Submitted:
10 June 2024
Posted:
12 June 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of interest
Abbreviations
| ACMG | American College of Medical Genetics and Genomics |
| CF | cystic fibrosis |
| CMA | chromosomal microarray analysis |
| CNVs | copy number variations |
| ECS | expanded carrier screening |
| GS | genome sequencing |
| mtDNA | mitochondrial DNA |
| NGS | next-generation sequencing |
| NICU | neonatal intensive care unit |
| NS | newborn screening |
| PKU | phenylketonuria |
| SMA | spinal muscular atrophy |
| VUS | variant of uncertain significance |
| WES | whole exome sequencing |
| WGS | whole genome sequencing |
References
- Fabie NA V., Pappas KB, Feldman GL. The Current State of Newborn Screening in the United States. Pediatr Clin North Am 2019;66:369–86. [CrossRef]
- El-Hattab AW, Almannai M, Sutton VR. Newborn Screening: History, Current Status, and Future Directions. Pediatr Clin North Am 2018;65:389–405. [CrossRef]
- Caggana M, Jones EA, Shahied SI, Tanksley S, Hermerath CA, Lubin IM. Newborn screening: From Guthrie to whole genome sequencing. Public Health Rep 2013;128:14–9. [CrossRef]
- Andermann A, Blancquaert I, Beauchamp S, Déry V. Revisiting Wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull World Health Organ 2008;86:317–9. [CrossRef]
- Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract Ed 2013;98:236–8. [CrossRef]
- MALCOLM S. Recent advances in the molecular analysis of inherited disease. Eur J Biochem 1990;194:317–21. [CrossRef]
- McCandless SE, Wright EJ. Mandatory newborn screening in the United States: History, current status, and existential challenges. Birth Defects Res 2020;112:350–66. [CrossRef]
- Deignan JL, Astbury C, Cutting GR, del Gaudio D, Gregg AR, Grody WW, et al. CFTR variant testing: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2020;22:1288–95. [CrossRef]
- Monaghan KG, Lyon E, Spector EB. ACMG standards and guidelines for fragile X testing: A revision to the disease-specific supplements to the standards and guidelines for Clinical Genetics Laboratories of the American College of Medical Genetics and Genomics. Genet Med 2013;15:575–86. [CrossRef]
- Gitlin JM, Fischbeck K, Crawford TO, Cwik V, Fleischman A, Gonye K, et al. Carrier testing for spinal muscular atrophy. Genet Med 2010;12:621–2. [CrossRef]
- Kraft SA, Duenas D, Wilfond BS, Goddard KAB. The evolving landscape of expanded carrier screening: challenges and opportunities. Genet Med 2019;21:790–7. [CrossRef]
- Pareek CS, Smoczynski R, Tretyn A. Sequencing technologies and genome sequencing. J Appl Genet 2011;52:413–35. [CrossRef]
- Shashi V, McConkie-Rosell A, Rosell B, Schoch K, Vellore K, McDonald M, et al. The utility of the traditional medical genetics diagnostic evaluation in the context of next-generation sequencing for undiagnosed genetic disorders. Genet Med 2014;16:176–82. [CrossRef]
- Gahl WA, Markello TC, Toro C, Fajardo KF, Sincan M, Gill F, et al. The NIH undiagnosed diseases program: Insights into rare diseases. Genet Med 2012;14:51–9. [CrossRef]
- Sullivan JA, Schoch K, Spillmann RC, Shashi V. Exome/Genome Sequencing in Undiagnosed Syndromes. Annu Rev Med 2023;74:489–502. [CrossRef]
- Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu YF, McSweeney KM, et al. Whole-exome sequencing in undiagnosed genetic diseases: Interpreting 119 trios. Genet Med 2015;17:774–81. [CrossRef]
- Stark Z, Schofield D, Martyn M, Rynehart L, Shrestha R, Alam K, et al. Does genomic sequencing early in the diagnostic trajectory make a difference? A follow-up study of clinical outcomes and cost-effectiveness. Genet Med 2019;21:173–80. [CrossRef]
- Soden SE, Saunders CJ, Willig LK, Farrow EG, Smith LD, Petrikin JE, et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 2014;6. [CrossRef]
- Schoch K, Esteves C, Bican A, Spillmann R, Cope H, McConkie-Rosell A, et al. Clinical sites of the Undiagnosed Diseases Network: unique contributions to genomic medicine and science. Genet Med 2021;23:259–71. [CrossRef]
- Farwell KD, Shahmirzadi L, El-Khechen D, Powis Z, Chao EC, Tippin Davis B, et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: Results from 500 unselected families with undiagnosed genetic conditions. Genet Med 2015;17:578–86. [CrossRef]
- Bertoli-Avella AM, Beetz C, Ameziane N, Rocha ME, Guatibonza P, Pereira C, et al. Successful application of genome sequencing in a diagnostic setting: 1007 index cases from a clinically heterogeneous cohort. Eur J Hum Genet 2021;29:141–53. [CrossRef]
- Poplin R, Ruano-Rubio, Valentin DePristo MA, Fennell TJ, O Carneiro M, Van der Auwera GA, Kling DE, et al. Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxIV 2018:1–22.
