Submitted:
05 February 2026
Posted:
05 February 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Healthy Mitochondrial Function Is Crucial for a Metabolically Healthy Cell
3. Mitochondrial Iron Handling
3.1. Fe-S Clusters
3.2. Heme Group
4. Lipoperoxidation Process in Mitochondrial Dysfunction
5. Lipoperoxidation as a Driver of Ferroptosis
6. Disequilibrium of Mitochondrial Iron Handling in Diseases
6.1. Obesity
6.2. MASLD
6.3. Cardiac Dysfunction
6.4. Neurodegenerative Diseases
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 4-HNE | 4-hydroxy-2-nonenal |
| AA | Arachidonoyl |
| ACSL4 | Acyl-CoA Synthetase Long-Chain Family Member 4 |
| ALA | 5-aminolevulinic acid |
| ALAS1 | 5-aminolevulinate synthase |
| ATP | Adenosine triphosphate |
| CL | Cardiolipin |
| COX-10 | Heme A:farnesyltransferase (Complex IV assembly cofactor) |
| ETC | Electron transport chain |
| Fe-S | Iron-sulfur |
| GPX4 | Glutathione Peroxidase 4 |
| GSH | Reduced glutathione |
| GSSG | Oxidized glutathione |
| HIFα | Hypoxia-inducible factor alpha |
| HOSS | Homeostatic Oxygen-Sensing System |
| LPCAT3 | Lysophosphatidylcholine Acyltransferase 3 |
| LPO | Lipoperoxidation |
| MASLD | Metabolically Associated Steatotic Liver Disease |
| MCU | Mitochondrial Calcium Uniporter |
| MDA | Malondialdehyde |
| MFRN1 | Mitoferrin 1 |
| MFRN2 | Mitoferrin 2 |
| mNCE | Mitochondrial Na+/Ca2+ Exchanger |
| mPTP | Mitochondrial permeability transition pore |
| mtROS | Mitochondrial reactive oxygen species |
| NADPH | Nicotinamide adenine dinucleotide phosphate |
| OXPHOS | Oxidative phosphorylation |
| PGC-1α | Peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
| PHDs | Prolyl-hydroxylases |
| PUFAs | Polyunsaturated fatty acids |
| Q-cycle | Quinone cycle (electron transfer mechanism in Complex III) |
| RNS | Reactive Nitrogen Species |
| ROS | Reactive oxygen species |
| SLC25A39 | Solute carrier family 25 member 39 (mitochondrial glutathione transporter) |
| UCP-1 | Uncoupling protein 1 |
| UCPs | Uncoupling proteins |
References
- Zheng, Y.; Sun, J.; Luo, Z.; Li, Y.; Huang, Y. Emerging Mechanisms of Lipid Peroxidation in Regulated Cell Death and Its Physiological Implications. Cell Death Dis 2024, 15, 859. [Google Scholar] [CrossRef]
- Rainey, N.E.; Moustapha, A.; Saric, A.; Nicolas, G.; Sureau, F.; Petit, P.X. Iron Chelation by Curcumin Suppresses Both Curcumin-Induced Autophagy and Cell Death Together with Iron Overload Neoplastic Transformation. Cell Death Discov. 2019, 5, 150. [Google Scholar] [CrossRef]
- Abdullah, H.A.; Moawed, F.S.; Ahmed, E.S.; Abdel Hamid, F.F.; Haroun, R.A.-H. Iron Chelating, Antioxidant and Anti-Apoptotic Activities of Hesperidin and/or Rutin against Induced-Ferroptosis in Heart Tissue of Rats. Int J Immunopathol Pharmacol 2025, 39, 03946320251331873. [Google Scholar] [CrossRef]
- Mayr, E.; Rotter, J.; Kuhrt, H.; Winter, K.; Stassart, R.M.; Streit, W.J.; Bechmann, I. Detection of Molecular Markers of Ferroptosis in Human Alzheimer’s Disease Brains. J Alzheimers Dis 2024, 102, 1133–1154. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Katsumata, Y.; Chu, P.; Morikawa, R.; Nakamoto, N.; Iguchi, K.; Takahashi, K.; Kou, T.; Ito, R.; Taura, K.; et al. Monitoring Ferroptosis in Vivo: Iron-Driven Volatile Oxidized Lipids as Breath Biomarkers. Redox Biology 2025, 86, 103858. [Google Scholar] [CrossRef]
