Submitted:
13 June 2023
Posted:
14 June 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
- i.
- Genomics
- ii.
- Transcriptomics
- iii.
- Proteomics
- iv.
- Epigenomics
- v.
- Metabolomics
| Role | Molecule | Function | Secreted by | References |
|---|---|---|---|---|
| Attack | Coronatine | Effector | Pseudomonas syringae | Nomura et al., 2005; Geng et al., 2012 |
| phenylacetic acid | Toxin | Rhizoctonia solani | Drizou et al., 2017 | |
| Spermine | Interruption of ROS | Heterodera schachtii | Li et al., 2019 | |
| Sphingolipids | Required for appresorium | Magnaporthe oryzae | Hu et al., 2018 | |
| extracellular polysaccharides | virulence factor | Ralstonia solanacearum | Milling et al, 2011 | |
| Putrescine | virulence factor | Lowe-Power et al., 2017 | ||
| toxA | Toxin | Pyreniphora tritici-repentis | Manning et al, 2009 | |
| Daidzein and genistein | Growth | Soybean (attracts Pseudomsonas sojae) | Morris et al., 1998 | |
| Cochliophilin A | Growth | Soybean (attracts Aphanomyces cochlioides) | Tahara et al., 2001 | |
| Defence | Ethylene | cell signaling against rice blast disease | Rice | Helliwell et al., 2016, Yang et al., 2017; Tezuka et al., 2019 |
| methyl jasmonate | ||||
| salicylic acid | ||||
| quinic acid | defense against bacterial wilt | Tomato | Puupponen-Pimja et al., 2001; Koutelidakis et al., 2016; Zeiss et al., 2019; Wang et al., 2019 | |
| eriodictyol, kaempferol | ||||
| Hexoses | ||||
| feruloyl-serotonin | ||||
| R-linalool | defense against insects | Maize | Tolosa et al., 2019; Huff et al., 2019 | |
| (Z)-3-hexenyl propionate | defense against Pseudomonas syringae | Tomato | López-Gresa et al., 2018 | |
| (Z)-3-hexenyl butyrate | ||||
| Camalexin | defense against Phytophthora brassicae | Arabidopsis | Schlaeppi and Mauch, 2010; Buxdorf et al., 2013 | |
| indole glucosinolates | defense against Alternaria brassicola | |||
| 4-methoxyxyclobrassinin | defense against Plasmodiophora brassicae | Canola | Pedras et al., 2008 | |
| Sarcotoxin | Defense against canker | Transgenic citrus | do Prado Apparecido et al., 2017 |
- vi.
- Effectoromics from host perspective:
| Histone modifications | Host | Pathogen | Function during plant-host pathogenesis | Method of identification | Referenceswyxwyx |
|---|---|---|---|---|---|
| H3K9 (dimethylated; H3K27me2)wyxwyxH4K12ac | Phaseolus vulgaris L | Uromyces appendiculatus | Differential expression of genes upon infection thereby indicating regulatory functions. | ChIP and RNA-Seq | Ayyappan et al., 2015 |
| H2BK11, H3K14, H3K18, and H3K27 acetylations | Wheat | Pseudomonas piscium and Fusarium graminearum | Deacetylation of modifications of acetylation in fungal growth, virulence, and mycotoxin biosynthesis and in bacterium as well | In vitro acetylation assay | Chen et al., 2018 |
| H3K27wyxwyx(trimethylated; H3K27me3) | Oryza sativa cv. YT16 | Magnaporthe oryzae wild type strain Guy11 (French Guiana) | Down and up-regulation of many genes upon infection with the pathogen in the host thereby indicating regulatory functions. | Multi-omics approach and molecular genetics (chromatin immunoprecipitation sequencing(ChIP-Seq) and RNA sequencing (RNA-Seq) | Zhang et al., 2021 |
| H3K9ac, H3K9me2, and H3K27me3 | Oryza sativa | Meloidogyne graminicola | Differential expression of genes upon infection and targeting specifically H3K9. | ChIP and RNA-Seq | Atighi et al., 2020 |
- vii.
