Submitted:
15 September 2023
Posted:
19 September 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
| Case no. | Phenotype | Gestational age | Reason for WES testing referral | Fetal WES | Pregnancy outcome | Incidental/secondary findings |
|---|---|---|---|---|---|---|
| 1 | Fetal sinusal bradycardia, supraventricular extrasystoles | 22 weeks | Negative SNP array Known genes linked to fetal phenotype |
Negative | Stillbirth | PALB2:c.93dupA(p.Leu32thrfsTer11) – inherited from the mother |
| 2 | Aberrant right subclavicular artery, rocker bottom feet, fetal hydrops, fetal ascites | 20 weeks | Negative SNP array | LMX1B:c.718G>A (p.Val240Ile) Focal segmental glomerulosclerosis 10 Nail-patella syndrome |
Born, affirmatively without symptoms at the age of 1 y.o. | - |
| 3 | Right aortic arch, severe hydronephrosis, caudal regression syndrome, mesoaxial hand polydactyly |
18 weeks | Negative SNP array Clinical suspicion of VACTERL syndrome |
HOXD13:c.820C>T (p.Arg274Ter) ?Brachydactyly-syndactyly syndrome Brachydactyly, type D Brachydactyly, type E Syndactyly, type V Synpolydactyly 1 |
Couple decided termination of pregnancy | - |
| 4 | Mega Cisterna Magna, ventriculomegaly |
22 weeks | Negative SNP array | ADNP:c.1612G>A (p.Glu538Lys) Helsmoortel-van der Aa syndrome De novo |
Ongoing pregnancy | - |
| 5 | Clubfeet, microretrognathia, arachnodactyly, agenesis of the corpus callosum, intrauterine growth restriction |
24 weeks | Negative SNP array | TGFBR1: c.734A>C (p.Glu245Ala) Loeys Dietz syndrome |
Born, affirmatively without symptoms at the age of 1 y.o. | HBB: c.-151C>T Beta thalassemia Inherited from the mother |
| 6 | Corpus Callosum agenesis Oligohydramnios |
23 weeks | Consanguinity Negative SNP array |
Negative | Born, affirmatively without symptoms at the age of 2 y.o. | BRCA2: c.793+1G>A Susceptibility to breast-ovarian cancer, pancreatic cancer, prostate cancer Inherited from mother |
| 7 | Intracardiac echogenic focus, pyelectasis. Long QT syndrome of the father, family history of sudden cardiac death, arrhythmias due to affected father (without genetic diagnosis) |
19 weeks | Negative SNP array | KCNQ1:c.605-28A>G Long QT syndrome 1 Susceptibility to Short QT syndrome 2 Atrial fibrillation, familial, 3 Inherited from the father |
Born, affirmatively without symptoms at the age of 1 y.o. | - |
| 8 | Right aortic arch | 17 weeks | Negative SNP array | Negative | Born, affirmatively without symptoms at the age of 1 y.o. | - |
| 9 | Sexual ambiguity on ultrasound morphology. Intrauterine growth restriction, hypospadias, polyhydramnios. |
20 weeks | SNP array: arr[GRCh38]12p13.33p11.22(148769_30138756)x2 hmz, 12q21.31q24.22(84757938_117685540)x2 hmz |
Negative | Couple decided termination of pregnancy | - |
| 10 | Borderline bilateral ventriculomegaly, suspicion of hydrocephaly with Sylvian stenosis | 19 weeks | Negative SNP array | Negative LAMB1:c.3499C>T (p.Arg1167Ter) Lissencephaly 5 (AR) PTPN23:c.2248C>A (p.Pro750Thr) Neurodevelopmental disorder and structural brain anomalies with or without seizures and spasticity (AR) |
Ongoing pregnancy | - |
4. Discussion
5. Conclusions
References
- Syngelaki A, Hammami A, Bower S, Zidere V, Akolekar R, Nicolaides KH. Diagnosis of fetal non-chromosomal abnormalities on routine ultrasound examination at 11–13 weeks’ gestation. Ultrasound Obstet Gynecol. 2019;54(4):468-476. [CrossRef]
- Wapner RJ, Martin CL, Levy B, et al. Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med. 2012;367(23):2175-2184. [CrossRef]