- Guo, R.; Gu, J.; Zong, S.; Wu, M.; Yang, M. Structure and Mechanism of Mitochondrial Electron Transport Chain. Biomedical Journal 2018, 41, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Salminen, A.; Kauppinen, A.; Kaarniranta, K. 2-Oxoglutarate-Dependent Dioxygenases Are Sensors of Energy Metabolism, Oxygen Availability, and Iron Homeostasis: Potential Role in the Regulation of Aging Process. Cell. Mol. Life Sci. 2015, 72, 3897–3914. [Google Scholar] [CrossRef] [PubMed]
- Siddiq, A.; Aminova, L.R.; Ratan, R.R. Hypoxia Inducible Factor Prolyl 4-Hydroxylase Enzymes: Center Stage in the Battle against Hypoxia, Metabolic Compromise and Oxidative Stress. Neurochem Res 2007, 32, 931–946. [Google Scholar] [CrossRef]
- Chan, D.A.; Sutphin, P.D.; Yen, S.-E.; Giaccia, A.J. Coordinate Regulation of the Oxygen-Dependent Degradation Domains of Hypoxia-Inducible Factor 1 Alpha. Mol Cell Biol 2005, 25, 6415–6426. [Google Scholar] [CrossRef] [PubMed]
- Schlisio, S. Neuronal Apoptosis by Prolyl Hydroxylation: Implication in Nervous System Tumours and the Warburg Conundrum. J Cellular Molecular Medi 2009, 13, 4104–4112. [Google Scholar] [CrossRef]
- Schödel, J.; Ratcliffe, P.J. Mechanisms of Hypoxia Signalling: New Implications for Nephrology. Nat Rev Nephrol 2019, 15, 641–659. [Google Scholar] [CrossRef]
- Okoye, C.N.; Koren, S.A.; Wojtovich, A.P. Mitochondrial Complex I ROS Production and Redox Signaling in Hypoxia. Redox Biol 2023, 67, 102926. [Google Scholar] [CrossRef]
- Espinosa, A.; Casas, M.; Jaimovich, E. Energy (and Reactive Oxygen Species Generation) Saving Distribution of Mitochondria for the Activation of ATP Production in Skeletal Muscle. Antioxidants (Basel) 2023, 12, 1624. [Google Scholar] [CrossRef] [PubMed]
- Hurd, T.R.; Collins, Y.; Abakumova, I.; Chouchani, E.T.; Baranowski, B.; Fearnley, I.M.; Prime, T.A.; Murphy, M.P.; James, A.M. Inactivation of Pyruvate Dehydrogenase Kinase 2 by Mitochondrial Reactive Oxygen Species. Journal of Biological Chemistry 2012, 287, 35153–35160. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, S.; Tomar, A.; Yen, F.S.; Unlu, G.; Ropek, N.; Weber, R.A.; Wang, Y.; Khan, A.; Gad, M.; et al. Autoregulatory Control of Mitochondrial Glutathione Homeostasis. Science 2023, 382, 820–828. [Google Scholar] [CrossRef]
- Moreno-Sánchez, R.; Marín-Hernández, Á.; Gallardo-Pérez, J.C.; Vázquez, C.; Rodríguez-Enríquez, S.; Saavedra, E. Control of the NADPH Supply and GSH Recycling for Oxidative Stress Management in Hepatoma and Liver Mitochondria. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018, 1859, 1138–1150. [Google Scholar] [CrossRef]
- Chen, T.-H.; Wang, H.-C.; Chang, C.-J.; Lee, S.-Y. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int J Mol Sci 2024, 25, 1314. [Google Scholar] [CrossRef] [PubMed]
- Read, A.D.; Bentley, R.E.; Archer, S.L.; Dunham-Snary, K.J. Mitochondrial Iron-Sulfur Clusters: Structure, Function, and an Emerging Role in Vascular Biology. Redox Biol 2021, 47, 102164. [Google Scholar] [CrossRef]
