Preprint
Article

This version is not peer-reviewed.

Investigation of the Effects of Er- and Er/Yb Co-Doping on ZnO Thin Film Properties and Schottky Barrier Diode Performance

Submitted:

12 February 2026

Posted:

13 February 2026

You are already at the latest version

Abstract
Abstract This work presents an extensive investigation on the synthesis, structural characterization, optical evaluation, and device applications of Er-doped and Er-Yb co-doped ZnO thin films prepared via a citric acid-assisted sol-gel process combined with spin coating. Pd/ZnO:Er and (Er/Yb)/n-Si/Au-Sb Schottky barrier diodes were fabricated using resistive evaporation technique for precise contact deposition. The impact of Er and Er-Yb codoping on structural, optical, and electrical properties, as well as device performance was compared in detail, providing insights into rare-earth codoping strategies for high-performance optoelectronic devices. X-ray diffraction (XRD) analysis confirmed the retention of the hexagonal wurtzite structure in all films, with minor shifts in peak positions indicating successful doping. Optical characterization revealed a slight widening of the bandgap in co-doped films, attributed to the dopant effect. Electrical measurements of SBDs demonstrated improved rectification ratios, lower ideality factors, and higher barrier heights in co-doped films compared to undoped Er doped counterparts. These findings underscore the efficacy of Er/Yb co-doping in modulating the properties of ZnO thin films for advanced optoelectronic applications.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated