Submitted:
27 November 2024
Posted:
29 November 2024
You are already at the latest version
Abstract
I present a personal account of self-organizing systems. As such, it is necessarily biased and partial. Nevertheless, it should contain enough substance to motivate useful discussions. The relevant contribution is not my attempts at answering questions (maybe all my answers are wrong), but the steps towards framing relevant questions to better understand self-organization, information, complexity, and emergence. With this aim, I start with a notion and examples of self-organizing systems (what?), continue with their properties and related concepts (how?), and close with applications (why?) in physics, chemistry, biology, collective behavior, ecology, communication networks, robotics, artificial intelligence, linguistics, social science, urbanism, philosophy, and engineering.
Keywords:
1. What Are Self-Organizing Systems?
“Being ill defined is a feature common to all important concepts.”—Benoît Mandelbrot
2. How Can Self-Organizing Systems Be Measured?
“It is the function of science to discover the existence of a general reign of order in nature and to find the causes governing this order. And this refers in equal measure to the relations of man — social and political — and to the entire universe as a whole."—Dmitri Mendeleev
2.1. Information
2.2. Complexity
2.3. Emergence
3. Why Should We Use Self-Organizing Systems?
“It is as though a puzzle could be put together simply by shaking its pieces."—Christian De Duve
3.1. Physics
3.2. Chemistry
3.3. Biology
3.4. Collective Behavior
3.5. Ecology
3.6. Communication Networks
3.7. Robotics
3.8. Artificial Intelligence
3.9. Linguistics
3.10. Social Science
3.11. Urbanism
3.12. Philosophy
3.13. Engineering
4. Conclusions
“We can never be right, we can only be sure when we are wrong"—Richard Feynman
References
- Agüera y Arcas, B. (2022). Do Large Language Models Understand Us? Daedalus 151 (2) (05): 183–197. [CrossRef]
- Anderson, P. W. (1972). More is different. Science 177: 393–396.
- Aron, S., Deneubourg, J. L., Goss, S., andPasteels, J. M. (1990). Functional self-organization illustrated by inter-nest traffic in ants: The case of the argentinian ant. In Biological Motion, W. Alt and G. Hoffman, (Eds.). Lecture Notes in BioMathematics, vol. 89. Springer, Berlin, 533–547.
- Ashby, W. R. (1947). Principles of the self-organizing dynamic system. Journal of General Psychology 37: 125–128.
- Ashby, W. R. (1956). An Introduction to Cybernetics. Chapman & Hall, London. URL http://pcp.vub.ac.be/ASHBBOOK.html.
- Ashby, W. R. (1960). Design for a brain: The origin of adaptive behaviour, 2nd ed. Chapman & Hall, London. [CrossRef]
- Ashby, W. R. (1962). Principles of the self-organizing system. In Principles of Self-Organization, H. V. Foerster and G. W. Zopf, Jr., (Eds.). Pergamon, Oxford, 255–278.
- Axelrod, R. (2005). Advancing the art of simulation in the social sciences. In Handbook of Research on Nature Inspired Computing for Economy and Management, J.-P. Rennard, (Ed.). Idea Group, Hershey, UK. URL http://tinyurl.com/ymdk9n.
- Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., andvan Steen, M. (2005). Self-star properties in complex information systems: conceptual and practical foundations. Vol. 3460. Springer.
- Baek, S. K., Bernhardsson, S., andMinnhagen, P. (2011). Zipf’s law unzipped. New Journal of Physics 13 (4): 043004. URL http://stacks.iop.org/1367-2630/13/i=4/a=043004.
- Bak, P., Tang, C., andWiesenfeld, K. (1987). Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 59 (4) (July): 381–384. [CrossRef]
- Ball, P. (1999). The self-made tapestry: pattern formation in nature.
- Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., andZdravkovic, V. (2008). Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences 105 (4): 1232–1237. URL https://www.pnas.org/doi/abs/10.1073/pnas.0711437105.
- Bar-Yam, Y. (1997). Dynamics of Complex Systems. Studies in Nonlinearity. Westview Press, Boulder, CO, USA. URL http://www.necsi.org/publications/dcs/.
- Batty, M. (1971). Modelling cities as dynamic systems. Nature 231: 425–428. [CrossRef]
- Batty, M. (2005). Cities and complexity. MIT Press, Cambridge, MA, USA. URL http://www.complexcity.info.