- Callaway JLA, Shaffer LG, Chitty LS, Rosenfeld JA, Crolla JA. The clinical utility of microarray technologies applied to prenatal cytogenetics in the presence of a normal conventional karyotype: a review of the literature. Prenat Diagn. 2013;33(12):1119-1123. [CrossRef]
- Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS. Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn. 2017;38(1):10-19. [CrossRef]
- Srivastava S, Love-Nichols JA, Dies KA, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first- tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21(11):2413-2421. [CrossRef]
- Clark MM, Stark Z, Farnaes L, et al. Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med. 2018 Jul 9; 3:16. [CrossRef]
- Chandler N, Best S, Hayward J, et al. Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet Med. 2018;20(11):1430-1437. [CrossRef]
- Normand EA, Braxton A, Nassef S, et al. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018 Sep 28;10(1):74. [CrossRef]
- Mone F, McMullan D, Williams D, et al. Evidence to support the clinical utility of prenatal exome sequencing in evaluation of the fetus with congenital anomalies. BJOG An Int J Obstet Gynaecol. 2021; Aug;128(9):e39-e50. [CrossRef]
- ISPD, SMFM, PQF. Joint Position Statement from the International Society of Prenatal Diagnosis (ISPD), the Society of Maternal Fetal Medicine (SMFM) and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat Diagn. 2018; 38:6-9. [CrossRef]
- Monaghan K.G., Leach N.T., Pekarek D., Prasad P., Rose N.C., ACMG Professional Practice and Guidelines Committee The use of fetal exome sequencing in prenatal diagnosis: A points to consider document of the American College of Medical Genetics and Genomics (ACMG) Genet. Med. 2020; 22:675–680. [CrossRef]
- Miller DT, Lee K, Abul-Husn NS, Amendola LM, Brothers K, Chung WK, Gollob MH, Gordon AS, Harrison SM, Hershberger RE, Klein TE, Richards CS, Stewart DR, Martin CL; ACMG Secondary Findings Working Group. Electronic address: documents@acmg.net. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023 Aug;25(8):100866. [CrossRef]
- Meier N., Bruder E., Lapaire O., Hoesli I., Kang A., Hench J., Hoeller S., De Geyter J., Miny P., Heinimann K., et al. Exome sequencing of fetal anomaly syndromes: Novel phenotype-genotype discoveries. Eur. J. Hum. Genet. 2019; 27:730–737.
- Daum H., Meiner V., Elpeleg O., Harel T., Collaborating Authors Fetal exome sequencing: Yield and limitations in a tertiary referral center. Ultrasound Obs. Gynecol. 2019; 53:80–86. [CrossRef]
- Quinlan-Jones E., Lord J., Williams D., Hamilton S., Marton T., Eberhardt R.Y., Rinck G., Prigmore E., Keelagher R., McMullan D.J., et al. Molecular autopsy by trio exome sequencing (ES) and postmortem examination in fetuses and neonates with prenatally identified structural anomalies. Genet. Med. 2019; 21:1065–1073. [CrossRef]
- De Koning M.A., Haak M.C., Adama van Scheltema P.N., Peeters-Scholte C.M.P.C.D., Koopmann T.T., Nibbeling E.A.R., Aten E., den Hollander N.S., Ruivenkamp C.A.L., Hoffer M.J.V., et al. From diagnostic yield to clinical impact: A pilot study on the implementation of prenatal exome sequencing in routine care. Genet. Med. 2019; 21:2303–2310. [CrossRef]
- Lord J., McMullan D.J., Eberhardt R.Y., Rinck G., Hamilton S.J., Quinlan-Jones E., Prigmore E., Keelagher R., Best S.K., Carey G.K., et al. Prenatal Assessment of Genomes and Exomes Consortium. Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): A cohort study. Lancet. 2019; 393:747–757. [CrossRef]
