Submitted:
29 January 2026
Posted:
02 February 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Ovarian Tissue Cryopreservation
3. Ovarian Tissue Transplantation
4. Maintenance and Follicular Activation: Recent Evidence in Production Species
5. Blood Flow of the Ovarian Tissue Implantation Site
6. Histology and Immunohistochemistry Applied to Ovarian Tissue
7. Future Perspectives
8. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- Assogba, E.L.F.; Kamga, A.M.; Costaz, H.; Jankowski, C.; Dumas, A.; Roignot, P.; Jolimoy, G.; Coutant, C.; Arveux, P.; Dabakuyo-Yonli, T.S. What are young women’s living conditions after breast cancer? Health-related quality of life, sexual and fertility issues, and professional reinsertion. Cancers 2020, 12, 1564. [Google Scholar] [CrossRef]
- Meirow, D.; Hardan, I.; Dor, J.; Fridman, E.; Elizur, S.; Raianani, H.; Slyusarevsky, E.; Amariglio, N.; Schiff, E.; Rechavi, G.; Nagler, A.; Ben Yehuda, D. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum. Reprod. 2008, 23, 1007–1013. [Google Scholar] [CrossRef]
- Kim, S.S. Revisiting the role of heterotopic ovarian transplantation: Futility or fertility? Reprod. Biomed. Online 2014, 28, 141–145. [Google Scholar] [CrossRef]
- Santos, R.R.; Amorim, C.; Cecconi, S.; Fassbender, M.; Imhof, M.; Lornage, J.; Paris, M.; Schoenfeldt, V.; Martinez-Madrid, B. Cryopreservation of ovarian tissue: An emerging technology for female germline preservation of endangered species and breeds. Anim. Reprod. Sci. 2010, 122, 151–163. [Google Scholar] [CrossRef]
- Rodrigues, A.P.R.; Rocha, R.M.P.; Rodrigues, G.Q.; Brito, D.C.C. Cryopreservation of ovarian tissue and/or preantral follicles: An alternative to safeguard the genetic material and fertility of valuable sheep and goats. In Proceedings of the XXIII Congresso Brasileiro de Reprodução Animal (CBRA 2019), Gramado, Brazil, 15–17 May 2019. [Google Scholar]
- Krohn, P.L. Transplantation of the ovary. In The Ovary, 2nd ed.; Zuckerman, L., Weir, B.J., Eds.; Academic Press: New York, NY, USA, 1977; Volume 2, pp. 101–128. [Google Scholar]
- Donfack, N.J.; Alves, K.A.; Araújo, V.R.; Cordova, A.; Figueiredo, J.R.; Smitz, J.; Rodrigues, A.P.R. Expectations and limitations of ovarian tissue transplantation. Zygote 2017, 25, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Amorim, C.A.; David, A.; Van Langendonckt, A.; Dolmans, M.M.; Donnez, J. Vitrification of human ovarian tissue: Effect of different solutions and procedures. Fertil. Steril. 2011, 95, 1094–1097. [Google Scholar] [CrossRef]
- Demeestere, I.; Simon, P.; Emiliani, S.; Delbaere, A.; Englert, Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum. Reprod. Update 2009, 15, 649–665. [Google Scholar] [CrossRef]
- Oktay, K.H.; Marin, L. Comparison of orthotopic and heterotopic autologous ovarian tissue transplantation outcomes. Fertil. Steril. 2024, 121, 72–79. [Google Scholar] [CrossRef]
- Liu, J.; Van der Elst, J.; Van den Boecke, R.; Dhont, M. Early massive follicle loss and apoptosis in heterotopically grafted newborn mouse ovaries. Hum. Reprod. 2002, 17, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Dath, C.; Van Eyck, A.S.; Dolmans, M.M.; Romeu, L.; Delle Vigne, L.; Donnez, J.; Van Langendonckt, A. Xenotransplantation of human ovarian tissue to nude mice: Comparison between four grafting sites. Hum. Reprod. 2010, 25, 1734–1743. [Google Scholar] [CrossRef] [PubMed]
- Scalercio, S.R.; Amorim, C.A.; Brito, D.C.; Percário, S.; Oskam, I.C.; Domingues, S.F.S.; Santos, R.R. Trolox enhances follicular survival after ovarian tissue autograft in squirrel monkey (Saimiri collinsi). Reprod. Fertil. 2015, 28, 1854–1864. [Google Scholar] [CrossRef]
- Van Eyck, A.S.; Jordan, B.; Gallez, B.; Heilier, J.F.; Van Langendonckt, A.; Donnez, J. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil. Steril. 2009, 92, 374–381. [Google Scholar] [CrossRef]
- Duncan, F.E.; Zelinski, M.; Gunn, A.H.; Pahnke, J.E.; O’Neill, C.L.; Songsasen, N.; Woodruff, R.I.; Woodruff, T.K. Ovarian tissue transport to expand access to fertility preservation: From animals to clinical practice. Reproduction 2016, 152, 201–210. [Google Scholar] [CrossRef]
