Submitted:
29 January 2026
Posted:
12 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results and Discussion
2.1. Absence of Peroxisomes Lead to an Increase in IBs Formation
2.2. Peroxisome Deficiency Increases ROS Production and Disrupts Redox Balance Without Inducing ER Stress
2.3. N88S Seipin-Expressing Cells Exhibit Increased Peroxisomal Biogenesis Proteins
2.4. Downregulation of Glyoxylate Cycle Enzymes Protein Levels Is Not Related to Changes in Their Enzymatic Activity
2.4. MPC1 Overexpression Exacerbates ER Stress But Does Not Contribute to ROS Generation upon N88S Seipin Mutation
2.5. Cytosolic Misrouting of Acetyl-CoA Potentiates ER Stress and Contributes to Oxidative Damage in N88S Mutant Cells
2.6. Cytosolic Acetyl-CoA Fuels Lipid Biosynthesis and Promotes Oxidative Stress in N88S Seipin Expressing Cells
3. Materials and Methods
3.1. Yeast Strains and Plasmids
3.2. Culture Media and Growth Conditions
3.3. Bioinformatics Analysis
3.4. β-Galactosidase Activity Assay
3.5. Western Blotting Analysis
3.6. Fluorescence Microscopy
3.7. ROS Staining
3.8. Yeast Spotting Assay
3.9. β-Oxidation Measurement
3.10. Enzymatic Activity Assays
3.11. Lipid Peroxidation Assay
3.12. Measurement of Glutathione Levels
3.13. Statistical Analysis
5. Conclusions

Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Acs | Acetyl-Coenzyme A Synthetase |
| ADH1pr | ADH1 Promoter |
| ADH1t | ADH1 Terminator |
| ANOVA | Analysis Of Variance |
| Ats | Amino-Terminal Signal (Context Targeting Sequences) |
| ATP | Adenosine Triphosphate |
| b-Gal | Beta-Galactosidase |
| BIFC | Bimolecular Fluorescence Complementation |
| BSA | Bovine Serum Albumin |
| CAT2cyt | Cytosolic Variant of Carnitine Acetyltransferase Cat2p |
| CAT2mit | Mitochondrial/Peroxisomal Targeting Variant of Cat2p |
| Cit2p | Citrate Synthase 2 |
| Deps | Differentially Expressed Proteins |
| DHE | Dihydroethidium |
| DIC | Differential Interference Contrast |
| DNA | Deoxyribonucleic Acid |
| DTNB | Ellman’s Reagent (5,5´-Dithiobis-2-Nitrobenzoic Acid) |
| EDTA | Ethylenediaminetetraacetic Acid |
| ER | Endoplasmic Reticulum |
| ERAD | ER-Associated Degradation |
| EXP | Exponential Phase |
| FA | Fatty Acid |
| FAS | Fatty Acid Synthase |
| Fe-S | Iron–Sulfur |
| FL3 | Flow Cytometry Fluorescence Channel 3 |
| GSH | Reduced Glutathione |
| GSSG | Oxidized Glutathione |
| GO | Gene Ontology |
| H3 | Histone H3 |
| IB | Inclusion Body |
| Icl1p | Isocitrate Lyase |
| INO1 | Inositol-1-Phosphate Synthase Gene |
| KEGG | Kyoto Encyclopedia Of Genes And Genomes |
| KO | Knockout |
| LD | Lipid Droplet |
| MDA | Malondialdehyde |
| Mls1p | Malate Synthase |
| MPC1 | Mitochondrial Pyruvate Carrier 1 |
| MTS | Mitochondrial Targeting Signal |
| N88S | Pathogenic Asparagine-To-Serine Mutation In Seipin |
| ONPG | O-Nitrophenyl-Β-D-Galactopyranoside |
| ORF | Open Reading Frame |
| PA | Phosphatidic Acid |
| PBS | Phosphate-Buffered Saline |
| PCR | Polymerase Chain Reaction |
| PDS | Post-Diauxic Shift |
| PEX3 | Peroxin 3 |
| PEX19 | Peroxin 19 |
| Pot1p | 3-Ketoacyl-Coa Thiolase |
| Pox1p | Acyl-Coa Oxidase |
| PTS1 | Peroxisomal Targeting Signal 1 |