- Batty, M. (2013). The New Science of Cities. MIT Press, Cambridge, MA, USA. URL https://mitpress.mit.edu/books/new-science-cities.
- Bedau, M. A.andHumphreys, P., Eds. (2008). Emergence: Contemporary readings in philosophy and science. MIT Press, Cambridge, MA, USA.
- Beer, S. (1966). Decision and Control: The Meaning of Operational Research and Management Cybernetics. John Wiley and Sons, New York.
- Bettencourt, L.andWest, G. (2010). A unified theory of urban living. Nature 467 (7318) (10): 912–913. [CrossRef]
- Bettencourt, L. M. A. (2013). The origins of scaling in cities. Science 340 (6139): 1438–1441. URL http://science.sciencemag.org/content/340/6139/1438.
- Beuls, K.andSteels, L. (2013). Agent-Based Models of Strategies for the Emergence and Evolution of Grammatical Agreement. PLoS ONE 8 (3) (Mar.): e58960+. [CrossRef]
- Bitbol, M. (2012). Downward causation without foundations. Synthese 185 (2): 233–255. [CrossRef]
- Buhl, C., Sumpter, D. J. T., Couzin, I. D., Hale, J. J., Despland, E., Miller, E. R., andSimpson, S. J. (2006). From disorder to order in marching locusts. Science 312 (5778) (2024/11/11): 1402–1406. [CrossRef]
- Caldarelli, G. (2007). Scale-Free Networks. Oxford University Press, Oxford, UK.
- Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., andBonabeau, E. (2003). Self-Organization in Biological Systems. Princeton University Press, Princeton, NJ, USA. URL https://press.princeton.edu/books/paperback/9780691116242/self-organization-in-biological-systems.
- Campbell, D. T. (1974). `Downward causation’ in hierarchically organized biological systems. In Studies in the Philosophy of Biology, F. J. Ayala and T. Dobzhansky, (Eds.). Macmillan, New York City, NY, USA, 179–186.
- Carreón, G., Gershenson, C., andPineda, L. A. (2017). Improving public transportation systems with self-organization: A headway-based model and regulation of passenger alighting and boarding. PLOS ONE 12 (12) (12): 1–20. [CrossRef]
- Carroll, S. M.andParola, A. (2024). What emergence can possibly mean. arXiv:2410.15468. URL https://arxiv.org/abs/2410.15468.
- Casti, J. L. (1995). Complexification: Explaining a Paradoxical World through the Science of Surprise. Harper Perennial.
- Chialvo, D. R. (2010). Emergent complex neural dynamics. Nature Physics 6 (10): 744–750. [CrossRef]
- Clauset, A., Shalizi, C. R., andNewman, M. E. (2009). Power-law distributions in empirical data. SIAM Review 51 (4): 661–703.
- Conte, R., Gilbert, N., Bonelli, G., Cioffi-Revilla, C., Deffuant, G., Kertesz, J., Loreto, V., Moat, S., Nadal, J. P., Sanchez, A., Nowak, A., Flache, A., San Miguel, M., andHelbing, D. (2012). Manifesto of computational social science. The European Physical Journal Special Topics 214 (1): 325–346. [CrossRef]
- Corominas-Murtra, B., Fortuny, J., andSolé, R. V. (2011). Emergence of Zipf’s law in the evolution of communication. Phys. Rev. E 83: 036115. URL http://link.aps.org/doi/10.1103/PhysRevE.83.036115.
- Couzin, I. D., Krause, J., et al. (2003). Self-organization and collective behavior in vertebrates. In Advances in the Study of Behavior, P. J. B. Slater, J. S. Rosenblatt, C. T. Snowdon, and T. J. Roper, (Eds.). Vol. 32. Academic Press, San Diego, CA, USA, 1–73.
- Couzin, I. D., Krause, J., Franks, N. R., andLevin, S. A. (2004). Effective leadership and decision-making in animal groups on the move. Nature 433: 513–516.
- Cross, M.andGreenside, H. (2009). Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press.
- Cross, M. C.andHohenberg, P. C. (1993). Pattern formation outside of equilibrium. Rev. Mod. Phys. 65: 851–1112. URL http://link.aps.org/doi/10.1103/RevModPhys.65.851.
