Submitted:
23 August 2024
Posted:
23 August 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Material Synthesis
2.3. Material Characterization
2.4. Electrochemical Test
3. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mawuse, A.A.; Jeon-In, H. Chemically lithiated layered VOPO4 by a microwave-assisted hydrothermal method and its electrochemical properties in rechargeable Li-ion batteries and supercapacitor applications. J. Alloy Compd. 2022, 911, 165067. [Google Scholar]
- Yan, G.; Yuxi, W.; Lei, S.; Aiyuan, L.; Jiawen, Z.; Rongrong, W. Structure related RuSe2 nanoparticles and their application in supercapacitors. Colloids and surfaces A: Physicochemical Eng. Aspects 2022, 651, 129702. [Google Scholar]
- Bing, Y.; Li, F.; Jiaojiao, Z.; Qian, Z.; Shaohua, J.; Chunmei, Z.; Yichun, D.; Jingquan, H.; Wei, C.; Shuijian, H. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized via green activation process. Inorg. Chem. Front. 2022, 9, 6108. [Google Scholar]
- Maria, R.L.; Bruce, D.; Yury, G. Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 2016, 7, 12647. [Google Scholar]
- Peng, S.; Jian, H.; Feng, X.; Jijian, X.; Tianquan, L.; Wei, Z.; Wujie, D.; Fuqiang, H. Boron-induced nitrogen fixation in 3D carbon materials for supercapacitors. ACS Appl. Mater. Interfaces 2807, 12, 28075–28082. [Google Scholar]
- Achal, S.K.; Prashant, D. Amorphous MnOx nanostructure/multiwalled carbon nanotube composites as electrode materials for supercapacitor application. ACS Appl. Nano Mater. 2022, 5, 8566–8582. [Google Scholar]
- Yunpu, Z.; Yuqian, D.; Dongyuan, Z.; Pasquale, F.F.; Richard, T.M.; Sheng, D. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850. [Google Scholar]
- Bing, Y.; Jiaokiao, Z.; Feng, W.; Luying, Z.; Qian, Z.; Wenhui, X.; Shuijian, H. Review on porous carbon materials engineered by ZnO templates: Design, synthesis and capacitance performance. Materials and Design 2021, 201, 109518. [Google Scholar]
- Si, Z.; Jianwei, Z.; Hongbing, D.; Yumin, D.; Xiaowen, S. Chitin derived nitrogen-doped porous carbons with ultrahigh specific surface area and tailored hierarchical porosity for high performance supercapacitors. J. Bioresources and Bioproducts 2021, 6, 142–151. [Google Scholar]
- Dhruba, P.C.; Arun, K.N. A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 2021, 9, 15880. [Google Scholar]
- Qian, Z.; Bing, Y.; Li, F.; Jiaojiao, Z.; Bo, Y.; Jiayun, C.; Xin, Z.; Chunmei, Z.; Shaohua, J.; Shuijian, H. Progress in the use of organic potassium salts for the synthesis of porous carbon nanomaterials: microstructure engineering for advanced supercapacitors. Nanoscale 2022, 14, 8216. [Google Scholar]
- Lansheng, W.; Weijie, D.; Shanshan, L.; Zhengguo, W.; Jihai, C.; Jiwen, L. Sandwich-like chitosan porous carbon spheres/MXene composite with high specific capacitance and rate performance for supercapacitors. J. Bioresources and Bioproducts 2022, 7, 63–72. [Google Scholar]
- Li, F.; Bing, Y.; Jiaojiao, Z.; Jiayun, C.; Rongyun, W.; Shaohua, J.; Weisen, Y.; Qian, Z.; Shuijian, H. Soybean protein-derived N, O co-doped porous carbon sheets for supercapacitor application. New J. Chem. 2022, 46, 10844. [Google Scholar]
- Jijian, X.; Feng, X.; Meng, Q.; Fangfang, X.; Zhanglian, H.; Fuqiang, H. Conductive carbon nitride for excellent energy storage. Adv. Mater. 2017, 29, 1701674. [Google Scholar]
- Xiaohuan, Q.; Tianquan, L.; Shaoning, Z.; Jijian, X.; Huimin, Z.; Fangfang, X.; Fuqiang, H. Nitrogen doped hierarchical porous hard carbon derived from a facial Ti-peroxy-initiating in-situ polymerization and its application in electrochemical capacitors. Microporous and Mesoporous Materials 2020, 294, 109884. [Google Scholar]
- Xiaoming, Y.; Xuexia, H.; Qi, L.; Jie, S.; Zhibin, L.; Zong, H.L. 3D hierarchical NiCo2S4 nanoparticles/carbon nanotube sponge cathode for highly compressible asymmetric supercapacitors. Energy Fuels 2021, 35, 3449–3458. [Google Scholar]