- Meinhardt, S.W.; Kula, T.; Yagi, T.; Lillich, T.; Ohnishi, T. EPR Characterization of the Iron-Sulfur Clusters in the NADH: Ubiquinone Oxidoreductase Segment of the Respiratory Chain in Paracoccus Denitrificans. J Biol Chem 1987, 262, 9147–9153. [Google Scholar] [CrossRef]
- Kang, P.T.; Chen, C.-L.; Lin, P.; Zhang, L.; Zweier, J.L.; Chen, Y.-R. Mitochondrial Complex I in the Post-Ischemic Heart: Reperfusion-Mediated Oxidative Injury and Protein Cysteine Sulfonation. J Mol Cell Cardiol 2018, 121, 190–204. [Google Scholar] [CrossRef]
- Child, S.A.; Reddish, M.J.; Glass, S.M.; Goldfarb, M.H.; Barckhausen, I.R.; Guengerich, F.P. Functional Interactions of Adrenodoxin with Several Human Mitochondrial Cytochrome P450 Enzymes. Arch Biochem Biophys 2020, 694, 108596. [Google Scholar] [CrossRef] [PubMed]
- Schulz, V.; Freibert, S.-A.; Boss, L.; Mühlenhoff, U.; Stehling, O.; Lill, R. Mitochondrial [2Fe-2S] Ferredoxins: New Functions for Old Dogs. FEBS Lett 2023, 597, 102–121. [Google Scholar] [CrossRef]
- Nett, J.H.; Hunte, C.; Trumpower, B.L. Changes to the Length of the Flexible Linker Region of the Rieske Protein Impair the Interaction of Ubiquinol with the Cytochrome Bc1 Complex. Eur J Biochem 2000, 267, 5777–5782. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Liu, J.; Knapp, M.; Donnan, P.H.; Boggs, D.G.; Bridwell-Rabb, J. Custom Tuning of Rieske Oxygenase Reactivity. Nat Commun 2023, 14, 5858. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Pain, J.; Singh, P.; Dancis, A.; Pain, D. Mitochondrial Glutaredoxin Grx5 Functions as a Central Hub for Cellular Iron-Sulfur Cluster Assembly. Journal of Biological Chemistry 2025, 301, 108391. [Google Scholar] [CrossRef]
- Du, Z.; Zhou, X.; Lai, Y.; Xu, J.; Zhang, Y.; Zhou, S.; Feng, Z.; Yu, L.; Tang, Y.; Wang, W.; et al. Structure of the Human Respiratory Complex II. Proc. Natl. Acad. Sci. U.S.A. 2023, 120, e2216713120. [Google Scholar] [CrossRef]
- Brown, N.M.; Kennedy, M.C.; Antholine, W.E.; Eisenstein, R.S.; Walden, W.E. Detection of a [3Fe-4S] Cluster Intermediate of Cytosolic Aconitase in Yeast Expressing Iron Regulatory Protein 1. Insights into the Mechanism of Fe-S Cluster Cycling. J Biol Chem 2002, 277, 7246–7254. [Google Scholar] [CrossRef]
- Deck, K.M.; Vasanthakumar, A.; Anderson, S.A.; Goforth, J.B.; Kennedy, M.C.; Antholine, W.E.; Eisenstein, R.S. Evidence That Phosphorylation of Iron Regulatory Protein 1 at Serine 138 Destabilizes the [4Fe-4S] Cluster in Cytosolic Aconitase by Enhancing 4Fe-3Fe Cycling. J Biol Chem 2009, 284, 12701–12709. [Google Scholar] [CrossRef]
- Vasquez-Vivar, J.; Kalyanaraman, B.; Kennedy, M.C. Mitochondrial Aconitase Is a Source of Hydroxyl Radical. An Electron Spin Resonance Investigation. J Biol Chem 2000, 275, 14064–14069. [Google Scholar] [CrossRef]
- Le Breton, N.; Wright, J.J.; Jones, A.J.Y.; Salvadori, E.; Bridges, H.R.; Hirst, J.; Roessler, M.M. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I. J Am Chem Soc 2017, 139, 16319–16326. [Google Scholar] [CrossRef]
- Arias-Mayenco, I.; González-Rodríguez, P.; Torres-Torrelo, H.; Gao, L.; Fernández-Agüera, M.C.; Bonilla-Henao, V.; Ortega-Sáenz, P.; López-Barneo, J. Acute O2 Sensing: Role of Coenzyme QH2/Q Ratio and Mitochondrial ROS Compartmentalization. Cell Metab 2018, 28, 145–158.e4. [Google Scholar] [CrossRef]