- Crutchfield, J. P. (2011). Between order and chaos. Nature Physics 8: 17 EP –. [CrossRef]
- Cully, A., Clune, J., Tarapore, D., andMouret, J.-B. (2015). Robots that can adapt like animals. Nature 521 (7553): 503–507. [CrossRef]
- Davies, J. A. (2023). Mechanisms of morphogenesis. Elsevier.
- De Domenico, M., Camargo, C., Gershenson, C., Goldsmith, D., Jeschonnek, S., Kay, L., Nichele, S., Nicolás, J., Schmickl, T., Stella, M., Brandoff, J., Salinas, Á. J. M., andSayama, H. (2019). Complexity explained: A grassroot collaborative initiative to create a set of essential concepts of complex systems. URL https://complexityexplained.github.io.
- De Wolf, T., Samaey, G., andHolvoet, T. (2005). Engineering self-organising emergent systems with simulation-based scientific analysis. In Proceedings of the International Workshop on Engineering Self-Organising Applications. Utrecht, The Netherlands,, pp. 46–160. URL http://tinyurl.com/y2vmau.
- Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., andGambardella, L. (2004). Evolving self-organizing behaviors for a swarm-bot. Autonomous Robots 17 (2-3): 223–245. URL http://www.swarm-bots.org.
- Dressler, F. (2007). Self-Organization in Sensor and Actor Networks. John Wiley & Sons.
- Epstein, J. M.andAxtell, R. L. (1996). Growing Artificial Societies: Social Science from the Bottom Up. Brookings Institution Press MIT Press, Cambridge, MA, USA. URL http://www.brookings.org/press/books/artifsoc.htm.
- Equihua, M., Espinosa Aldama, M., Gershenson, C., López-Corona, O., Munguía, M., Pérez-Maqueo, O., andRamírez-Carrillo, E. (2020). Ecosystem antifragility: beyond integrity and resilience. PeerJ 8: e8533. [CrossRef]
- Farmer, J. D. (2024). Making Sense of Chaos: A Better Economics for a Better World. Penguin Random House, London, UK.
- Farnsworth, K. D., Ellis, G. F. R., andJaeger, L. (2017). Living through downward causation: From molecules to ecosystems. In From Matter to Life: Information and Causality, S. I. Walker, P. C. W. Davies, and G. F. R. Ellis, (Eds.). Cambridge University Press, Cambridge, UK, 303–333.
- Feltz, B., Crommelinck, M., andGoujon, P., Eds. (2006). Self-organization and Emergence in Life Sciences. Synthese Library, vol. 331. Springer.
- Fernández, N., Maldonado, C., andGershenson, C. (2014). Information measures of complexity, emergence, self-organization, homeostasis, and autopoiesis. In Guided Self-Organization: Inception, M. Prokopenko, (Ed.). Emergence, Complexity and Computation, vol. 9. Springer, Berlin Heidelberg, 19–51. URL http://arxiv.org/abs/1304.1842.
- Ferrer i Cancho, R.andSolé, R. V. (2003). Least effort and the origins of scaling in human language. Proceedings of the National Academy of Sciences 100 (3): 788–791. URL http://www.pnas.org/content/100/3/788.abstract.
- Flack, J. C. (2017). Coarse-graining as a downward causation mechanism. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2109): 20160338. URL https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2016.0338.
- Frei, R.andDi Marzo Serugendo, G. (2011). Advances in complexity engineering. International Journal of Bio-Inspired Computation 3 (4): 199–212. URL http://www.reginafrei.ch/pdf/IJBIC030401%20FREI%20published.pdf.
- Gershenson, C. (2007). Design and Control of Self-organizing Systems. CopIt Arxives, Mexico. TS0002EN. URL https://copitarxives.fisica.unam.mx/TS0002EN/TS0002EN.html.
- Gershenson, C. (2008). Towards self-organizing bureaucracies. International Journal of Public Information Systems 2008 (1): 1–24. URL https://arxiv.org/abs/nlin/0603045.
- Gershenson, C. (2010). Computing networks: A general framework to contrast neural and swarm cognitions. Paladyn, Journal of Behavioral Robotics 1 (2): 147–153. [CrossRef]
- Gershenson, C. (2013a). The implications of interactions for science and philosophy. Foundations of Science 18 (4): 781–790. URL http://arxiv.org/abs/1105.2827.
