Preprint Article Version 5 Preserved in Portico This version is not peer-reviewed

Galaxy Formation, Evolution and Rotation as a 4D Relativistic Cloud-World Embedded in a 4D Conformal Bulk

Version 1 : Received: 20 September 2021 / Approved: 20 September 2021 / Online: 20 September 2021 (10:44:08 CEST)
Version 2 : Received: 23 December 2021 / Approved: 23 December 2021 / Online: 23 December 2021 (11:27:14 CET)
Version 3 : Received: 31 January 2022 / Approved: 31 January 2022 / Online: 31 January 2022 (11:13:48 CET)
Version 4 : Received: 22 February 2022 / Approved: 22 February 2022 / Online: 22 February 2022 (10:49:25 CET)
Version 5 : Received: 21 March 2022 / Approved: 21 March 2022 / Online: 21 March 2022 (09:00:59 CET)
Version 6 : Received: 11 January 2023 / Approved: 12 January 2023 / Online: 12 January 2023 (13:50:25 CET)

A peer-reviewed article of this Preprint also exists.

Al-Fadhli, M.B. The Morphology of the Active Galactic Nucleus and Its Impact on Accretion Flows and Relativistic Jets. The 2nd Electronic Conference on Universe 2023, doi:10.3390/ecu2023-14026. Al-Fadhli, M.B. The Morphology of the Active Galactic Nucleus and Its Impact on Accretion Flows and Relativistic Jets. The 2nd Electronic Conference on Universe 2023, doi:10.3390/ecu2023-14026.

Abstract

The observation of the S-star orbits has established the existence of a supermassive compact object at the galactic centre. However, the G2 gas cloud orbit and absence of observations on event horizon-scale distances have challenged the central black hole model. In addition, the Planck Legacy 2018 (PL18) release has preferred a positively curved early Universe with a confidence level greater than 99%. In this study, the formation of a galaxy from the collapse of a supermassive gas cloud in the early Universe is modelled based on interaction field equations as a 4D relativistic cloud-world that flows and spins through a 4D conformal bulk of a primordial positive curvature considering the preference of the PL18 release. Owing to the curved background, this scenario of galaxy formation reveals that the core of the galaxy undergoes a forced vortex formation with a central event horizon leading to opposite vortices (traversable wormholes) that spatially shrink through evolving in the conformal time. It indicates that the galaxy and its core are formed at the same process where the surrounding gas clouds form the spiral arms due to the frame-dragging induced by the fast-rotating core. Accordingly, the G2 gas cloud that only faced the drag effects could be explained if its orbit is around one of the traversable wormholes but at a distance from the central event horizon. Further, the simulation of the cloud-world flow through a positively curved early bulk demonstrates the fast orbital speed of outer stars owing to external fields exerted on galaxies as they have travelled through conformally curved spacetimes. These findings could elucidate the fast orbital speed of outer stars in galaxies while the formation of a galaxy and its core simultaneously could explain the supermassive compact galaxy core growth to a mass of ~109 M at just 6% of the current Universe age.

Keywords

Galaxy Formation; Conformal Space-time Background

Subject

Physical Sciences, Astronomy and Astrophysics

Comments (1)

Comment 1
Received: 21 March 2022
Commenter: Mohammed Al-Fadhli
Commenter's Conflict of Interests: Author
Comment: Dear Editor, 

I hope you are very well

In this version, the related studies and observations were added to the introduction section.

In addition, Equation (7) and Equation (11) were rewritten in a new format so they can be more readable for the researchers 

Lots of thanks and much appreciated 

Kind regards,
Mohammed
+ Respond to this comment

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 1
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.