- Lushchak, O.V.; Piroddi, M.; Galli, F.; Lushchak, V.I. Aconitase Post-Translational Modification as a Key in Linkage between Krebs Cycle, Iron Homeostasis, Redox Signaling, and Metabolism of Reactive Oxygen Species. Redox Rep 2014, 19, 8–15. [Google Scholar] [CrossRef]
- Brazzolotto, X.; Gaillard, J.; Pantopoulos, K.; Hentze, M.W.; Moulis, J.M. Human Cytoplasmic Aconitase (Iron Regulatory Protein 1) Is Converted into Its [3Fe-4S] Form by Hydrogen Peroxide in Vitro but Is Not Activated for Iron-Responsive Element Binding. J Biol Chem 1999, 274, 21625–21630. [Google Scholar] [CrossRef]
- Xu, Y.; Xue, D.; Kyani, A.; Bankhead, A.; Roy, J.; Ljungman, M.; Neamati, N. First-in-Class NADH/Ubiquinone Oxidoreductase Core Subunit S7 (NDUFS7) Antagonist for the Treatment of Pancreatic Cancer. ACS Pharmacol Transl Sci 2023, 6, 1164–1181. [Google Scholar] [CrossRef] [PubMed]
- Dunham-Snary, K.J.; Hong, Z.G.; Xiong, P.Y.; Del Paggio, J.C.; Herr, J.E.; Johri, A.M.; Archer, S.L. A Mitochondrial Redox Oxygen Sensor in the Pulmonary Vasculature and Ductus Arteriosus. Pflugers Arch - Eur J Physiol 2016, 468, 43–58. [Google Scholar] [CrossRef]
- Hameedi, M.A.; Grba, D.N.; Richardson, K.H.; Jones, A.J.Y.; Song, W.; Roessler, M.M.; Wright, J.J.; Hirst, J. A Conserved Arginine Residue Is Critical for Stabilizing the N2 FeS Cluster in Mitochondrial Complex I. Journal of Biological Chemistry 2021, 296, 100474. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, H. Mechanical Unfolding Pathway of the High-Potential Iron-Sulfur Protein Revealed by Single-Molecule Atomic Force Microscopy: Toward a General Unfolding Mechanism for Iron-Sulfur Proteins. J Phys Chem B 2018, 122, 9340–9349. [Google Scholar] [CrossRef] [PubMed]
- Crofts, A.R. The Modified Q-Cycle: A Look Back at Its Development and Forward to a Functional Model. Biochim Biophys Acta Bioenerg 2021, 1862, 148417. [Google Scholar] [CrossRef] [PubMed]
- Pethő, D.; Hendrik, Z.; Nagy, A.; Beke, L.; Patsalos, A.; Nagy, L.; Póliska, S.; Méhes, G.; Tóth, C.; Potor, L.; et al. Heme Cytotoxicity Is the Consequence of Endoplasmic Reticulum Stress in Atherosclerotic Plaque Progression. Sci Rep 2021, 11, 10435. [Google Scholar] [CrossRef]
- Piel, R.B.; Dailey, H.A.; Medlock, A.E. The Mitochondrial Heme Metabolon: Insights into the Complex(Ity) of Heme Synthesis and Distribution. Molecular Genetics and Metabolism 2019, 128, 198–203. [Google Scholar] [CrossRef]
- Belot, A.; Puy, H.; Hamza, I.; Bonkovsky, H.L. Update on Heme Biosynthesis, Tissue-Specific Regulation, Heme Transport, Relation to Iron Metabolism and Cellular Energy. Liver Int 2024, 44, 2235–2250. [Google Scholar] [CrossRef] [PubMed]
- Obi, C.D.; Bhuiyan, T.; Dailey, H.A.; Medlock, A.E. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022, 10, 894591. [Google Scholar] [CrossRef]
- Baek, J.-H.; Gomez, I.G.; Wada, Y.; Roach, A.; Mahad, D.; Duffield, J.S. Deletion of the Mitochondrial Complex-IV Cofactor Heme A:Farnesyltransferase Causes Focal Segmental Glomerulosclerosis and Interferon Response. The American Journal of Pathology 2018, 188, 2745–2762. [Google Scholar] [CrossRef] [PubMed]