- Gershenson, C. (2013b). Living in living cities. Artificial Life 19 (3 & 4) (Summer/Fall): 401–420. [CrossRef]
- Gershenson, C. (2015). Requisite variety, autopoiesis, and self-organization. Kybernetes 44 (6–7): 866–873.
- Gershenson, C. (2020). Guiding the self-organization of cyber-physical systems. Frontiers in Robotics and AI 7: 41. URL https://www.frontiersin.org/article/10.3389/frobt.2020.00041.
- Gershenson, C. (2021). On the Scales of Selves: Information, Life, and Buddhist Philosophy. In ALIFE 2021: The 2021 Conference on Artificial Life, J. Čejková, S. Holler, L. Soros, and O. Witkowski, (Eds.). MIT Press, Prague, Czech Republic, p. 2. [CrossRef]
- Gershenson, C. (2023a). Complexity and Buddhism: Understanding interactions. Buddhism Today 52: 44–48.
- Gershenson, C. (2023b). Emergence in Artificial Life. Artificial Life 29 (2) (05): 153–167. [CrossRef]
- Gershenson, C.andHelbing, D. (2015). When slower is faster. Complexity 21 (2): 9–15. [CrossRef]
- Gershenson, C.andHeylighen, F. (2003). When can we call a system self-organizing? In Advances in Artificial Life, 7th European Conference, ECAL 2003 LNAI 2801, W. Banzhaf, T. Christaller, P. Dittrich, J. T. Kim, and J. Ziegler, (Eds.). Springer, Berlin, 606–614. URL http://arxiv.org/abs/nlin.AO/0303020.
- Gershenson, C., Santi, P., andRatti, C. (2021). Cybernetic cities: designing and controlling adaptive and robust urban systems. In Handbook on Cities and Complexity, J. Portugali, (Ed.). Edward Elgar Publishing, Chapter 10, pp. 195–208.
- Gershenson, C., Trianni, V., Werfel, J., andSayama, H. (2020). Self-organization and artificial life. Artificial Life 26 (3) (09): 391–408. [CrossRef]
- Goodnight, C., Rauch, E., Sayama, H., De Aguiar, M. A. M., Baranger, M., andBar-yam, Y. (2008). Evolution in spatial predator–prey models and the “prudent predator”: The inadequacy of steady-state organism fitness and the concept of individual and group selection. Complexity 13 (5): 23–44. [CrossRef]
- Grassi, M. (2020). Self-organized bodies, between politics and biology. a political reading of aristotle’s concepts of soul and pneuma. Scientia et Fides 8 (1): 123–139. URL https://ri.conicet.gov.ar/handle/11336/169424.
- Haimovici, A., Tagliazucchi, E., Balenzuela, P., andChialvo, D. R. (2013). Brain organization into resting state networks emerges at criticality on a model of the human connectome. Physical review letters 110 (17): 178101.
- Haken, H. (1981). Synergetics and the problem of selforganization. In Self-Organizing Systems: An Interdisciplinary Approach, G. Roth and H. Schwegler, (Eds.). Campus Verlag, New York, pp. 9–13.
- Haken, H. (1988). Information and Self-organization: A Macroscopic Approach to Complex Systems. Springer-Verlag, Berlin.
- Harvey, I. (2015). The circular logic of Gaia: Fragility and fallacies, regulation and proofs. In Proceedings of the European Conference on Artificial Life 2015. Artificial Life Conference Proceedings. pp. 90–97. [CrossRef]
- Helbing, D., Seidel, T., Lämmer, S., andPeters, K. (2006). Self-organization principles in supply networks and production systems. In Econophysics and Sociophysics, B. K. Chakrabarti, A. Chakraborti, and A. Chatterjee, (Eds.). Wiley, Weinheim, 535–559. [CrossRef]
- Helbing, D.andVicsek, T. (1999). Optimal self-organization. New Journal of Physics 1: 13.1–13.17. [CrossRef]
- Heylighen, F. (2003). The science of self-organization and adaptivity. In The Encyclopedia of Life Support Systems, L. D. Kiel, (Ed.). EOLSS Publishers, Oxford. URL http://pcp.vub.ac.be/Papers/EOLSS-Self-Organiz.pdf.
- Heylighen, F., Cilliers, P., andGershenson, C. (2007). Complexity and philosophy. In Complexity, Science and Society, J. Bogg and R. Geyer, (Eds.). Radcliffe Publishing, Oxford, 117–134. URL http://arxiv.org/abs/cs.CC/0604072.