- Petrovski S., Aggarwal V., Giordano J.L., Stosic M., Wou K., Bier L., Spiegel E., Brennan K., Stong N., Jobanputra V., et al. Whole-exome sequencing in the evaluation of fetal structural anomalies: A prospective cohort study. Lancet. 2019; 393:758–767. [CrossRef]
- Becher N., Andreasen L., Sandager P., Lou S., Petersen O.B., Christensen R., Vogel I. Implementation of exome sequencing in fetal diagnostics-Data and experiences from a tertiary center in Denmark. Acta Obs. Gynecol. Scand. 2020; 99:783–790. [CrossRef]
- Chen M., Chen J., Wang C., Chen F., Xie Y., Li Y., Li N., Wang J., Zhang V.W., Chen D. Clinical application of medical exome sequencing for prenatal diagnosis of fetal structural anomalies. Eur. J. Obs. Gynecol. Reprod. Biol. 2020; 251:119–124. [CrossRef]
- Dempsey E., Haworth A., Ive L., Dubis R., Savage H., Serra E., Kenny J., Elmslie F., Greco E., Thilaganathan B., et al. A report on the impact of rapid prenatal exome sequencing on the clinical management of 52 ongoing pregnancies; a retrospective review. BJOG. 2021 May;128(6):1012-1019. [CrossRef]
- Qi Q., Jiang Y., Zhou X., Meng H., Hao N., Chang J., Bai J., Wang C., Wang M., Guo J. Simultaneous Detection of CNVs and SNVs Improves the Diagnostic Yield of Fetuses with Ultrasound Anomalies and Normal Karyotypes. Genes (Basel). 2020 Nov 25;11(12):1397. [CrossRef]
- Weitensteiner V., Zhang R., Bungenberg J., Marks M., Gehlen J., Ralser D.J., Hilger A.C., Sharma A., Schumacher J., Gembruch U., et al. Exome sequencing in syndromic brain malformations identifies novel mutations in ACTB, and SLC9A6, and suggests BAZ1A as a new candidate gene. Birth. Defects Res. 2018; 110:587–597. [CrossRef]
- Westphal D.S., Leszinski G.S., Rieger-Fackeldey E., Graf E., Weirich G., Meitinger T., Ostermayer E., Oberhoffer R., Wagner M. Lessons from exome sequencing in prenatally diagnosed heart defects: A basis for prenatal testing. Clin. Genet. 2019; 95:582–589. [CrossRef]
- Bestwick JP, Wald NJ. Sequential integrated antenatal screening for Down's syndrome, trisomy 18 and trisomy 13. J Med Screen. 2016 Sep;23(3):116-23. [CrossRef]
- Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, McGuire AL, Nussbaum RL, O'Daniel JM, Ormond KE, Rehm HL, Watson MS, Williams MS, Biesecker LG; American College of Medical Genetics and Genomics. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med. 2013 Jul;15(7):565-74. [CrossRef]
- Lei L, Zhou L, Xiong JJ. Whole-exome sequencing increases the diagnostic rate for prenatal fetal structural anomalies. Eur J Med Genet. 2021 Sep;64(9):104288. [CrossRef]
- de Jong A, de Wert GM. Prenatal screening: an ethical agenda for the near future. Bioethics. 2015 Jan;29(1):46-55. [CrossRef]
- Janicki E, De Rademaeker M, Meunier C, Boeckx N, Blaumeiser B, Janssens K. Implementation of Exome Sequencing in Prenatal Diagnostics: Chances and Challenges. Diagnostics (Basel). 2023;13(5):860. [CrossRef]
- de Koning MA, Hoffer MJV, Nibbeling EAR, Bijlsma EK, Toirkens MJP, Adama-Scheltema PN, Verweij EJ, Veenhof MB, Santen GWE, Peeters-Scholte CMPCD. Prenatal exome sequencing: A useful tool for the fetal neurologist. Clin Genet. 2022 Jan;101(1):65-77.
- Goh G, Choi M. Application of whole exome sequencing to identify disease-causing variants in inherited human diseases. Genomics Inform. 2012;10(4):214-219.
- Jelin AC, Vora N. Whole Exome Sequencing: Applications in Prenatal Genetics. Obstet Gynecol Clin North Am. 2018;45(1):69-81. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).