- Qiao, A.; Khechaduri, A.; Kannan Mutharasan, R.; Wu, R.; Nagpal, V.; Ardehali, H. MicroRNA-210 Decreases Heme Levels by Targeting Ferrochelatase in Cardiomyocytes. J Am Heart Assoc 2013, 2, e000121. [Google Scholar] [CrossRef] [PubMed]
- Oyedotun, K.S.; Sit, C.S.; Lemire, B.D. The Saccharomyces Cerevisiae Succinate Dehydrogenase Does Not Require Heme for Ubiquinone Reduction. Biochim Biophys Acta 2007, 1767, 1436–1445. [Google Scholar] [CrossRef]
- Kim, H.J.; Khalimonchuk, O.; Smith, P.M.; Winge, D.R. Structure, Function, and Assembly of Heme Centers in Mitochondrial Respiratory Complexes. Biochim Biophys Acta 2012, 1823, 1604–1616. [Google Scholar] [CrossRef]
- Crofts, A.R. The Cytochrome Bc1 Complex: Function in the Context of Structure. Annu. Rev. Physiol. 2004, 66, 689–733. [Google Scholar] [CrossRef]
- Llases, M.-E.; Morgada, M.N.; Vila, A.J. Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Int J Mol Sci 2019, 20, 3830. [Google Scholar] [CrossRef]
- LeFort, K.R.; Rungratanawanich, W.; Song, B.-J. Contributing Roles of Mitochondrial Dysfunction and Hepatocyte Apoptosis in Liver Diseases through Oxidative Stress, Post-Translational Modifications, Inflammation, and Intestinal Barrier Dysfunction. Cell Mol Life Sci 2024, 81, 34. [Google Scholar] [CrossRef]
- Pinti, M.V.; Fink, G.K.; Hathaway, Q.A.; Durr, A.J.; Kunovac, A.; Hollander, J.M. Mitochondrial Dysfunction in Type 2 Diabetes Mellitus: An Organ-Based Analysis. Am J Physiol Endocrinol Metab 2019, 316, E268–E285. [Google Scholar] [CrossRef] [PubMed]
- Pliouta, L.; Lampsas, S.; Kountouri, A.; Korakas, E.; Thymis, J.; Kassi, E.; Oikonomou, E.; Ikonomidis, I.; Lambadiari, V. Mitochondrial Dysfunction in the Development and Progression of Cardiometabolic Diseases: A Narrative Review. JCM 2025, 14, 3706. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Sauceda, C.; Webster, N.J.G. Mitochondrial Dysfunction in Obesity and Reproduction. Endocrinology 2021, 162, bqaa158. [Google Scholar] [CrossRef]
- Kapralov, A.A.; Yang, Q.; Dar, H.H.; Tyurina, Y.Y.; Anthonymuthu, T.S.; Kim, R.; St Croix, C.M.; Mikulska-Ruminska, K.; Liu, B.; Shrivastava, I.H.; et al. Redox Lipid Reprogramming Commands Susceptibility of Macrophages and Microglia to Ferroptotic Death. Nat Chem Biol 2020, 16, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Minotti, G.; Aust, S.D. The Requirement for Iron (III) in the Initiation of Lipid Peroxidation by Iron (II) and Hydrogen Peroxide. J Biol Chem 1987, 262, 1098–1104. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Escrivá, C.; Dromant, M.; Borrás, C.; Viña, J. Lipid Peroxidation as Measured by Chromatographic Determination of Malondialdehyde. Human Plasma Reference Values in Health and Disease. Arch Biochem Biophys 2021, 709, 108941. [Google Scholar] [CrossRef]
- Panov, A.V.; Dikalov, S.I. Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging. Oxid Med Cell Longev 2020, 2020, 1323028. [Google Scholar] [CrossRef]
- Stavrovskaya, I.G.; Baranov, S.V.; Guo, X.; Davies, S.S.; Roberts, L.J.; Kristal, B.S. Reactive Gamma-Ketoaldehydes Formed via the Isoprostane Pathway Disrupt Mitochondrial Respiration and Calcium Homeostasis. Free Radic Biol Med 2010, 49, 567–579. [Google Scholar] [CrossRef]