- Heylighen, F.andJoslyn, C. (2001). Cybernetics and second order cybernetics. In Encyclopedia of Physical Science and Technology, 3rd ed., R. A. Meyers, (Ed.). Vol. 4. Academic Press, New York, 155–170.
- Holland, O.andMelhuish, C. (1999). Stigmergy, self-organization, and sorting in collective robotics. Artificial Life 5 (2): 173–202. [CrossRef]
- Ikegami, T., Mototake, Y.-i., Kobori, S., Oka, M., andHashimoto, Y. (2017). Life as an emergent phenomenon: studies from a large-scale boid simulation and web data. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375 (2109) (2024/11/11): 20160351. [CrossRef]
- Iñiguez, G., Pineda, C., Gershenson, C., andBarabási, A.-L. (2022). Dynamics of ranking. Nature Communications 13 (1): 1646. [CrossRef]
- Jain, N., Khakhar, D. V., Lueptow, R. M., andOttino, J. M. (2001). Self-organization in granular slurries. Phys. Rev. Lett. 86: 3771–3774. URL https://link.aps.org/doi/10.1103/PhysRevLett.86.3771.
- Juarrero-Roqué, A. (1985). Self-organization: Kant’s concept of teleology and modern chemistry. The Review of Metaphysics 39 (1): 107–135. URL http://www.jstor.org/stable/20128282.
- Kim, H., Pineda, O. K., andGershenson, C. (2019). A multilayer structure facilitates the production of antifragile systems in Boolean network models. Complexity 2019: 11. [CrossRef]
- Kirk, G. S. (1951). Natural change in Heraclitus. Mind 60 (237): 35–42.
- Knoll, P., Ouyang, B., andSteinbock, O. (2024). Patterns lead the way to far-from-equilibrium materials. ACS Physical Chemistry Au 4 (1) (01): 19–30. [CrossRef]
- Ko, H., Lauder, G., andNagpal, R. (2023). The role of hydrodynamics in collective motions of fish schools and bioinspired underwater robots. Journal of The Royal Society Interface 20 (207) (2024/11/18): 20230357. [CrossRef]
- Kohonen, T. (2000). Self-Organizing Maps, 3rd ed. Springer.
- Kondepudi, D.andPrigogine, I. (2014). Modern thermodynamics: from heat engines to dissipative structures. John Wiley & Sons.
- Lämmer, S.andHelbing, D. (2008). Self-control of traffic lights and vehicle flows in urban road networks. J. Stat. Mech. 2008: P04019. [CrossRef]
- Lazer, D., Pentland, A. S., Adamic, L., Aral, S., Barabasi, A. L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., andJebara, T. (2009). Life in the network: the coming age of computational social science. Science 323 (5915): 721.
- Lehn, J.-M. (1990). Perspectives in supramolecular chemistry—from molecular recognition towards molecular information processing and self-organization. Angewandte Chemie International Edition in English 29 (11): 1304–1319. [CrossRef]
- Lehn, J.-M. (2017). Supramolecular chemistry: Where from? where to? Chem. Soc. Rev. 46: 2378–2379. [CrossRef]
- Lemov, R. (2011). Running amok in labyrinthine systems: The cyber-behaviorist origins of soft torture. limn 1. URL https://escholarship.org/uc/item/2rw899hv.
- Lenton, T. M.andWilliams, H. T. P. (2009). Gaia and evolution. In Gaia in Turmoil: Climate Change, Biodepletion, and Earth Ethics in an Age of Crisis, E. Crist and H. B. Rinker, (Eds.). The MIT Press. [CrossRef]
- Lettvin, J. Y., Maturana, H. R., McCulloch, W. S., andPitts, W. H. (1959). What the frog’s eye tells the frog’s brain. Proceedings of the IRE 47 (11): 1940–1951.
- Levin, M. (2005a). Left–right asymmetry in embryonic development: a comprehensive review. Mechanisms of Development 122 (1): 3–25. URL https://www.sciencedirect.com/science/article/pii/S0925477304002114.
- Levin, M. (2007). Large-scale biophysics: ion flows and regeneration. Trends in Cell Biology 17 (6) (2024/11/11): 261–270. [CrossRef]
- Levin, S. A. (2005b). Self-organization and the emergence of complexity in ecological systems. AIBS Bulletin 55 (12): 1075–1079.