- Dasha, K.K.; Anil, K.Y.; Hee, J.K. Hierarchical NiCo2S4 nanostructure as highly efficient electrode for high-performance supercapacitor applications. J. Energ. Storage 2020, 31, 101619. [Google Scholar]
- Lishuang, W.; Qingsheng, W.; Jiangfeng, L. Review of NiCo2S4 nanostructures and their composites used in supercapacitors. J. Mater. Sci: Mater Electron. 2021. [Google Scholar] [CrossRef]
- Xiaoming, L.; Qiquang, L.; Ye, W.; Muchen, R.; Haibo, Z. Two-dimensional, porous nickel-cobalt sulfide for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2015, 7, 19316–19323. [Google Scholar]
- Tao, C.; Shaoting, W.; Zhenghua, W. NiCo2S4 composite materials for supercapacitors. ChemPlusChem 2020, 85, 43–56. [Google Scholar]
- Kim, D.Y.; Ghodake, G.S.; Maile, N.C.; Kadam, A.A.; Lee, D.S.; Fulari, V.J.; Shinde, S.K. Chemical synthesis of hierarchical NiCo2S4 nanosheets like nanostructure on flexible foil for a high-performance supercapacitor. Scientific Reports 2017, 7, 9764. [Google Scholar] [CrossRef]
- Haichao, C.; Jianjun, J.; Li, Z.; Houzhao, W.; Tong, Q.; Dandan, X. Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. Nanoscale 2013, 5, 8879–8883. [Google Scholar]
- Krishna, B.N.V.; Bhagwan, J.; Hussain, S.K.K.; Yu, J.S. Designing hierarchical NiCo2S4 nanospheres with enhanced electrochemical performance for supercapacitors. J. Solid State Electrochem 2020, 24, 1033–1044. [Google Scholar] [CrossRef]
- Mingyan, C.; Kewei, Z.; Xi, C.; Yu, T.; Hongpeng, Z.; Mingzhe, Z. Effect of nondegeneracy on Ni3-xCoxS4 for high performance supercapacitor. Chem. Engineer. J. 2020, 381, 122682. [Google Scholar]
- Goli, N.; Sekhar, S.C.; Ramulu, B.; Yu, J.S. An integrated approach toward renewable energy storage using rechargeable Ag@Ni0.67Co0.33S-based hybrid supercapacitors. Small 2019, 15, 1805418. [Google Scholar]
- Xiang, Z.; Yuying, Z.; Jun, Z.; Wenqing, Z.; Dongyang, C. Nitrogen doped graphite felt decorated with porous Ni1.4Co1.6S4 nanosheets for 3D pseudocapacitor electrodes. RSC Adv. 2017, 7, 13406. [Google Scholar]
- Ismail, M.M.; Hong, Z.Y.; Arivanandhan, M.; Yang, T.C.K.; Pan, G.T.; Huang, C.M. In situ binder-free and hydrothermal growth of nanostructured NiCo2S4/Ni electrodes for solid-state hybrid supercapacitors. Energies 2021, 14, 7114. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, X.; Wang, K.; Ma, G.; Chen, H.; Xu, F. Preparation of NiCo2S4 flaky arrays on Ni foam as binder-free supercapacitor electrode. Appl. Surface Sci. 2015, 347, 690–695. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, Y.; Wang, T.; Wang, Z.; Zhang, Y.; Wu, X.; Chen, X.; Peng, S.; He, D. High-mass-loading Ni-Co-S electrodes with unfading electrochemical performance for supercapacitors. ACS Appl. Energy Mater. 2021, 4, 6531–6541. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, X.; Han, L.; Xie, Z.; Liu, L.; Li, Y.; Hua, Y.; Wang, C.; Zhao, X.; Liu, X. Fabrication of hierarchical NiCo2S4 nanotubes@NiMn-LDH nanosheets core-shell hybrid arrays on Ni foam for high-performance asymmetric supercapacitors. J. Alloys Compd. 2022, 900, 163495. [Google Scholar] [CrossRef]
- Zhao, H.; Li, F.; Wang, S.; Guo, L. Wet chemical synthesis of amorphous nanomaterials with well-defined morphologies. Acc. Mater. Res. 2021, 2, 804–815. [Google Scholar] [CrossRef]
- Long, C.; Zheng, M.; Xiao, Y.; Lei, B.; Dong, H.; Zhang, H.; Hu, H.; Liu, Y. Amorphous Ni-Co binary oxide with hierarchical porous structure for electrochemical capacitors. ACS Appl. Mater. Interfaces 2015, 7, 24419–24429. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Gao, J.; Wu, G.; Liu, P.; Guo, W.; Zhou, H.; Ge, J.; Hu, Y.; Xue, Z.; Li, H.; Cui, P.; Zheng, X.; Wu, Y.; Zhang, G.; Hong, X. Amorphous metal oxide nanosheets featuring reversible structure transformations as sodium-ion battery anodes. Cell Reports Phys. Sci. 2020, 1, 100118. [Google Scholar] [CrossRef]