- Bohannan ZS, Mitrofanova A. Calling Variants in the Clinic: Informed Variant Calling Decisions Based on Biological, Clinical, and Laboratory Variables. Comput Struct Biotechnol J 2019;17:561–9. [CrossRef]
- Tennessen JA, Bigham AW, O ’connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes Broad GO, Seattle GO, on behalf of the NHLBI Exome Sequencing Project. Science (80- ) 2012;337:64–9. [CrossRef]
- Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, et al. Integrating human sequence data sets provides a resource of benchmark SNP and indel genotype calls. Nat Biotechnol 2014;32:246–51. [CrossRef]
- Poplin R, Chang PC, Alexander D, Schwartz S, Colthurst T, Ku A, et al. A universal snp and small-indel variant caller using deep neural networks. Nat Biotechnol 2018;36:983. [CrossRef]
- AlDubayan SH, Conway JR, Camp SY, Witkowski L, Kofman E, Reardon B, et al. Re: Detection of Pathogenic Variants with Germline Genetic Testing Using Deep Learning vs Standard Methods in Patients with Prostate Cancer and Melanoma. J Urol 2021;205:1516–7. [CrossRef]
- Wan J, Yourshaw M, Mamsa H, Rudnik-Schöneborn S, Menezes MP, Hong JE, et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 2012;44:704–8. [CrossRef]
- Peters H, Buck N, Wanders R, Ruiter J, Waterham H, Koster J, et al. ECHS1 mutations in Leigh disease: A new inborn error of metabolism affecting valine metabolism. Brain 2014;137:2903–8. [CrossRef]
- Miryounesi M, Dianatpour M, Shadmani Z, Ghafouri-Fard S. Report of a case with trisomy 9 mosaicism. Iran J Med Sci 2016;41:249–52.
- Li M, Glass J, Du X, Dubbs H, Harr MH, Falk M, et al. and suggested clinical guidelines 2022;185:2374–83. [CrossRef]
- Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA, et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: A retrospective analysis of diagnostic and clinical findings. Lancet Respir Med 2015;3:377–87. [CrossRef]
- Saunders CJ, Miller NA, Soden SE, Dinwiddie DL, Noll A, Alnadi NA, et al. Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 2012;4. [CrossRef]
- Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. Npj Genomic Med 2018;3:1–10. [CrossRef]
- Ph D, Niu Z, Ph D, Wang X, Ph D, Dhar S, et al. in Adult Patients 2016;18:678–85. [CrossRef]
- Yuen RKC, Thiruvahindrapuram B, Merico D, Walker S, Tammimies K, Hoang N, et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat Med 2015;21:185–91. [CrossRef]
- Willig LK, Petrikin JE, Smith LD, Saunders CJ, Thiffault I, Miller NA, et al. Diagnostic and Clinical Findings. Lancet Respir Med 2016;3:377–87. [CrossRef]
- Ellingford JM, Barton S, Bhaskar S, Williams SG, Sergouniotis PI, O’Sullivan J, et al. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease. Ophthalmology 2016;123:1143–50. [CrossRef]
- Bick D, Fraser P, Gutzeit M, Harris J, Hambuch T, Helbling D, et al. Successful Application of Whole Genome Sequencing in a Medical Genetics Clinic. J Pediatr Genet 2016;06:061–76. [CrossRef]
- Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, et al. Improved diagnostic yield compared with targeted gene sequencing panels suggests a role for whole-genome sequencing as a first-tier genetic test. Genet Med 2018;20:435–43. [CrossRef]
- Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc Natl Acad Sci U S A 2015;112:5473–8. [CrossRef]
- Gilissen C, Hehir-Kwa JY, Thung DT, Van De Vorst M, Van Bon BWM, Willemsen MH, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014;511:344–7. [CrossRef]
- Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: An exome sequencing study. Lancet 2012;380:1674–82. [CrossRef]
- de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T, et al. Diagnostic Exome Sequencing in Persons with Severe Intellectual Disability. N Engl J Med 2012;367:1921–9. [CrossRef]
- Yang Y, Ph D, Muzny DM, Sc M, Reid JG, Ph D, et al. Clinical Whole-Exome Sequencing for the Diagnosis of Mendelian Disorders. N Engl J Med 2014;369:1502–11. [CrossRef]