- López-Díaz, A. J., Sánchez-Puig, F., andGershenson, C. (2023). Temporal, structural, and functional heterogeneities extend criticality and antifragility in random Boolean networks. Entropy 25 (2). URL https://www.mdpi.com/1099-4300/25/2/254.
- Lovelock, J. E.andMargulis, L. (1974). Atmospheric homeostasis by and for the biosphere: the gaia hypothesis. Tellus 26 (1-2): 2–10.
- Mamei, M., Menezes, R., Tolksdorf, R., andZambonelli, F. (2006). Case studies for self-organization in computer science. Journal of Systems Architecture 52 (8-9): 443–460.
- Mandelbrot, B. (1982). The fractal geometry of nature. WH Freeman.
- Maturana, H. (1987). Everything is said by an observer. In Gaia, a Way of Knowing: Political Implications of the New Biology, W. I. Thompson, (Ed.). Lindisfarne Press, Great Barrington, MA, USA, 65–82.
- Maturana, H.andVarela, F. (1980). Autopoiesis and Cognition: The realization of living. Reidel Publishing Company, Dordrecht.
- McCulloch, W.andPitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology 5 (4): 115–133. [CrossRef]
- McLaughlin, B. P. (1992). The rise and fall of British emergentism. In Emergence or reduction? Essays on the prospects of nonreductive physicalism, Beckerman, Flohr, and Kim, (Eds.). Walter de Gruyter, Berlin, 49–93.
- Mitchell, M. (2009). Complexity: A Guided Tour. Oxford University Press, Oxford, UK.
- Mitchell, M. (2023). AI’s challenge of understanding the world. Science 382 (6671): eadm8175. URL https://www.science.org/doi/abs/10.1126/science.adm8175.
- Muñuzuri, A. P.andPérez-Mercader, J. (2022). Unified representation of life’s basic properties by a 3-species stochastic cubic autocatalytic reaction-diffusion system of equations. Physics of Life Reviews 41: 64–83. URL https://www.sciencedirect.com/science/article/pii/S1571064522000185.
- Murcio, R., Masucci, A. P., Arcaute, E., andBatty, M. (2015). Multifractal to monofractal evolution of the london street network. Phys. Rev. E 92: 062130. URL https://link.aps.org/doi/10.1103/PhysRevE.92.062130.
- Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46 (5): 323–351.
- Nicolis, G.andPrigogine, I. (1977). Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, Chichester.
- Pagels, H. R. (1989). The Dreams of Reason: The Computer and the Rise of the Sciences of Complexity. Bantam Books, New York City, NY, USA.
- Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., andTorres, F. (1998). Fishing down marine food webs. Science 279 (5352): 860–863. [CrossRef]
- Pfeifer, R., Lungarella, M., andIida, F. (2007). Self-organization, embodiment, and biologically inspired robotics. Science 318: 1088–1093.
- Pineda, O. K., Kim, H., andGershenson, C. (2019). A novel antifragility measure based on satisfaction and its application to random and biological Boolean networks. Complexity 2019: 10. [CrossRef]
- Portugali, J. (2000). Self-organization and the City. Springer Verlag. URL http://tinyurl.com/2v9kb9z.
- Prehofer, C.andBettstetter, C. (2005). Self-organization in communication networks: principles and design paradigms. Communications Magazine, IEEE 43 (7): 78–85. [CrossRef]
- Prokopenko, M. (2009). Guided self-organization. HFSP Journal 3 (5): 287–289. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801529/.
- Prokopenko, M., Ed. (2014). Guided Self-Organization: Inception. Emergence, Complexity and Computation, vol. 9. Springer, Berlin Heidelberg. [CrossRef]
- Prokopenko, M., Boschetti, F., andRyan, A. J. (2009). An information-theoretic primer on complexity, self-organisation and emergence. Complexity 15 (1): 11–28. [CrossRef]
- Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., andTrianni, V. (2015). A design pattern for decentralised decision making. PLOS ONE 10 (10) (10): 1–18. [CrossRef]
- Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. Computer Graphics 21 (4): 25–34. URL http://www.red3d.com/cwr/papers/1987/boids.html.