- Conclusions and future directions
Author Contributions
Funding
Ethical Approval
Informed Consent
Acknowledgments
Competing Interests
References
- Appel, H.M.; Fescemyer, H.; Ehlting, J.; Weston, D.; Rehrig, E.; Joshi, T.; Schultz, J. Transcriptional responses of Arabidopsis thaliana to chewing and sucking insect herbivores. Frontiers in plant science 2014, 5, 565. [Google Scholar] [CrossRef] [PubMed]
- Aragona, M.; Haegi, A.; Valente, M.T.; Riccioni, L.; Orzali, L.; Vitale, S.; Infantino, A. New-Generation Sequencing Technology in Diagnosis of Fungal Plant Pathogens: A Dream Comes True? Journal of Fungi 2022, 8, 737. [Google Scholar] [CrossRef] [PubMed]
- Arnholdt-Schmitt, B. Stress-induced cell reprogramming. A role for global genome regulation? Plant physiology 2004, 136, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Atighi, M.R.; Verstraeten, B.; De Meyer, T.; Kyndt, T. Genome-wide shifts in histone modifications at early stage of rice infection with Meloidogyne graminicola. Molecular Plant Pathology 2021, 22, 440–455. [Google Scholar] [CrossRef] [PubMed]
- Aylward, J.; Steenkamp, E.T.; Dreyer, L.L.; Roets, F.; Wingfield, B.D.; Wingfield, M.J. A plant pathology perspective of fungal genome sequencing. IMA fungus 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Ayyappan, V.; Kalavacharla, V.; Thimmapuram, J.; Bhide, K.P.; Sripathi, V.R.; Smolinski, T.G.; Kingham, B. Genome-wide profiling of histone modifications (H3K9me2 and H4K12ac) and gene expression in rust (Uromyces appendiculatus) inoculated common bean (Phaseolus vulgaris L.). PLoS One 2015, 10, e0132176. [Google Scholar] [CrossRef]
- Baldwin, D.; Crane, V.; Rice, D. A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol 1999, 2, 96. [Google Scholar] [CrossRef]
- Bhadauria, V. OMICS in plant disease resistance. Current Issues in Molecular Biology 2016, 19, 1–2. [Google Scholar]
- Boyko, A.; Kovalchuk, I. Genetic and epigenetic effects of plant–pathogen interactions: an evolutionary perspective. Molecular Plant 2011, 4, 1014–1023. [Google Scholar] [CrossRef]
- Brotman, Y.; Lisec, J.; Méret, M.; Chet, I.; Willmitzer, L.; Viterbo, A. Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 2012, 158, 139–146. [Google Scholar] [CrossRef]
- Buxdorf, K.; Ya_e, H.; Barda, O.; Levy, M. The effects of glucosinolates and their breakdown products on necrotrophic fungi. PLoS ONE 2013, 8, e70771. [Google Scholar] [CrossRef]
- Castro-Moretti, F.R.; Gentzel, I.N.; Mackey, D.; Alonso, A.P. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites 2020, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, J.; Yang, N.; Wen, Z.; Sun, X.; Chai, Y.; Ma, Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Chialva, M.; Ghignone, S.; Novero, M.; Hozzein, W.N.; Lanfranco, L.; Bonfante, P. Tomato RNA-seq data mining reveals the taxonomic and functional diversity of root-associated microbiota. Microorganisms 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Crandall, S.G.; Gold, K.M.; Jiménez-Gasco, M.D.M.; Filgueiras, C.C.; Willett, D.S. A multi-omics approach to solving problems in plant disease ecology. PLoS One 2020, 15, e0237975. [Google Scholar] [CrossRef] [PubMed]
- do Prado Apparecido, R.; Carlos, E.F.; Lião, L.M.; Vieira, L.G.E.; Alcantara, G.B.; Li??o, L.M.; Vieira, L.G.E.; Alcantara, G.B.; Lião, L.M.; Vieira, L.G.E.; et al. NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development. Metabolomics 2017, 13, 1–12. [Google Scholar] [CrossRef]