| ROS | Reactive Oxygen Species |
| SC | Synthetic Complete |
| SD | Standard Deviation |
| SE | Sterol Ester |
| TG | Triacylglycerol |
| TCA | Tricarboxylic Acid (Cycle) |
| UPR | Unfolded Protein Response |
| UPRE-Lacz | Unfolded Protein Response Element–Lacz Transcriptional Reporter |
| VC | C-Terminal Fragment Of Venus Fluorescent Protein |
| VN | N-Terminal Fragment Of Venus Fluorescent Protein |
| WT | Wild-Type |
| YPD | Yeast Extract Peptone Dextrose Medium |
| YNB | Yeast Nitrogen Base |
| YFP | Yellow Fluorescent Protein |
| YEASTRACT | Yeast Transcriptional Regulatory Network Analysis Tool |
References
- Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol. 2023, 19, 443-59. [CrossRef]
- Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019, 20, 137-55. [CrossRef]
- Rakotonirina-Ricquebourg R, Costa V, Teixeira V. Hello from the other side: Membrane contact of lipid droplets with other organelles and subsequent functional implications. Prog Lipid Res. 2022, 85, 101141. [CrossRef]
- Fei W, Shui G, Gaeta B, Du X, Kuerschner L, Li P, et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol. 2008, 180, 473-82. [CrossRef]
- Grippa A, Buxo L, Mora G, Funaya C, Idrissi FZ, Mancuso F, et al. The seipin complex Fld1/Ldb16 stabilizes ER-lipid droplet contact sites. J Cell Biol. 2015, 211, 829-44. [CrossRef]
- Salo VT, Belevich I, Li S, Karhinen L, Vihinen H, Vigouroux C, et al. Seipin regulates ER-lipid droplet contacts and cargo delivery. EMBO J. 2016, 35, 2699-716. [CrossRef]
- Teixeira V, Maciel P, Costa V. Leading the way in the nervous system: Lipid Droplets as new players in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids. 2021, 1866, 158820. [CrossRef]
- Ito D, Yagi T, Suzuki N. [BSCL2-related neurologic disorders/seipinopathy: endoplasmic reticulum stress in neurodegeneration]. Rinsho Shinkeigaku. 2011, 51, 1186-8. [CrossRef]
- Windpassinger C, Auer-Grumbach M, Irobi J, Patel H, Petek E, Horl G, et al. Heterozygous missense mutations in BSCL2 are associated with distal hereditary motor neuropathy and Silver syndrome. Nat Genet. 2004, 36, 271-6. [CrossRef]
- Ito D, Suzuki N. Molecular pathogenesis of seipin/BSCL2-related motor neuron diseases. Ann Neurol. 2007, 61, 237-50. [CrossRef]
- Ito D, Fujisawa T, Iida H, Suzuki N. Characterization of seipin/BSCL2, a protein associated with spastic paraplegia 17. Neurobiol Dis. 2008, 31, 266-77. [CrossRef]
- Yagi T, Ito D, Nihei Y, Ishihara T, Suzuki N. N88S seipin mutant transgenic mice develop features of seipinopathy/BSCL2-related motor neuron disease via endoplasmic reticulum stress. Hum Mol Genet. 2011, 20, 3831-40. [CrossRef]
- Ito D, Yagi T, Ikawa M, Suzuki N. Characterization of inclusion bodies with cytoprotective properties formed by seipinopathy-linked mutant seipin. Hum Mol Genet. 2012, 21, 635-46. [CrossRef]
- Guo J, Qiu W, Soh SL, Wei S, Radda GK, Ong WY, et al. Motor neuron degeneration in a mouse model of seipinopathy. Cell Death Dis. 2013, 4, e535. [CrossRef]
- Ribeiro MO, Oliveira M, Nogueira V, Costa V, Teixeira V. N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis. Cell Communication and Signaling. 2025, 23, 10. [CrossRef]