- Srivastava S, Cohen JS, Vernon H, Barañano K, McClellan R, Jamal L, et al. Clinical whole exome sequencing in child neurology practice. Ann Neurol 2014;76:473–83. [CrossRef]
- Todd EJ, Yau KS, Ong R, Slee J, McGillivray G, Barnett CP, et al. Next generation sequencing in a large cohort of patients presenting with neuromuscular disease before or at birth. Orphanet J Rare Dis 2015;10:1–14. [CrossRef]
- Lazaridis KN, Schahl KA, Cousin MA, Babovic-Vuksanovic D, Riegert-Johnson DL, Gavrilova RH, et al. Outcome of Whole Exome Sequencing for Diagnostic Odyssey Cases of an Individualized Medicine Clinic: The Mayo Clinic Experience. Mayo Clin Proc 2016;91:297–307. [CrossRef]
- Nolan D, Carlson M. Whole Exome Sequencing in Pediatric Neurology Patients: Clinical Implications and Estimated Cost Analysis. J Child Neurol 2016;31:887–94. [CrossRef]
- Kingsmore SF, Cakici JA, Clark MM, Gaughran M, Feddock M, Batalov S, et al. A Randomized, Controlled Trial of the Analytic and Diagnostic Performance of Singleton and Trio, Rapid Genome and Exome Sequencing in Ill Infants. Am J Hum Genet 2019;105:719–33. [CrossRef]
- Dolzhenko E, van Vugt JJFA, Shaw RJ, Bekritsky MA, Van Blitterswijk M, Narzisi G, et al. Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Res 2017;27:1895–903. [CrossRef]
- Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, et al. Manta: Rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 2016;32:1220–2. [CrossRef]
- Runheim H, Pettersson M, Hammarsjö A, Nordgren A, Henriksson M, Lindstrand A, et al. The cost-effectiveness of whole genome sequencing in neurodevelopmental disorders. Sci Rep 2023;13:1–8. [CrossRef]
- Tan TY, Dillon OJ, Stark Z, Schofield D, Alam K, Shrestha R, et al. Diagnostic impact and cost-effectiveness of whole-exome sequencing for ambulant children with suspected monogenic conditions. JAMA Pediatr 2017;171:855–62. [CrossRef]
- Aaltio J, Hyttinen V, Kortelainen M, Frederix GWJ, Lönnqvist T, Suomalainen A, et al. Cost-effectiveness of whole-exome sequencing in progressive neurological disorders of children: WES cost-effectiveness in children’s encephalopathies. Eur J Paediatr Neurol 2022;36:30–6. [CrossRef]
- Stark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, et al. A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genet Med 2016;18:1090–6. [CrossRef]
- Goldberg JD, Pierson S, Johansen Taber K. Expanded carrier screening: What conditions should we screen for? Prenat Diagn 2023;43:496–505. [CrossRef]
- Veneruso I, Di Resta C, Tomaiuolo R, D’argenio V. Current Updates on Expanded Carrier Screening: New Insights in the Omics Era. Med 2022;58:1–10. [CrossRef]
- Mujamammi AH. Insights into National Laboratory Newborn Screening and Future Prospects. Med 2022;58. [CrossRef]
| A/a | WES/WGS | Phenotype | Age of symptoms |
Age of referral |
|---|---|---|---|---|
| 1 | WES | Hypotonia, respiratory distress | birth | 22d |
| 2 | WES |
Hypotonia, brain abnormality (enlarged cisterna magna or cerebellomedullary cistern), short neck, livedo reticularis |
20d | 1.5m |
| 3 | WES | Microcephaly, hypodontia, non-febrile seizures, dysmorphic facial features, absent speech, lack of mobility, epileptic encephalopathy | 10d | 1m |
| 4 | WES |
Metabolic acidosis, hypotonia, vomiting, diarrhea, endocrine disorders, disorders of intermediary metabolism |
2d | 1m |
| 5 | WES | Head/neck tremor | 5.5 m | 6m |
| 6 | WES |
Neonatal convulsions, molybdenum cofactor deficiency, epileptic encephalopathy |
birth | 6d |
| 7 | WES |
Trunk hypotonia, ventriculomegaly, limb hypertonia, head lag, MRI abnormalities (lateral ventricles, corpus callosum) |
birth | 22d |
| 8 | WES | Infatile spasms, epilepsy, leukoencephalopathy, MRI abnormalities, sensorineural hearing loss, feeding difficulties, EEG abnormalities | 4d | 40d |
| 9 | WES | COVID-19 encephalitis | 5d | 5d |
| 10 | WES | Lissencephaly | N/A | 3.5m |
| 11 | WES |
Hypoplasia/skeletal abnormalities of lower limbs, varus forefoot, cryptorchidism |
birth | 2d |
| 12 | WES |
Near-miss sudden infant death syndrome, acute encephalopathy, convulsions, hypoglycemia, MRI abnormalities (cytotoxic edema, cerebral hemispheres, cerebellum) |
5m | 6m |
| 13 | WES |
Low birth weight, convulsions, limb hypertonia, head lag, dysmorphic facial features, MRI abnormalities (basal ganglia, white matter), poor weight gain, small for gestational age (SGA), respiratory failure |
birth | 7m |
| 14 | WES |
Extremely low birth weight, small for date infant, intrauterine growth restriction, dysmorphic features, saddle-nose deformity |
birth | 1m |
| 15 | WES | Neonatal convulsions | 2d | 20d |
| 16 | WES | Apnea, bradycardia with accompanying cyanosis | 1m | 2m |
| 17 | WES | Infantile spasms | 3d | 24d |
| 18 | WGS |
Hypotonia, muscle weakness, micrognathia, congenital lower limb abnormalities, respiratory failure, feeding difficulties, jaundice, clubfoot, overstretching knee, MRI abnormalities |
birth | 10d |
| 19 | WGS | Feeding difficulties, trunk hypotonia, weight loss | 9d | 17d |
| 20 | WGS | Tachypnea, prolonged expiration breathing, wheezing | 2d | 55d |
| 21 | WGS | Infantile spasms | 3d | 38d |
| 22 | WGS |
Focal seizures, hypotonia, epileptic encephalopathy, MRI abnormalities (basal ganglia), EEG abnormalities |
16d | 23d |
| 23 | WGS |
Premature birth, neurodevelopmental delay, Duane type 3, mild eye contact and communication |
5m | 5m |
| 24 | WGS |
Micrognathia, hypotonia upper limb, hypertonia lower limb, Failure to thrive, renal agenesis |
5m | 5m |
| 25 | WGS |
Jaundice, thrombocytopenia, anemia, hepatosplenomegaly, intraventricular hemorrhage grade 2-3 |
birth | 28d |
| 26 | WGS |
Hypoxic ischemic encephalopathy, MRI abnormalities, EEG abnormalities, seizures, hypertonia, absence of breastfeeding reflexes (without congenital anomalies) |
birth | 56d |
| A/a | Patient no | WES/WGS | Phenotype | Gene/Inheritance | Disease causing variant | Disorder |
|---|---|---|---|---|---|---|
| 1 | 1 | WES | Hypotonia, respiratory distress | EXOSC3 AR, hom | c.92G>C, p.Gly31Ala | Pontocerebellar hypoplasia, type 1B |
| 2 | 2 | WES | Hypotonia, brain abnormality | EXOSC3 AR, hom | c.92G>C, p.Gly31Ala | Pontocerebellar hypoplasia, type 1B |
| 3 | 3 | WES |
Microcephaly, dysmorphic facial features, epileptic encephalopathy |
MOCS1 AR, hom | c.1508_1509del, p.Glu503Alafs*103 | Molybdenum cofactor deficiency A |
| 4 | 8 | WES | Infantile spasms, hypotonia | ECHS1 AR, hom | c.476A>G, p.Gln159Arg | Mitochondrial short-chain enoyl-CoA hydratase 1 deficiency |
| 5 | 9 | WES | COCID-induced encephalitis infection | RANBP2 AD, het | c.1966A>G, p.Ile656Val | Encephalopathy, acute, infection-induced, 3, susceptibility to |
| 6 | 17 | WES | Infantile spasms |
KCNQ2 AD, het de novo |
c.1229dupC, p.Pro411Alafs*7 | Developmental and epileptic encephalopathy 7 / Myokymia / Seizures, benign neonatal, 1 |
| 7 | 21 | WGS | Infantile spasms | CNV 938kb, het (COL9A3, SLC17A9, CHRNA4, KCNQ2, EEF1A2, RTEL1) | del(20)(q13.33) chr20:62751315_63689630del | Epilepsy, phsychomotor retardation, mild dysmorphic facial features, skeletal anomalies |
| 8 | 23 | WGS | Premature birth, neurodevelopmental delay, Duane syndrome type 3 | Aneuploidy | Trisomy 9 mosaic | IUGR, mental retardation, developmental delay, dysmorphic features, low-set ears, microphthalmia, congenital heart disease, urogenital abnormalities, skeletal abnormalities, cetral nervus system defetcs (hydrocephaly, Dandy-Walker) |
| 9 | 24 | WGS | Micrognathia, hypotonia upper limb, hypertonia lower limb, failure to thrive |
EHMT1 AD, het de novo |
c.3614C>A, p.Pro1205His | Kleefstra syndrome 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