- Drizou, F.; Graham, N.S.; Bruce, T.J.A.; Ray, R.V. Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape. Plant Methods 2017, 13, 45. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Vleeshouwers, V.G.A.A. The Do’s and Don’ts of Effectoromics. In Plant-Pathogen Interactions. Methods in Molecular Biology; Birch, P., Jones, J., Bos, J., Eds.; Humana Press: Totowa, NJ, 2014; Volume 1127. [Google Scholar] [CrossRef]
- Ellouze, W.; Hamel, C.; Singh, A.K.; Mishra, V.; DePauw, R.M.; Knox, R.E. Abundance of the arbuscular mycorrhizal fungal taxa associated with the roots and rhizosphere soil of different durum wheat cultivars in the Canadian prairies. Canadian journal of microbiology 2018, 64, 527–536. [Google Scholar] [CrossRef]
- Ellouze, W.; Mishra, V.; Howard, R.J.; Ling, K.S.; Zhang, W. Preliminary study on the control of cucumber green mottle mosaic virus in commercial greenhouses using agricultural disinfectants and resistant cucumber varieties. Agronomy 2020, 10, 1879. [Google Scholar] [CrossRef]
- Fleischmann, R.D.; Adams, M.D.; White, O.; Clayton, R.A.; Kirkness, E.F.; Kerlavage, A.R.; Venter, J.C. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995, 269, 496–512. [Google Scholar] [CrossRef]
- Fraser, C.M.; Gocayne, J.D.; White, O.; Adams, M.D.; Clayton, R.A.; Fleischmann, R.D.; Venter, J.C. The minimal gene complement of Mycoplasma genitalium. Science 1995, 270, 397–404. [Google Scholar] [CrossRef]
- Geng, X.; Cheng, J.; Gangadharan, A.; Mackey, D. The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense. Plant Cell 2012, 24, 4763–4774. [Google Scholar] [CrossRef]
- Gomez-Casati, D.F.; Pagani, M.A.; Busi, M.V.; Bhadauria, V. Omics approaches for the engineering of pathogen resistant plants. Current Issues in Molecular Biology 2016, 19, 89–98. [Google Scholar]
- Gómez-Díaz, E.; Jordà, M.; Peinado, M.A.; Rivero, A. Epigenetics of host–pathogen interactions: the road ahead and the road behind. PLoS pathogens 2012, 8, e1003007. [Google Scholar] [CrossRef]
- Gorash, A.; Armonienė, R.; Kazan, K. Can effectoromics and loss-of-susceptibility be exploited for improving Fusarium head blight resistance in wheat? The Crop Journal 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Gorshkov, V.; Tsers, I. Plant susceptible responses: The underestimated side of plant–pathogen interactions. Biological Reviews 2022, 97, 45–66. [Google Scholar] [CrossRef]
- Hamon, M.A.; Cossart, P. Histone modifications and chromatin remodeling during bacterial infections. Cell host & microbe 2008, 4, 100–109. [Google Scholar]
- Helliwell, E.E.; Wang, Q.; Yang, Y. Ethylene biosynthesis and signaling is required for rice immune response and basal resistance against Magnaporthe oryzae infection. Mol. Plant-Microbe Interact. 2016, 29, 831–843. [Google Scholar] [CrossRef]
- Hu, W.; Pan, X.; Li, F.; Dong, W. UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA. PLoS ONE 2018, 13, e0192486. [Google Scholar] [CrossRef]
- Huff, R.M.; Pitts, R.J. An odorant receptor from Anopheles gambiae that demonstrates enantioselectivity to the plant volatile, linalool. PLoS ONE 2019, 14, e0225637. [Google Scholar] [CrossRef]
- Imam, J.; Singh, P.K.; Shukla, P. Plant microbe interactions in post genomic era: perspectives and applications. Frontiers in microbiology 2016, 7, 1488. [Google Scholar] [CrossRef]