- Rocha, L. (1998). Selected self-organization and the semiotics of evolutionary systems. In Evolutionary Systems, G. van de Vijver, S. Salthe, and M. Delpos, (Eds.). Springer Netherlands, 341–358. URL http://link.springer.com/chapter/10.1007/978-94-017-1510-2_25.
- Rohden, M., Sorge, A., Timme, M., andWitthaut, D. (2012). Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 109: 064101. URL https://link.aps.org/doi/10.1103/PhysRevLett.109.064101.
- Ronald, E. M. A., Sipper, M., andCapcarrère, M. S. (1999). Design, Observation, Surprise! A Test of Emergence. Artificial Life 5 (3) (07): 225–239. [CrossRef]
- Rosenblueth, A., Wiener, N., andBigelow, J. (1943). Behavior, purpose and teleology. Philosophy of Science 10 (1): 18–24.
- Rubenstein, M., Cornejo, A., andNagpal, R. (2014). Programmable self-assembly in a thousand-robot swarm. Science 345 (6198): 795–799.
- Runghen, R., Poulin, R., Monlleó-Borrull, C., andLlopis-Belenguer, C. (2021). Network analysis: Ten years shining light on host–parasite interactions. Trends in Parasitology 37 (5) (2024/11/12): 445–455. [CrossRef]
- Rupe, A.andCrutchfield, J. P. (2024). On principles of emergent organization. Physics Reports 1071: 1–47. URL https://www.sciencedirect.com/science/article/pii/S0370157324001327.
- Saavedra, S., Stouffer, D. B., Uzzi, B., andBascompte, J. (2011). Strong contributors to network persistence are the most vulnerable to extinction. Nature 478 (7368): 233–235. [CrossRef]
- Sahasrabudhe, S.andMotter, A. E. (2011). Rescuing ecosystems from extinction cascades through compensatory perturbations. Nat Commun 2: 170. [CrossRef]
- Sánchez-Puig, F., Zapata, O., Pineda, O. K., Iñiguez, G., andGershenson, C. (2023). Heterogeneity extends criticality. Frontiers in Complex Systems 1. URL https://www.frontiersin.org/articles/10.3389/fcpxs.2023.1111486.
- Saratxaga Arregi, A. (2024). Heinz von Foerster’s operational epistemology: orientation for insight into complexity. Kybernetes ahead-of-print (ahead-of-print) (2024/06/28). [CrossRef]
- Schranz, M., Umlauft, M., Sende, M., andElmenreich, W. (2020). Swarm robotic behaviors and current applications. Frontiers in Robotics and AI 7. URL https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2020.00036.
- Schweitzer, F., Ed. (1997). Self-Organization of Complex Structures: From Individual to Collective Dynamics. Gordon and Breach, London.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27 (3 and 4) (July and October): 379–423 and 623–656. [CrossRef]
- Skår, J.andCoveney, P. V., Eds. (2003). Self-Organization: The Quest for the Origin and Evolution of Structure. Phil. Trans. R. Soc. Lond. A 361(1807). Proceedings of the 2002 Nobel Symposium on self-organization.
- Stanley, H. E. (1987). Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford, UK.
- Steels, L. (1995). A self-organizing spatial vocabulary. Artificial Life 2 (3): 319–332.
- Steels, L. (1997). The synthetic modeling of language origins. Evolution of communication 1 (1): 1–34.
- Stengers, I. (1985). Généalogies de l’auto-organisation. Cahiers du C.R.E.A., vol. 8. Centre de recherche sur l’épistémologie et l’autonomie, France. URL https://books.google.com.mx/books?id=WmXCnAEACAAJ.
- Strogatz, S. (2003). Sync: The Emerging Science of Spontaneous Order. Hyperion.
- Taleb, N. N. (2012). Antifragile: Things That Gain From Disorder. Random House, London, UK.
- Theraulaz, G.andBonabeau, E. (1999). A brief history of stimergy. Artificial Life 5 (2) (Spring): 97–116. [CrossRef]
- Thompson, D. W. (1917). ON GROWTH AND FORM. Cambridge University Press. URL https://www.gutenberg.org/files/55264/55264-h/55264-h.htm.
- Török, J., Krishnamurthy, S., Kertész, J., andRoux, S. (2000). Self-organization, localization of shear bands, and aging in loose granular materials. Phys. Rev. Lett. 84: 3851–3854. URL https://link.aps.org/doi/10.1103/PhysRevLett.84.3851.