- Mendoza, A.; Patel, P.; Robichaux, D.; Ramirez, D.; Karch, J. Inhibition of the mPTP and Lipid Peroxidation Is Additively Protective Against I/R Injury. Circ Res 2024, 134, 1292–1305. [Google Scholar] [CrossRef]
- Fefelova, N.; Wongjaikam, S.; Pamarthi, S.H.; Siri-Angkul, N.; Comollo, T.; Kumari, A.; Garg, V.; Ivessa, A.; Chattipakorn, S.C.; Chattipakorn, N.; et al. Deficiency of Mitochondrial Calcium Uniporter Abrogates Iron Overload-Induced Cardiac Dysfunction by Reducing Ferroptosis. Basic Res Cardiol 2023, 118, 21. [Google Scholar] [CrossRef]
- Hamilton, S.; Terentyeva, R.; Perger, F.; Hernández Orengo, B.; Martin, B.; Gorr, M.W.; Belevych, A.E.; Clements, R.T.; Györke, S.; Terentyev, D. MCU Overexpression Evokes Disparate Dose-Dependent Effects on Mito-ROS and Spontaneous Ca2+ Release in Hypertrophic Rat Cardiomyocytes. Am J Physiol Heart Circ Physiol 2021, 321, H615–H632. [Google Scholar] [CrossRef]
- Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell 2012, 149, 1060–1072. [Google Scholar] [CrossRef] [PubMed]
- Hirschhorn, T.; Stockwell, B.R. The Development of the Concept of Ferroptosis. Free Radic Biol Med 2019, 133, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Dixon, S.J.; Patel, D.N.; Welsch, M.; Skouta, R.; Lee, E.D.; Hayano, M.; Thomas, A.G.; Gleason, C.E.; Tatonetti, N.P.; Slusher, B.S.; et al. Pharmacological Inhibition of Cystine-Glutamate Exchange Induces Endoplasmic Reticulum Stress and Ferroptosis. Elife 2014, 3, e02523. [Google Scholar] [CrossRef]
- Chen, B.; Fan, P.; Song, X.; Duan, M. The Role and Possible Mechanism of the Ferroptosis-Related SLC7A11/GSH/GPX4 Pathway in Myocardial Ischemia-Reperfusion Injury. BMC Cardiovasc Disord 2024, 24, 531. [Google Scholar] [CrossRef]
- Huang, B.; Wang, H.; Liu, S.; Hao, M.; Luo, D.; Zhou, Y.; Huang, Y.; Nian, Y.; Zhang, L.; Chu, B.; et al. Palmitoylation-Dependent Regulation of GPX4 Suppresses Ferroptosis. Nat Commun 2025, 16, 867. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, R.; Liu, S.; Duan, T.; Zhai, L.; Zhang, M.; Han, X.; Xiang, Y.; Huang, X.; Lin, H.; et al. RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer. Front Pharmacol 2018, 9, 1371. [Google Scholar] [CrossRef]
- Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; et al. ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nat Chem Biol 2017, 13, 91–98. [Google Scholar] [CrossRef]
- Liu, J.; Kang, R.; Tang, D. Signaling Pathways and Defense Mechanisms of Ferroptosis. FEBS J 2022, 289, 7038–7050. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.-Q.; Zhao, L.; Hong, C.; Zou, Q.-M.; Su, J.-X.; Li, S.-J.; Zhou, X.-F.; Li, Z.-S.; Deng, B.; Cao, J.; et al. Baicalein Triggers Ferroptosis in Colorectal Cancer Cells via Blocking the JAK2/STAT3/GPX4 Axis. Acta Pharmacol Sin 2024, 45, 1715–1726. [Google Scholar] [CrossRef]
- Milhem, F.; Hamilton, L.M.; Skates, E.; Wilson, M.; Johanningsmeier, S.D.; Komarnytsky, S. Biomarkers of Metabolic Adaptation to High Dietary Fats in a Mouse Model of Obesity Resistance. Metabolites 2024, 14, 69. [Google Scholar] [CrossRef]
- Guan, H.; Xiao, L.; Hao, K.; Zhang, Q.; Wu, D.; Geng, Z.; Duan, B.; Dai, H.; Xu, R.; Feng, X. SLC25A28 Overexpression Promotes Adipogenesis by Reducing ATGL. J Diabetes Res 2024, 2024, 5511454. [Google Scholar] [CrossRef]
- Han, R.; Liu, L.; Wang, Y.; Wu, R.; Yang, Y.; Zhao, Y.; Jian, L.; Yuan, Y.; Zhang, L.; Gu, Y.; et al. Microglial SLC25A28 Deficiency Ameliorates the Brain Injury After Intracerebral Hemorrhage in Mice by Restricting Aerobic Glycolysis. Inflammation 2024, 47, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Nelson, J.E.; Wilson, L.; Brunt, E.M.; Yeh, M.M.; Kleiner, D.E.; Unalp-Arida, A.; Kowdley, K.V. Nonalcoholic Steatohepatitis Clinical Research Network Relationship between the Pattern of Hepatic Iron Deposition and Histological Severity in Nonalcoholic Fatty Liver Disease. Hepatology 2011, 53, 448–457. [Google Scholar] [CrossRef]
- Valenti, L.; Fracanzani, A.L.; Dongiovanni, P.; Bugianesi, E.; Marchesini, G.; Manzini, P.; Vanni, E.; Fargion, S. Iron Depletion by Phlebotomy Improves Insulin Resistance in Patients with Nonalcoholic Fatty Liver Disease and Hyperferritinemia: Evidence from a Case-Control Study. Am J Gastroenterol 2007, 102, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Anastasopoulos, N.-A.; Barbouti, A.; Goussia, A.C.; Christodoulou, D.K.; Glantzounis, G.K. Exploring the Role of Metabolic Hyperferritinaemia (MHF) in Steatotic Liver Disease (SLD) and Hepatocellular Carcinoma (HCC). Cancers (Basel) 2025, 17, 842. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Kim, M.S.; Han, S.N. Diet-Induced Obesity Leads to Decreased Hepatic Iron Storage in Mice. Nutr Res 2011, 31, 915–921. [Google Scholar] [CrossRef]
- Dongiovanni, P.; Lanti, C.; Gatti, S.; Rametta, R.; Recalcati, S.; Maggioni, M.; Fracanzani, A.L.; Riso, P.; Cairo, G.; Fargion, S.; et al. High Fat Diet Subverts Hepatocellular Iron Uptake Determining Dysmetabolic Iron Overload. PLoS One 2015, 10, e0116855. [Google Scholar] [CrossRef]
- Ravingerová, T.; Kindernay, L.; Barteková, M.; Ferko, M.; Adameová, A.; Zohdi, V.; Bernátová, I.; Ferenczyová, K.; Lazou, A. The Molecular Mechanisms of Iron Metabolism and Its Role in Cardiac Dysfunction and Cardioprotection. Int J Mol Sci 2020, 21, 7889. [Google Scholar] [CrossRef]
- Picca, A.; Guerra, F.; Calvani, R.; Romano, R.; Coelho-Júnior, H.J.; Bucci, C.; Marzetti, E. Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson’s Disease: Roads to Biomarker Discovery. Biomolecules 2021, 11, 1508. [Google Scholar] [CrossRef]
- Flønes, I.H.; Toker, L.; Sandnes, D.A.; Castelli, M.; Mostafavi, S.; Lura, N.; Shadad, O.; Fernandez-Vizarra, E.; Painous, C.; Pérez-Soriano, A.; et al. Mitochondrial Complex I Deficiency Stratifies Idiopathic Parkinson’s Disease. Nat Commun 2024, 15, 3631. [Google Scholar] [CrossRef]
- Wang, W.; Thomas, E.R.; Xiao, R.; Chen, T.; Guo, Q.; Liu, K.; Yang, Y.; Li, X. Targeting Mitochondria-Regulated Ferroptosis: A New Frontier in Parkinson’s Disease Therapy. Neuropharmacology 2025, 274, 110439. [Google Scholar] [CrossRef] [PubMed]
- Schipper, H.M. Heme Oxygenase-1: Role in Brain Aging and Neurodegeneration. Exp Gerontol 2000, 35, 821–830. [Google Scholar] [CrossRef]