- Koutelidakis, A.E.; Andritsos, N.D.; Kabolis, D.; Kapsokefalou, M.; Drosinos, E.H.; Komaitis, M. Antioxidant and antimicrobial properties of tea and aromatic plant extracts against bacterial foodborne pathogens: A comparative evaluation. Curr. Top. Nutraceutical Res. 2016, 14, 133–142. [Google Scholar]
- Kumar, J.; Ramlal, A.; Kumar, K.; Rani, A.; Mishra, V. Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. International Journal of Molecular Sciences 2021, 22, 9022. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants. 2021, 10, 1185. [Google Scholar] [CrossRef]
- Lai, Y.; Wang, L.; Zheng, W.; Wang, S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. Journal of Fungi 2022, 8, 565. [Google Scholar] [CrossRef]
- Li, S.; Peng, X.; Wang, Y.; Hua, K.; Xing, F.; Zheng, Y.; Liu, W.; Sun, W.; Wei, S. The effector AGLIP1 in Rhizoctonia solani AG1 IA triggers cell death in plants and promotes disease development through inhibiting PAMP-triggered immunity in Arabidopsis thaliana. Front. Microbiol. 2019, 10, 2228. [Google Scholar] [CrossRef]
- Livaja, M.; Zeidler, D.; Von Rad, U.; Durner, J. Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide. Immunobiology 2008, 213, 161–171. [Google Scholar] [CrossRef]
- López-Gresa, M.P.; Payá, C.; Ozáez, M.; Rodrigo, I.; Conejero, V.; Klee, H.; Bellés, J.M.; Lisón, P. A new role for green leaf volatile esters in tomato stomatal defense against Pseudomonas syringe pv. tomato. Front. Plant Sci. 2018, 9, 1855. [Google Scholar] [CrossRef]
- Lowe-Power, T.M.; Hendrich, C.G.; von Roepenack-Lahaye, E.; Li, B.; Wu, D.; Mitra, R.; Dalsing, B.L.; Ricca, P.; Naidoo, J.; Cook, D.; et al. Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease. Environ. Microbiol. 2017, 20, 1330–1349. [Google Scholar] [CrossRef]
- Macho, A.P.; Zipfel, C. Plant PRRs and the activation of innate immune signaling. Molecular cell 2014, 54, 263–272. [Google Scholar] [CrossRef]
- Madlung, A.; Comai, L. The effect of stress on genome regulation and structure. Annals of Botany 2004, 94, 481–495. [Google Scholar] [CrossRef]
- Manning, V.A.; Chu, A.L.; Steeves, J.E.; Wolpert, T.J.; Ciu_etti, L.M. A host-selective toxin of Pyrenophora tritici-repentis, Ptr ToxA, induces photosystem changes and reactive oxygen species accumulation in sensitive wheat. Mol. Plant-Microbe Interact. 2009, 22, 665–676. [Google Scholar] [CrossRef]
- Mehta, A.; Brasileiro, A.C.; Souza, D.S.; Romano, E.; Campos, M.A.; Grossi-de-Sá, M.F.; Rocha, T.L. Plant–pathogen interactions: what is proteomics telling us? The FEBS journal 2008, 275, 3731–3746. [Google Scholar] [CrossRef]
- Milling, A.; Babujee, L.; Allen, C. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS ONE 2011, 6, e15853. [Google Scholar] [CrossRef]
- Mishra, V.; Ellouze, W.; Howard, R.J. Utility of arbuscular mycorrhizal fungi for improved production and disease mitigation in organic and hydroponic greenhouse crops. J. Hortic 2018, 5. [Google Scholar] [CrossRef]
- Molitor, A.; Zajic, D.; Voll, L.M.; Pons-Kühnemann, J.; Samans, B.; Kogel, K.H.; Waller, F. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica–mediated systemic induced resistance to powdery mildew. Molecular Plant-Microbe Interactions 2011, 24, 1427–1439. [Google Scholar] [CrossRef]
- Morris, P.F.; Bone, E.; Tyler, B.M. Chemotropic and contact responses of phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiology 1998, 117, 1171–1178. [Google Scholar] [CrossRef]
