Submitted:
01 February 2026
Posted:
03 February 2026
You are already at the latest version
Abstract
Keywords:
Introduction
Methods Summary for Winger et al.
Summary of Results and Conclusions in Winger et al.
Discussion
Conclusions
Acknowledgments
References
- Barker, F. K.; Burns, K. J.; Klicka, J.; Lanyon, S. M.; Lovette, I. J. New insights into New World biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrow, tanagers, warblers, and allies. Auk 2015, 132, 333–348. [Google Scholar] [CrossRef]
- Becker, D. J.; Schultz, E. M.; Atwell, J. W.; Ketterson, E. D. Urban residency and leucocyte profiles in a traditional migratory songbird. Animal Migration 2019, 6, 49–59. [Google Scholar] [CrossRef]
- Bradley, R. S.; Diaz, H. F. Late Quaternary abrupt climate change in the tropics and sub-tropics: The continental signal of tropical hydroclimatic events (THEs). Review of Geophysics 2021, 59, e2020RG000732. [Google Scholar] [CrossRef]
- Brosset, A. Ecological localization of migratory birds in the equatorial forest of Gabon [in French]. Alauda 1968, 52, 81–101. [Google Scholar]
- Bull, J. L. Birds of New York State; Doubleday: Garden City, New Jersey, 1974. [Google Scholar]
- Chesser, R. T. Seasonal distribution and ecology of South American austral migrant flycatchers. In Birds of two worlds; Greenberg, R., Marra, P., Eds.; Johns Hopkins University Press: Baltimore, 2005; pp. 168–181. [Google Scholar]
- Chesser, R. T.; Levey, D. J. Austral migrants and the evolution of migration in New World birds: Diet, habitat,, and migration revisited. American Naturalist 1998, 152, 311–319. [Google Scholar] [CrossRef]
- Cooper, A. K.; Scholl, D. W.; Marlow, M. S. Plate tectonic model for the evolution of the eastern Bering Sea basin. Geological Society of American Bulletin 1992, 87, 1119–1126. [Google Scholar] [CrossRef]
- Handbook of the Birds of the World; del Hoyo, J., Elliott, A., Christie, D., Eds.; Lynx Edicions: Barcelona, Spain, 1992-2014. [Google Scholar]
- Dixon, C. The migration of birds; Horace Cox, Windsor House, London, 1897. [Google Scholar]
- Faridani, S.; Lee, B.; Glasscock, S.; Rappole, J.; Song, D.; Goldberg, K. A networked telerobotic observatory for collaborative remote observation of avian activity and range change. In Proceedings of the International Robotics Conference, 2009. [Google Scholar]
- Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 1981, 35, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Finlayson, C. Avian Survivors: The History and Biogeography of Palearctic Birds; T & A. D. Poyser, London, 2011. [Google Scholar]
- Fiorillo, A. R.; Blodgett, R. B.; Stanley, G. D. Dinosaurs of Alaska: implications for the Cretaceous origin of Beringia. Pp. 313-326 In The terrane puzzle: new perspectives on paleontology and stratigraphy from the North American Cordillera; Geological Society of America, Special Paper # 442, 2008. [Google Scholar]
- Geist, D. J.; Snell, Howard; Snell, Heidi; Goddard, C.; Kurz, M. D. A Paleogeographic Model of the Galápagos Islands and Biogeographical and Evolutionary Implications. Chapter 8, Pp. 145-166 In The Galápagos: A Natural Laboratory for the Earth Sciences; Harpp, K. S., Mittelstaedt, E., d’Ozouville, N., Graham, D. W., Eds.; American Geophysical Union, Geophysical Monograph 204, John Wiley & Sons: New York, 2014. [Google Scholar]
- Gladenkov, A. Y.; Oleinik, A. E.; Marincovich, L., Jr.; Barinov, K. B. A refined age for the earliest opening of the Bering Strait. Palaeogeography, Palaeoclimatology, Palaeoecology 2002, 183, 321–328. [Google Scholar] [CrossRef]
