
- Ibarrola, R.; Shackley, S.; Hammond, J. Pyrolysis Biochar Systems for Recovering Biodegradable Materials: A Life Cycle Carbon Assessment. Waste Management 2012, 32, 859–868. [Google Scholar] [CrossRef]
- Brown, S.; Beecher, N.; Carpenter, A. Calculator Tool for Determining Greenhouse Gas Emissions for Biosolids Processing and End Use. Environmental Science & Technology 2010, 44, 9509–9515. [Google Scholar] [CrossRef]
- Liu, B.; Wei, Q.; Zhang, B.; Bi, J. Life Cycle GHG Emissions of Sewage Sludge Treatment and Disposal Options in Tai Lake Watershed, China. Science of The Total Environment 2013, 447, 361–369. [Google Scholar] [CrossRef]
- Piippo, S.; Lauronen, M.; Postila, H. Greenhouse Gas Emissions from Different Sewage Sludge Treatment Methods in North. Journal of Cleaner Production 2018, 177, 483–492. [Google Scholar] [CrossRef]
- Puyol, D.; Batstone, D.J.; Hülsen, T.; Astals, S.; Peces, M.; Krömer, J.O. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects. Frontiers in Microbiology 2017, 7. [Google Scholar] [CrossRef]
- Biochar for Environmental Management; Lehmann, J., Joseph, S., Eds.; Routledge, 2015; ISBN 9780203762264.
- Cao, Y.; Pawłowski, A. Sewage Sludge-To-Energy Approaches Based on Anaerobic Digestion and Pyrolysis: Brief Overview and Energy Efficiency Assessment. Renewable and Sustainable Energy Reviews 2012, 16, 1657–1665. [Google Scholar] [CrossRef]
- Cano, R.; Pérez-Elvira, S.I.; Fdz-Polanco, F. Energy Feasibility Study of Sludge Pretreatments: A Review. Applied Energy 2015, 149, 176–185. [Google Scholar] [CrossRef]
- Grosser, A. Determination of Methane Potential of Mixtures Composed of Sewage Sludge, Organic Fraction of Municipal Waste and Grease Trap Sludge Using Biochemical Methane Potential Assays. A Comparison of BMP Tests and Semi-Continuous Trial Results. Energy 2018, 143, 488–499. [Google Scholar] [CrossRef]
- Maragkaki, A.E.; Vasileiadis, I.; Fountoulakis, M.; Kyriakou, A.; Lasaridi, K.; Manios, T. Improving Biogas Production from Anaerobic Co-Digestion of Sewage Sludge with a Thermal Dried Mixture of Food Waste, Cheese Whey and Olive Mill Wastewater. Waste Management 2018, 71, 644–651. [Google Scholar] [CrossRef]
- Sogn, T.A.; Dragicevic, I.; Linjordet, R.; Krogstad, T.; Eijsink, V.G.H.; Eich-Greatorex, S. Recycling of Biogas Digestates in Plant Production: NPK Fertilizer Value and Risk of Leaching. International Journal of Recycling of Organic Waste in Agriculture 2018, 7, 49–58. [Google Scholar] [CrossRef]
- LIFE 3.0 - LIFE Project Public Page. Available online: https://webgate.ec.europa.eu/life/publicWebsite/project/LIFE13-ENV-ES-000704/optimised-renewable-mix-for-energy-saving-in-waste-water-treatment-plants (accessed on 24 August 2024).
- Aqualitrans Project Available online: https://www.inega.gal/informacion/proxectos_europeos/aqualitrans.html.
- Ganora, D.; Hospido, A.; Husemann, J.; Krampe, J.; Loderer, C.; Longo, S.; Moragas Bouyat, L.; Obermaier, N.; Piraccini, E.; Stanev, S.; et al. Opportunities to Improve Energy Use in Urban Wastewater Treatment: A European-Scale Analysis. Environmental Research Letters 2019, 14, 044028. [Google Scholar] [CrossRef]
- Lindtner, S., Haslinger, J.: Stand Und Zukunft Des Benchmarkings Auf Österreichischen Kläranlagen, Wiener Mitteilungen 226, ÖWAV Februar Seminar 2012, TU-Wien Vienna, 2012.