- Nejat, N.; Rookes, J.; Mantri, N.L.; Cahill, D.M. Plant–pathogen interactions: toward development of next-generation disease-resistant plants. Critical reviews in biotechnology 2017, 37, 229–237. [Google Scholar] [CrossRef]
- Nomura, K.; Melotto, M.; He, S.Y. Suppression of host defense in compatible plant-Pseudomonas syringae interactions. Curr. Opin. Plant Biol. 2005, 8, 361–368. [Google Scholar] [CrossRef]
- Pedras, M.S.C.; Zheng, Q.-A.; Strelkov, S. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: Phytoalexins and phytoanticipins. J. Agric. Food Chem. 2008, 56, 9949–9961. [Google Scholar] [CrossRef]
- Perrone, A.; Martinelli, F. Plant stress biology in epigenomic era. Plant Science 2020, 294, 110376. [Google Scholar] [CrossRef] [PubMed]
- Pfluger, J.; Wagner, D. Histone modifications and dynamic regulation of genome accessibility in plants. Current opinion in plant biology 2007, 10, 645–652. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen,M. ; Heinonen,M.; Hopia, A.; Oksman-Caldentey, K.M. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Quirino, B.F.; Candido, E.S.; Campos, P.F.; Franco, O.L.; Krüger, R.H. Proteomic approaches to study plant–pathogen interactions. Phytochemistry 2010, 71, 351–362. [Google Scholar] [CrossRef]
- Ramirez-Prado, J.S.; Piquerez, S.J.; Bendahmane, A.; Hirt, H.; Raynaud, C.; Benhamed, M. Modify the histone to win the battle: chromatin dynamics in plant–pathogen interactions. Frontiers in Plant Science 2018, 9, 355. [Google Scholar] [CrossRef]
- Ramlal, A.; Sarma, R.; Rani, A.; Nautiyal, A.; Mishra, V. (unpublished) (a) Plant-virus interactions in plant innate immunity. In: Gaur, R. K. and Patil, B.L (eds) Plant RNA Viruses: Detection, Diversity and Management. Elsevier (accepted, under production).
- Ramlal, A.; Alok, V.; Chaurasia, D.; Jindal, A. (unpublished) (b). Pathogenic microorganisms: Diversity and their metabolic profiling. In: Reddy, B.; Kumar, A., Reddy, M.K. & Mehta, S (eds) Microbial genome technology and metabolomics: A 21st century stature.
- Schenk, P.M.; Carvalhais, L.C.; Kazan, K. Unraveling plant–microbe interactions: can multi-species transcriptomics help? Trends in biotechnology 2012, 30, 177–184. [Google Scholar] [CrossRef]
- Schlaeppi, K.; Mauch, F. Indolic secondary metabolites protect Arabidopsis from the oomycete pathogen Phytophthora brassicae. Plant signaling & behavior 2010, 5, 1099–1101. [Google Scholar]
- Sharma, M.; Sudheer, S.; Usmani, Z.; Rani, R.; Gupta, P. Deciphering the omics of plant-microbe interaction: Perspectives and new insights. Current Genomics 2020, 21, 343–362. [Google Scholar]
- Sharma, P.K.; Rai, A.K.; Sharma, N.K. Safety and Ethics in Omics Biology. In Omics Technologies for Sustainable Agriculture and Global Food Security; Kumar, A., Kumar, R., Shukla, P., Pandey, M.K., Eds.; Springer: Singapore, 2021; Volume 1. [Google Scholar] [CrossRef]
- Simpson, A.J.G.; Reinach, F.D.C.; Arruda, P.; Abreu, F.D.; Acencio, M.; Alvarenga, R.; Setubal, J.C. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 2000, 406, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Kothari, R. The omics era and host microbiomes. In Understanding Host-Microbiome Interactions-An Omics Approach; Springer: Singapore, 2017; pp. 3–12. [Google Scholar]