- Gladstone, D. E. Bubulcus ibis (Garcilla Bueyera, Cattle Egret). Pp. 550-551 In Costa Rican Natural History; Janzen, D., Ed.; University of Chicago Press: Chicago, 1983. [Google Scholar]
- Guo, P.; Liu, Q.; Xu, Y.; Jiang, K.; Hou, M.; Ding, L.; Pyron, R. A.; Burbrink, F. T. Out of Asia: Natricine snakes support the Cenozoic Beringian dispersal hypothesis. Molecular Phylogenetics and Evolution 2012, 63, 825–833. [Google Scholar] [CrossRef]
- Gutierrez, N. M.; Hinjosa, L. F.; LeRoux, J. P.; Pedroza, V. Evidence for an early-middle Miocene age of the Navidad Formation (central Chile): Paleontological, paleoclimatic and tectonic implications. Andean Geology 2013, 40, 66–78. [Google Scholar]
- Helbig, A. J. Evolution of bird migration: A phylogenetic and biogeographic perspective. Pp. 3–21 in Avian migration; Berthold, P., Gwinner, E., Sonnenschein, E., Eds.; Springer: Heidelberg, 2003. [Google Scholar]
- Hilty, S. L. Family Thraupidae (tanagers). In Handbook of the birds of the world; del Hoyo, J., Elliott, A., Christie, D. A., Eds.; Lynx Edicions: Barcelona, 2011; Volume 16, pp. 46–329. [Google Scholar]
- Jones, P. Community dynamics of arboreal insectivorous birds in African savannas in relation to seasonal rainfall patterns and habitat change. In Dynamics of tropical communities; Newberry, D. M., Prins, H. H. T., Brown, N. D., Eds.; Blackwell, Oxford, 1996; pp. 421–447. [Google Scholar]
- Karr, J. R. On the relative abundance of migrants from the North Temperate Zone in tropical habitats. Wilson Bulletin 1976, 88, 433–458. [Google Scholar]
- Köhler, P.; van de Wal, R. S. W. Interglacials of the Quaternary defined by northern hemispheric land ice distribution outside of Greenland. Nature Communications 2020. [Google Scholar] [CrossRef] [PubMed]
- Lamichhaney, S.; Berglund, J.; Almén, M. Sällman; Maqbool, K.; Grabherr, M.; Martinez- Barrio, A.; Promerová, M.; Rubin, C.-J.; Wang, C.; Zamani, N.; Grant, B. R.; Grant, P. R.; Webster, M. T.; Andersson, L. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 2015, 518, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Leck, C. F. The impact of some North American migrants at fruiting trees in Panama. Auk 1972, 89, 842–850. [Google Scholar] [CrossRef]
- Levey, D. J.; Stiles, F. G. Evolutionary precursors to long-distance migration: Resource availability and movement patterns in neotropical landbirds. American Naturalist 1992, 140, 447–476. [Google Scholar]
- MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species; Harper & Row: New York, 1972. [Google Scholar]
- Mayr, E. History of the North American bird fauna. Wilson Bulletin 1946, 58, 2–41. [Google Scholar]
- Mayr, E.; Meise, W. [Theories on the history of migration]. Vogelzug (in German). 1930, 1, 149–172. [Google Scholar]
- McClure, E. Migration and survival of the birds of Asia. U. S. Army Component, SEATO Medical Research Laboratory, Bangkok. The Place of Africa in the Palaearctic; 1974. [Google Scholar]
- Meyer de Schauensee, R. The Species of Birds of South America and their Distribution; Livingston: Wynnewood, Pennsylvania, 1966. [Google Scholar]
- Moreau, R. E. The place of Africa in the Palaearctic migration system. Animal Ecology 1952, 21, 250–271. [Google Scholar] [CrossRef]
- Moreau, R. E. The Palaearctic-African Bird Migration System; Academic Press: New York, 1972. [Google Scholar]
- Morel, G.; Bourlière, F. Ecological relations of the sedentary and migratory avifauna in a Sahel savannah of lower Senegal [in French]. Terre et Vie 1962, 4, 371–393. [Google Scholar]
- Newton, I. The Migration Ecology of Bird; Academic Press: New York, 2024. [Google Scholar]
- Orme, A. R. The tectonic framework of South America. In Physical Geography of South America; Veblen, T. T., Young, K. R., Orme, A. R., Eds.; Oxford University Press: Oxford, 2007; pp. 12–17. [Google Scholar]