- Nogueira V, Chang CK, Lan CY, Pereira C, Costa V, Teixeira V. Causative links between ER stress and oxidative damage in a yeast model of human N88S seipinopathy. Free Radic Biol Med. 2022, 192, 165-81. [CrossRef]
- Costa V, Teixeira V. Oxidative stress in N88S seipinopathy: novel insights into the mechanisms of neurodegeneration and therapeutic avenues. Neural Regen Res. 2023, 18, 1719-20. [CrossRef]
- Ahmad S, Orellana A, Kohler I, Frolich L, de Rojas I, Gil S, et al. Association of lysophosphatidic acids with cerebrospinal fluid biomarkers and progression to Alzheimer's disease. Alzheimers Res Ther. 2020, 12, 124. [CrossRef]
- Dedoni S, Avdoshina V, Olianas MC, Onali P. Role of Lysophosphatidic Acid in Neurological Diseases: From Pathophysiology to Therapeutic Implications. Front Biosci (Landmark Ed). 2025, 30, 28245. [CrossRef]
- Kaya I, Brinet D, Michno W, Baskurt M, Zetterberg H, Blenow K, Hanrieder J. Novel Trimodal MALDI Imaging Mass Spectrometry (IMS3) at 10 mum Reveals Spatial Lipid and Peptide Correlates Implicated in Abeta Plaque Pathology in Alzheimer's Disease. ACS Chem Neurosci. 2017, 8, 2778-90. [CrossRef]
- Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol. 2024, 161, 99-132. [CrossRef]
- Jansen RLM, van der Klei IJ. The peroxisome biogenesis factors Pex3 and Pex19: multitasking proteins with disputed functions. FEBS Lett. 2019, 593, 457-74. [CrossRef]
- Wang Z, Su C, Zhang Y, Shangguan S, Wang R, Su J. Key enzymes involved in the utilization of fatty acids by Saccharomyces cerevisiae: a review. Front Microbiol. 2023, 14, 1294182. [CrossRef]
- Shi L, Tu BP. Acetyl-CoA and the regulation of metabolism: mechanisms and consequences. Curr Opin Cell Biol. 2015, 33, 125-31. [CrossRef]
- Duntze W, Neumann D, Gancedo JM, Atzpodien W, Holzer H. Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur J Biochem. 1969, 10, 83-9. [CrossRef]
- Gosling JP, Duggan PF. Activities of tricarboxylic acid cycle enzymes, glyoxylate cycle enzymes, and fructose diphosphatase in bakers' yeast during adaptation to acetate oxidation. J Bacteriol. 1971, 106, 908-14. [CrossRef]
- Guaragnella N, Ždralević M, Palková Z, Giannattasio S. Analysis of Mitochondrial Retrograde Signaling in Yeast Model Systems. Methods Mol Biol. 2021, 2276, 87-102. [CrossRef]
- Nakatsukasa K, Nishimura T, Byrne SD, Okamoto M, Takahashi-Nakaguchi A, Chibana H, et al. The Ubiquitin Ligase SCF(Ucc1) Acts as a Metabolic Switch for the Glyoxylate Cycle. Mol Cell. 2015, 59, 22-34. [CrossRef]
- Ben Zichri-David S, Shkuri L, Ast T. Pulling back the mitochondria's iron curtain. NPJ Metab Health Dis. 2025, 3, 6. [CrossRef]
- Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther. 2025, 10, 72. [CrossRef]
- Ott J, Sehr J, Schmidt N, Schliebs W, Erdmann R. Comparison of human PEX knockout cell lines suggests a dual role of PEX1 in peroxisome biogenesis. Biol Chem. 2023, 404, 209-19. [CrossRef]
- Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol. 2023, 67, 102917. [CrossRef]
- Lefevre SD, van Roermund CW, Wanders RJ, Veenhuis M, van der Klei IJ. The significance of peroxisome function in chronological aging of Saccharomyces cerevisiae. Aging Cell. 2013, 12, 784-93. [CrossRef]