- Ren, L.L.; Wang, L.H.; Qin, Y.F.; Li, Q. One-pot synthesized amorphous cobalt sulfide with enhanced electrochemical performance as anodes for lithium-ion batteries. Front. Chem. 2021, 9, 818255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Gao, P.; Sun, S.; Bao, D.; Wang, Y.; Li, X.; Wu, T.; Chen, Y.; Yang, P. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (de) lithiation mechanisms. Chem. Mater., 2015, 27, 6730–6736. [Google Scholar] [CrossRef]
- Agyeman, D.A.; Park, M.; Kang, Y.M. Pd-impregnated NiCo2O4 nanosheets/porous carbon composites as a free-standing and binding-free catalyst for a high energy lithium-oxygen battery. J. Mater. Chem. A, 2017, 5, 22234. [Google Scholar] [CrossRef]
- Cao, W.; Chen, N.; Zhao, W.; Xia, Q.; Du, G.; Xiong, C.; Li, W.; Tang, L. Amorphous P-NiCoS@C nanoparticles derived from P-doped NiCo-MOF as electrode materials for high-performance hybrid supercapacitors. Electrochim. Acta 2022, 430, 141049. [Google Scholar] [CrossRef]
- Yan, B.; Zheng, J.; Feng, L.; Du, C.; Jian, S.; Yang, W.; Wu, Y.A.; Jiang, S.; He, S.; Chen, W. Wood-derived biochar as thick electrodes for high-rate performance supercapacitors. Biochar 2022, 4, 50. [Google Scholar] [CrossRef]
- Yan, B.; Feng, L.; Zheng, J.; Zhang, Q.; Dong, Y.; Ding, Y.; Yang, W.; Han, J.; Jiang, S.; He, S. Nitrogen-doped carbon layer on cellulose derived free-standing carbon paper for high-rate supercapacitors. Appl. Surface Sci. 2023, 608, 155144. [Google Scholar] [CrossRef]
- Cheng, D.; Zhong, Q.; Wang, J.; Bu, Y. Amorphous core-shell nanoparticles as a highly effective and stable battery-type electrode for hybrid supercapacitors. Adv. Mater. Interfaces 2019, 6, 1900858. [Google Scholar] [CrossRef]
- Wen, Y.; Peng, S.; Wang, Z.; Hao, J.; Qin, T.; Lu, S.; Zhang, J.; He, D.; Fan, X.; Cao, G. Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors. J. Mater. Chem. A 2017, 5, 7144. [Google Scholar] [CrossRef]
- Huang, X.; Gou, L. High performance asymmetric supercapacitor based on hierarchical flower-like NiCo2S4@polyaniline. Appl. Surface Sci. 2019, 487, 68–76. [Google Scholar] [CrossRef]
- Zheng, J.; Yan, B.; Feng, L.; Zhang, Q.; Zhang, C.; Yang, W.; Han, J.; Jiang, S.; He, S. Potassium citrate assisted synthesis of hierarchical porous carbon materials for high performance supercapacitors. Diamond and Related Mater. 2022, 128, 109247. [Google Scholar] [CrossRef]
- Amedzo-Adore, M.; Yang, J.; Han, D.; Chen, M.; Agyeman, D.A.; Zhang, J.; Zhao, R.; Kang, Y.M. Oxygen-deficient P2-Na0.7Mn0.75Ni0.25O2-x cathode by a reductive NH4HF2 treatment for highly reversible Na-ion storage. ACS Appl. Energy Mater. 2021, 4, 8036–8044. [Google Scholar] [CrossRef]
- Amedzo-Adore, M.; Han, J.I. Investigating the pseudo-capacitive properties of interlayer engineered VOPO4 by organic molecule intercalation. Ceram. Int. 2022, 48, 26226–26232. [Google Scholar] [CrossRef]
- Yan, B.; Zheng, J.; Feng, L.; Zhang, Q.; Han, J.; Hou, H.; Zhang, C.; Ding, Y.; Jiang, S.; He, S. Green H2O2 activation of electrospun polyimide-based carbon nanofibers towards high-performance free-standing electrodes for supercapacitors. Diamond and Related Mater. 2022, 130, 109465. [Google Scholar] [CrossRef]
- Yang, J.H.; Shin, J.Y.; Amedzo-Adore, M.; Lau, V.W.H.; Yamauchi, Y.; Kang, Y.M. p-Phenylenediamine functionalization induced 3D microstructure formation of reduced graphene oxide for the improved electrical double layer capacitance in organic electrolyte. ChemistrySelect 2018, 3, 7680–7688. [Google Scholar] [CrossRef]





| Sample | N (atom %) | N-6 (atom %) | N-Q (atom %) | N-O (atom %) |
| cNCS | 4.49 | 2.70 | 0.78 | 1.01 |
| aNCS | 5.90 | 3.22 | 1.22 | 1.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