- Lurette, O.; Martín-Jiménez, R.; Khan, M.; Sheta, R.; Jean, S.; Schofield, M.; Teixeira, M.; Rodriguez-Aller, R.; Perron, I.; Oueslati, A.; et al. Aggregation of Alpha-Synuclein Disrupts Mitochondrial Metabolism and Induce Mitophagy via Cardiolipin Externalization. Cell Death Dis 2023, 14, 729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int J Biol Sci 2021, 17, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- An, X.; He, J.; Xie, P.; Li, C.; Xia, M.; Guo, D.; Bi, B.; Wu, G.; Xu, J.; Yu, W.; et al. The Effect of Tau K677 Lactylation on Ferritinophagy and Ferroptosis in Alzheimer’s Disease. Free Radic Biol Med 2024, 224, 685–706. [Google Scholar] [CrossRef]
- Monteiro-Cardoso, V.F.; Oliveira, M.M.; Melo, T.; Domingues, M.R.M.; Moreira, P.I.; Ferreiro, E.; Peixoto, F.; Videira, R.A. Cardiolipin Profile Changes Are Associated to the Early Synaptic Mitochondrial Dysfunction in Alzheimer’s Disease. J Alzheimers Dis 2015, 43, 1375–1392. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, N.; Wang, F.; Zhou, Q.; Chen, Z.; Xie, L.; Sun, Q.; Li, L.; Li, B. The Role of Ferritinophagy and Ferroptosis in Alzheimer’s Disease. Brain Res 2025, 1850, 149340. [Google Scholar] [CrossRef]


| Cluster | Mitochondrial location | Metabolic function | References |
| [2Fe-2S] | Complex I (N1a, N1b clusters) | Electron Transfer: Mediates a single electron jumps within the ETC and key redox-active components. | [19,20] |
| Complex II | Involved in the biosynthesis of steroids, heme and lipoyl cofactors. | [21,22] | |
| Complex III (Rieske protein) | The Rieske cluster moves physically to facilitate electron transfer from ubiquinol to cytochrome c. Tune the activity of monooxygenase TsaM. | [23,24] | |
| Mitochondrial matrix | Regulator: Molecular sensors (Cysteine Desulfurase 1, NFS1; Iron-Sulfur Cluster Scaffold Protein, ISCU and Glutaredoxin-related protein 5, GLRX5) incorporated into SLC25A39 (GSH transport) | [15,25] | |
| [3Fe-4S] | Complex II (terminal cluster) |
Electron Transfer: Aligned near the quinone binding site in Complex II. | [26] |
| Mitochondrial Aconitase (inactive form) | Redox Sensing: The inactive aconitase contains this cluster; it transitions to the [4Fe-4S] upon acquiring a labile iron atom. | [27,28] | |
| [4Fe-4S] | Complex I (N2, N3, N4, N5, N6a, N6b clusters) | Enzyme Catalysis: catalyzes the conversion of citrate to isocitrate via aconitase in the Krebs cycle | [29,30] |
| Complex II (middle cluster Mitochondrial) |
Oxygen Sensing: The N2 cluster in subunit Ndufs2 acts as a redox-sensitive oxygen sensor. | [31] | |
| Aconitase (active form) | Electron Tunneling: Forms a tunneling chain over 95 Å in the Complex I to drive proton pumping | [32,33] | |
| Cluster N2 | Complex I (Subunits NDUFS7/NDUFS2) | Terminal Sink: Acts as the high-potential electron sink that reduces ubiquinone to ubiquinol | [34] |
| Homeostatic oxygen sensing system (HOSS) Regulation: Vital for homeostatic oxygen-sensing systems in pulmonary arteries and the carotid body | [35,36] | ||
| Rieske | Complex III (Iron Sulfur Protein) | Bifurcated Electron Flow: Participates in the “high potential pathway” of the Q-cycle, transferring electrons to cytochrome c1 | [37,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