- Vegusdal A, Ostbye TK, Tran TN, Gjøen T, Ruyter B. Beta-oxidation, esterification, and secretion of radiolabeled fatty acids in cultivated Atlantic salmon skeletal muscle cells. Lipids. 2004, 39, 649-58. [CrossRef]
- Liao X, Butow RA. RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell. 1993, 72, 61-71. [CrossRef]
- Lee YJ, Jang JW, Kim KJ, Maeng PJ. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast. 2011, 28, 153-66. [CrossRef]
- Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012, 337, 96-100. [CrossRef]
- Krivoruchko A, Zhang Y, Siewers V, Chen Y, Nielsen J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab Eng. 2015, 28, 28-42. [CrossRef]
- van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J. 1999, 18, 5843-52. [CrossRef]
- Cordente AG, Swiegers JH, Hegardt FG, Pretorius IS. Modulating aroma compounds during wine fermentation by manipulating carnitine acetyltransferases in Saccharomyces cerevisiae. Fems Microbiol Lett. 2007, 267, 159-66. [CrossRef]
- Knoll LJ, Johnson DR, Gordon JI. Biochemical studies of three Saccharomyces cerevisiae acyl-CoA synthetases, Faa1p, Faa2p, and Faa3p. Journal of Biological Chemistry. 1994, 269, 16348-56. [CrossRef]
- Johnson DR, Knoll LJ, Rowley N, Gordon JI. Genetic analysis of the role of Saccharomyces cerevisiae acyl-CoA synthetase genes in regulating protein N-myristoylation. J Biol Chem. 1994, 269, 18037-46.
- Jo C, Park S, Oh S, Choi J, Kim EK, Youn HD, Cho EJ. Histone acylation marks respond to metabolic perturbations and enable cellular adaptation. Exp Mol Med. 2020, 52, 2005-19. [CrossRef]
- Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998, 14, 953-61. [CrossRef]
- Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast. 2004, 21, 947-62. [CrossRef]
- Yofe I, Schuldiner M. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae. Yeast. 2014, 31, 77-80. [CrossRef]
- Li D, Yang SG, He CW, Zhang ZT, Liang Y, Li H, et al. Excess diacylglycerol at the endoplasmic reticulum disrupts endomembrane homeostasis and autophagy. BMC Biol. 2020, 18, 107. [CrossRef]
- Gietz RD, Schiestl RH. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc. 2007, 2, 31-4. [CrossRef]
- Teixeira V, Martins TS, Prinz WA, Costa V. Target of Rapamycin Complex 1 (TORC1), Protein Kinase A (PKA) and Cytosolic pH Regulate a Transcriptional Circuit for Lipid Droplet Formation. Int J Mol Sci. 2021, 22. [CrossRef]
- Turkolmez S, Chornyi S, Alhajouj S, IJlst L, Waterham HR, Mitchell PJ, et al. Peroxisomal NAD(H) Homeostasis in the Yeast Debaryomyces hansenii Depends on Two Redox Shuttles and the NAD+ Carrier, Pmp47. Biomolecules. 2023, 13, 1294.
- Samokhvalov V, Ignatov V, Kondrashova M. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation. Biochimie. 2004, 86, 39-46. [CrossRef]
- Ding J, Holzwarth G, Penner MH, Patton-Vogt J, Bakalinsky AT. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance. Fems Microbiol Lett. 2015, 362, 1-7. [CrossRef]
- Steels EL, Learmonth RP, Watson K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology (Reading). 1994, 140 ( Pt 3), 569-76. [CrossRef]
















Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).