- Peterson, R. T. A Field Guide to the Birds; Houghton Mifflin: Boston, 1980. [Google Scholar]
- Pigg, K. B.; Ickert-Bond, S. M.; Wen, amd J. Anatomically preserved Liquidambar (Altingiaceae) from the middle Miocene of Yakima Canyon, Washington state, USA, and its biogeographic implications. American Journal of Botany 2004, 91, 499–509. [Google Scholar] [CrossRef]
- The Birds of North America; Poole, A., Ed.; Cornell Laboratory of Ornithology: Ithaca, New York, 1992-2010. [Google Scholar]
- Rappole, J. H. The ecology of migrant birds: A Neotropical perspective; Smithsonian Institution Press: Washington, D.C, 1995. [Google Scholar]
- Rappole, J.H. Evolution of old and new world migration systems: a response to Bell. Ardea 2005, 93(1), 125–131. [Google Scholar]
- Rappole, J. H. The Avian Migrant; Columbia University Press: New York, 2013. [Google Scholar]
- Rappole, J. H. Bird Migration: A New Understanding; Johns Hopkins University Press: Baltimore, Maryland, 2022. [Google Scholar]
- Rappole, J. H. Migration Mysteries; Texas A&M University Press: College Station, Texas, 2024. [Google Scholar]
- Rappole, J. H.; Blacklock, G. W.; Norwine, J. Apparent rapid range change in South Texas birds: Response to climate change? In Texas climate 2100; Norwine, J., John, K., Eds.; Texas A&M University: Kingsville, Texas, 2007. [Google Scholar]
- Rappole, J. H.; Glasscock, S.; Goldberg, K.; Song, D.; Faridani, S. Range change among New World tropical and subtropical birds. Pp. In International Symposium on Tropical Ecology; Schuchmann, K., Ed.; Alexander Koenig Museum Monographs: Bonn, Germany, 2011; Volume 57, pp. 151–167. [Google Scholar]
- Rappole, J. H.; Helm, B.; Ramos, M. A. An integrative framework for understanding the origin and evolution of avian migration. Journal of Avian Biology 2003, 34, 124–128. [Google Scholar] [CrossRef]
- Rappole, J. H.; Jones, P. Evolution of Old and New World migration systems. Ardea 2002, 90, 525–537. [Google Scholar]
- Rappole, J. H.; Morton, E. S.; Lovejoy, T. E., III; Ruos, J. S. Nearctic avian migrants in the Neotropics; U.S. Fish and Wildlife Service: Washington, D.C, 1983. [Google Scholar]
- Rappole, J. H.; Pine, A.; Swanson, D.; Waggerman, G. Conservation and management For migratory birds: Insights from population data and theory for the White-winged Dove. In Proc. 25th Anniversary Symposium for the Caesar Kleberg Wildlife Research Institute; Fulbright, T., Hewitt, D., Eds.; CRC Press: Gainesville, Florida, 2007. [Google Scholar]
- Rappole, J. H.; Schuchmann, K.-L. The ecology and evolution of hummingbird population movements: A review. In Avian migration; Berthold, P., Gwinner, E., Sonnenschein, E., Eds.; Springer: Heidelberg, 2003; pp. 39–51. [Google Scholar]
- Rappole, J. H.; Tipton, A. R. The evolution of avian migration in the Neotropics. Ornitología Neotropical 1992, 3, 45–55. [Google Scholar]
- Reaney, A. M.; Bouchenak-Khelladi, Y.; Tobias, J. A.; Abzhanov, A. Ecological and morphological determinants of evolutionary diversification in Darwin’s finches and their relatives. In Ecology and Evolution; 2020. [Google Scholar] [CrossRef]
- Ree, R. H.; Moore, B. R.; Webb, C. O.; Donoghue, M. J. A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution 2005, 59, 2299–2311. [Google Scholar] [CrossRef]
- Ridgely, R. S.; Allnutt, T. F.; Brooks, T.; McNicol, D. K.; Mehlman, D. W.; Young, B. E.; Zook, J. R. Digital Distribution Maps of the Birds of the Western Hemisphere. Version 1.0; NatureServe: Arlington, Virginia, USA, 2003; Available online: www.natureserve.org.