- Turcotte, D. L.andRundle, J. B. (2002). Self-organized complexity in the physical, biological, and social sciences. Proceedings of the National Academy of Sciences of the United States of America 99 (Suppl 1): 2463–2465. [CrossRef]
- Turing, A. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 237 (641): 37–72.
- Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. 2 (42): 230–265.
- Van Calck, L., Pacheco, A., Strobel, V., Dorigo, M., andReina, A. (2023). A blockchain-based information market to incentivise cooperation in swarms of self-interested robots. Scientific Reports 13 (1): 20417. [CrossRef]
- Van de Vijver, G. (2006). Kant and the intuitions of self-organization. In Self-organization and emergence in life sciences, B. Feltz, M. Crommelinck, and P. Goujon, (Eds.). Springer, 143–161.
- Vanag, V. K.andEpstein, I. R. (2001). Pattern formation in a tunable medium: The Belousov-Zhabotinsky reaction in an aerosol ot microemulsion. Physical review letters 87 (22): 228301.
- Varela, F. J., Maturana, H. R., andUribe, R. (1974). Autopoiesis: The organization of living systems, its characterization and a model. Biosystems 5 (4): 187–196. [CrossRef]
- Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A. E., andVicsek, T. (2018). Optimized flocking of autonomous drones in confined environments. Science Robotics 3 (20). URL http://robotics.sciencemag.org/content/robotics/3/20/eaat3536.full.pdf.
- Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., andShochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75: 1226–1229. URL https://link.aps.org/doi/10.1103/PhysRevLett.75.1226.
- Vicsek, T.andZafeiris, A. (2012). Collective motion. Physics Reports 517: 71–140. [CrossRef]
- von Bertalanffy, L. (1968). General System Theory: Foundations, Development, Applications. George Braziller, New York.
- von Foerster, H. (1960). On self-organizing systems and their environments. In Self-Organizing Systems, M. C. Yovitts and S. Cameron, (Eds.). Pergamon, New York, pp. 31–50.
- Walter, W. G. (1950). An imitation of life. Scientific American 182 (5) (May): 42–45. URL http://robotics.cse.tamu.edu/dshell/cs643/papers/walter50imitation.pdf.
- Walter, W. G. (1951). A machine that learns. Scientific American 185 (2) (August): 60–63. URL http://robotics.cse.tamu.edu/dshell/cs643/papers/walter51learns.pdf.
- Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., et al. (2022). Emergent abilities of large language models. arXiv:2206.07682.
- Werfel, J., Petersen, K., andNagpal, R. (2014). Designing collective behavior in a termite-inspired robot construction team. Science 343 (6172): 754–758. URL http://www.sciencemag.org/content/343/6172/754.abstract.
- Whitesides, G. M.andGrzybowski, B. (2002). Self-assembly at all scales. Science 295 (5564): 2418–2421. URL http://www.sciencemag.org/content/295/5564/2418.short.
- Wiener, N. (1948). Cybernetics; or, Control and Communication in the Animal and the Machine. Wiley and Sons, New York.
- Wiener, N. (1950). Cybernetics. Bulletin of the American Academy of Arts and Sciences 3 (7): 2–4. URL http://www.jstor.org/stable/3822945.
- Winfree, A. T. (1984). The prehistory of the belousov-zhabotinsky oscillator. Journal of Chemical Education 61 (8) (08): 661. [CrossRef]
- Wolfram, S. (1983). Statistical mechanics of cellular automata. Reviews of Modern Physics 55 (3) (July): 601–644.
- Zapotecatl, J. L., Rosenblueth, D. A., andGershenson, C. (2017). Deliberative self-organizing traffic lights with elementary cellular automata. Complexity 2017: 7691370. [CrossRef]
- Zipf, G. K. (1932). Selective Studies and the Principle of Relative Frequency in Language. Harvard University Press, Cambridge, MA, USA.
- Zubillaga, D., Cruz, G., Aguilar, L. D., Zapotecatl, J., Fernández, N., Aguilar, J., Rosenblueth, D. A., andGershenson, C. (2014). Measuring the complexity of self-organizing traffic lights. Entropy 16 (5): 2384–2407. [CrossRef]
- Zykov, V., Mytilinaios, E., Adams, B., andLipson, H. (2005). Self-reproducing machines. Nature 435 (7039) (05): 163–164. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