- DWA Standard, German Association for Water, Wastewater and Waste: DWA-A 216 Energiecheck Und Energieanalyse – Instrumente Zur Energieoptimierung von Abwasseranlagen, 2015.
- Haberkern, B.; Maier, W.; Schneider, U. Steigerung Der Energieeffizienz Auf Kommunalen Kläranlagen; Umweltbundesamt, 2008.
- Baumann, P., Roth, M. Senkung Des Stromverbrauchs Auf Kläranlagen, Leitfaden Für Das Betriebspersonal (Reduction of the Energy Consumption of WWTPs – Manual for Operators), Heft 4, DWA Landesverband Baden-Württemberg, Stuttgart, Germany, 2008.
- Shen, Y.; Linville, J.L.; Urgun-Demirtas, M.; Mintz, M.M.; Snyder, S.W. An Overview of Biogas Production and Utilization at Full-Scale Wastewater Treatment Plants (WWTPs) in the United States: Challenges and Opportunities towards Energy-Neutral WWTPs. Renewable and Sustainable Energy Reviews 2015, 50, 346–362. [Google Scholar] [CrossRef]
- Gikas, P. Towards Energy Positive Wastewater Treatment Plants. Journal of Environmental Management 2017, 203, 621–629. [Google Scholar] [CrossRef]
- Panepinto, D.; Fiore, S.; Zappone, M.; Genon, G.; Meucci, L. : Evaluation of the energy efficiency of a large wastewater treatment plant in Italy. Applied Energy 2016, 161, 404–411. [Google Scholar] [CrossRef]
- Sutherland, D. L.; Park, J.; Ralph, P. J.; Craggs, R. J. : Improved microalgal productivity and nutrient removal through operating wastewater high rate algal ponds in series. Algal Research 2020, 47, 101850. [Google Scholar] [CrossRef]
| Treatment Stage | Process indicator | Unit | Target value | Existing value | |
|---|---|---|---|---|---|
| WWTPs siye | > 5000 PE | 5000 - 10000 PE | > 10000 PE | ||
| Overall process | Electricity consumption | kWh/PE/year | 18 | 35 | 30 |
| Overall anaerobic stage | Energy sustainability | % | 100 | - | 30 |
| Anaerobic stage | Heat energy | kWh/PE/year | 0 | - | 3 |
| Anaerobic stage | Biogas production | L/PE/day | 30 | - | 20 |
| Aeration aerobic stage | Electricity consumption | kWh/PE/year | 10 | 18 | 16 |
| Pumps | Electricity consumption | Wh/m3/m | 4 | - | 6 |
| Specific electricity consumption [kWh/PE/year] | |||||
|---|---|---|---|---|---|
| WWTPs size | < 1000 PE | 1000 – 5000 PE | 5001 - 10000 PE | 10001 - 100000 PE | > 10000 PE |
| Aeration basin | 50 | 40 | 35 | - | - |
| Biodisc | 34 | 23 | 18 | - | - |
| Trickling filter | 32 | 25 | 20 | 25 | 25 |
| Extended aeration | 70 | 45 | 38 | 34 | - |
| Activated sludge | 60 | 40 | 34 | 30 | 27 |
| Specific electricity consumption [kWh/PE/year] | |||||
|---|---|---|---|---|---|
| WWTPs size | < 1000 PE | 1000 – 5000 PE | 5001 - 10000 PE | 10001 - 100000 PE | > 10000 PE |
| Aeration basin | 32 | 30 | 25 | - | - |
| Biodisc | 23 | 18 | 15 | - | - |
| Trickling filter | 20 | 17 | 15 | 18 | 18 |
| Extended aeration | 38 | 28 | 23 | 20 | - |
| Activated sludge | 32 | 24 | 20 | 18 | 18 |
| Activated sludge and trickling filter | - | - | - | 18 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