- Safriel, U. N. The evolution of Palearctic migration - the case for southern ancestry. Israel Journal of Zoology 1995, 41, 417–431. [Google Scholar]
- Sewall, J. O.; Van De Wal, R. S. W.; Van Der Zwan, K.; Van Oosterhout, C.; Dijkstra, H. A.; Scotese, C. R. Climate model boundary conditions for four Cretaceous time slices. Climate of the past, European Geosciences Union 2007, 3(4), 647–657, hal-00298095. [Google Scholar] [CrossRef]
- Vila, R.; Bell, C. D.; Macniven, R.; Goldman-Huertas, B.; Ree, R. H.; Marshall, C. R.; Bálint, Z.; Johnson, K.; Benyamini, D.; Pierce, N. Phylogeny and palaeoecology of Polyommatus blue butterflies show Beringia was a climate-regulated gateway to the New World. Proceedings of the Royal Society B: Biological Sciences 2011, 278, 2737–2744. [Google Scholar] [CrossRef] [PubMed]
- Williams, G. G. Evolutionary aspects of bird migration. In Lida Scott Brown Lectures in Ornithology; University of California, Los Angeles, 1958; pp. 53–85. [Google Scholar]
- Willis, E. O. The role of migrant birds at swarms of army ants. Living Bird 1966, 5, 187–231. [Google Scholar]
- 2014a. Temperate origins of long-distance seasonal migration in New World songbirds. Proceedings of the National Academy of Sciences www.pnas.org/cgo/doi/10.1073/pnas.1405000111:1-6.
- Winger, B. M.; Barker, F. K.; Ree, R. H. 2014b. Supporting information for “Temperate origins of long-distance seasonal migration in New World songbirds”. Proceedings of the National Academy of Sciences www.pnas.org/cgo/content/short/1405000111:1-9.



| 1 | Both breeding and winter range [of the two daughter species] can show expansion or contraction separately or in unison into neighboring regions [i.e., the three regions defined in Figure 1 - temperate North America; Middle America and the Caribbean; and tropical South America] relative to the range of their immediate ancestor. |
| 2 | The new breeding range [of the two daughter species] cannot expand or contract to result in breeding-range occupancy into regions south of the winter range [of the immediate ancestor]. |
| 3 | The new winter range [of a daughter species] cannot occupy a region north of the breeding range [of the ancestor]. |
| 4 | Breeding range expansion [for a daughter species ] into a region south of the [ancestral] breeding range must be accompanied by comparable expansion of the winter range. |
| 5 | Winter range expansion [for a daughter species] into a region north of the [ancestral] winter range must be accompanied by a comparable expansion of the breeding range. |
| 6 | Breeding range [for a daughter species] can expand into, or contract from, a region north of the [ancestral] breeding range without change in the winter range. |
| 7 | Winter range [for a daughter species] can expand into, or contract from, a region south of the [ancestral] breeding range without change in the breeding range [of the daughter species]. |
| 8 | Neither breeding nor wintering range [for a daughter species] can jump a region [as compared with the ancestral species], e.g., an ancestral breeding range in South America cannot give rise to a daughter species’ breeding range in temperate North America. |
| 9 | There is, however, an exception to rule #8: an ancestral migratory species with a breeding range in temperate North America can have a daughter species that breeds in tropical South America. |
| 10 | During speciation, the ancestral range can be inherited by daughter species or fragmented, but the entire ancestral range must be cumulatively present in the daughter species. |
| 11 | Migratory daughter species cannot be derived from a non-migratory ancestor. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).