- Swarupa, V.; Pavitra, K.; Shivashankara, K.S.; Ravishankar, K.V. Omics-Driven Approaches in Plant–Microbe Interaction. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D., Singh, H., Prabha, R., Eds.; Springer: New Delhi, India, 2016. [Google Scholar] [CrossRef]
- Tahara, S.; Ohkawa, K.; Takayama, T.; Ogawa, Y. The third naturally occurring attractant toward zoospores of phytopathogenic Aphanomyces cochlioides from the Spinacia oleracea host plant. Bioscience, Biotechnology, and Biochemistry 2001, 65, 1755–1760. [Google Scholar] [CrossRef]
- Takeda, S.; Paszkowski, J. DNA methylation and epigenetic inheritance during plant gametogenesis. Chromosoma 2006, 115, 27–35. [Google Scholar] [CrossRef]
- Tan, K.C.; Ipcho, S.V.; Trengove, R.D.; Oliver, R.P.; Solomon, P.S. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Molecular Plant Pathology 2009, 10, 703–715. [Google Scholar] [CrossRef]
- Tezuka, D.; Kawamata, A.; Kato, H.; Saburi,W. ; Mori, H.; Imai, R. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae. Plant Physiol. Biochem. 2019, 135, 263–271. [Google Scholar] [CrossRef]
- Tolosa, T.A.; Tamiru, A.; Midega, C.A.O.; Van Den Berg, J.; Birkett, M.A.; Woodcock, C.M.; Bruce, T.J.A.; Kelemu, S.; Pickett, J.A.; Khan, Z.R. Molasses grass induces direct and indirect defense responses in neighbouring maize plants. J. Chem. Ecol. 2019, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Verhagen, B.W.; Glazebrook, J.; Zhu, T.; Chang, H.S.; Van Loon, L.C.; Pieterse, C.M. The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions 2004, 17, 895–908. [Google Scholar] [CrossRef] [PubMed]
- Vinayavekhin, N.; Saghatelian, A. Untargeted metabolomics. In Current Protocols in Molecular Biology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wan, J.; Dunning, M.F.; Bent, A.F. Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Functional & integrative genomics 2002, 2, 259–273. [Google Scholar]
- Wang, G.; Kong, J.; Cui, D.; Zhao, H.; Niu, Y.; Xu, M.; Jiang, G.; Zhao, Y.; Wang, W. Resistance against Ralstonia solanacearum in tomato depends on the methionine cycle and the -aminobutyric acid metabolic pathway. Plant J. 2019, 97, 1032–1047. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, M.S.; McDermott, J.M. Population genetics of plant pathogen interactions: the example of the Erysiphe graminis-Hordeum vulgare pathosystem. Annual review of phytopathology 1994, 32, 89–113. [Google Scholar] [CrossRef]
- Xu, J.; Wang, N. Where are we going with genomics in plant pathogenic bacteria? Genomics 2019, 111, 729–736. [Google Scholar] [CrossRef]
- Xu, L.; Zhu, L.; Tu, L.; Liu, L.; Yuan, D.; Jin, L.; et al. Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. Journal of experimental botany 2011, 62, 5607–5621. [Google Scholar] [CrossRef]
- Yang, C.; Li, W.; Cao, J.; Meng, F.; Yu, Y.; Huang, J.; Jiang, L.; Liu, M.; Zhang, Z.; Chen, X.; et al. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. Plant J. 2017, 89, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Zeiss, D.R.; Mhlongo, M.I.; Tugizimana, F.; Steenkamp, P.A.; Dubery, I.A. Metabolomic profiling of the host response of tomato (Solanum lycopersicum) following infection by Ralstonia solanacearum. Int. J. Mol. Sci. 2019, 20, 3945. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Cook, D.E. Histone modification dynamics at H3K27 are associated with altered transcription of in planta induced genes in Magnaporthe oryzae. PLoS genetics 2021, 17, e1009376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