- Youm, H.W.; Lee, J.R.; Lee, J.; Jee, B.C.; Suh, C.S.; Kim, S.H. Transplantation of mouse ovarian tissue: Comparison of transplantation sites. Theriogenology 2015, 83, 854–861. [Google Scholar] [CrossRef]
- Nugent, D.; Newton, H.; Gallivan, L.; Gosden, R.G. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J. Reprod. Fertil. 1998, 114, 341–346. [Google Scholar] [CrossRef]
- Damous, L.L.; Nakamuta, J.S.; Soares, J.M.; Maciel, G.A.; Simões, R.S.; Montero, E.F.; Krieger, J.E.; Baracat, E.C. Females transplanted with ovaries subjected to hypoxic preconditioning show impairment of ovarian function. J. Ovarian Res. 2014, 7, 34–41. [Google Scholar] [CrossRef]
- Li, S.H.; Hwu, Y.M.; Lu, C.H.; Chang, H.H.; Hsieh, C.E.; Lee, R.K. VEGF and FGF2 improve revascularization, survival, and oocyte quality of cryopreserved, subcutaneously transplanted mouse ovarian tissues. Int. J. Mol. Sci. 2016, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sanfilippo, S.; Canis, M.; Smitz, J.; Sion, B.; Darcha, C.; Janny, L.; Brugnon, F. Vitrification of human ovarian tissue: A practical and relevant alternative to slow freezing. Reprod. Biol. Endocrinol. 2015, 13, 67. [Google Scholar] [CrossRef]
- Yuzhakov, V.V.; Malinova, I.V.; Kiseleva, M.V.; Fomina, N.K.; Bandurko, L.N.; Komarova, E.V.; Sevan’kaeva, L.E.; Ingel, I.E.; Yakovleva, N.D.; Kaprin, A.D. Effect of vitrification on functional morphology and viability of the ovarian tissue. Bull. Exp. Biol. Med. 2018, 164, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.A.; Faustino, L.R.; Silva, C.M.; Castro, S.V.; Lopes, C.A.; Santos, R.R.; Báo, S.N.; Figueiredo, J.R.; Rodrigues, A.P. Novel wide-capacity method for vitrification of caprine ovaries: Ovarian Tissue Cryosystem (OTC). Anim. Reprod. Sci. 2013, 138, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Bandeira, F.T.; Carvalho, A.A.; Castro, S.V.; Lima, L.F.; Viana, D.A.; Evangelista, J.S.; Pereira, M.J.; Campello, C.C.; Figueiredo, J.R.; Rodrigues, A.P. Two methods of vitrification followed by in vitro culture of the ovine ovary: Evaluation of follicular development and ovarian extracellular matrix. Reprod. Domest. Anim. 2015, 50, 177–185. [Google Scholar] [CrossRef]
- Lunardi, F.O.; De Aguiar, F.L.; Duarte, A.B.; Araújo, V.R.; De Lima, L.F.; Correia, H.H.V.; Domingues, S.F.; Campello, C.C.; Smitz, J.; De Figueiredo, J.R.; Rodrigues, A.P.R. Ovine secondary follicles vitrified outside the ovarian tissue grow and develop in vitro better than those vitrified within ovarian fragments. Theriogenology 2016, 85, 1203–1210. [Google Scholar] [CrossRef]
- Brito, D.C.; Domingues, S.F.; Silva, J.K.; Wu, X.; Santos, R.R.; Pieczarka, J.C. Detrimental effect of phenol red on the vitrification of cat (Felis catus) ovarian tissue. Biopreserv. Biobank 2016, 14, 17–22. [Google Scholar] [CrossRef]
- Brito, D.C.C.; Domingues, S.F.S.; Rodrigues, A.P.R.; Maside, C.; Lunardi, F.O.; Wu, X.; Figueiredo, J.R.; Pieczarka, J.C.; Santos, R.R. Cryopreservation of domestic cat (Felis catus) ovarian tissue: Comparison of two vitrification methods. Theriogenology 2018, 111, 69–77. [Google Scholar] [CrossRef]
- Brito, D.C.C.; Domingues, S.F.S.; Rodrigues, A.P.R.; Figueiredo, J.R.; Santos, R.R.; Pieczarka, J.C. Vitrification of domestic cat (Felis catus) ovarian tissue: Effects of three different sugars. Cryobiology 2018, 83, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Ishijima, T.; Kobayashi, Y.; Lee, D.S.; Ueta, Y.; Matsui, M.; Lee, J.Y.; Suwa, Y.; Miyahara, K.; Suzuki, H. Cryopreservation of canine ovaries by vitrification. J. Reprod. Dev. 2006, 52, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Ishijima, T.; Maruyama, S.; Ueta, Y.; Abe, Y.; Saitoh, H. Beneficial effect of desialylated erythropoietin administration on frozen–thawed canine ovarian xenotransplantation. J. Assist. Reprod. Genet. 2008, 25, 571–575. [Google Scholar] [CrossRef]
- Ishijima, T.; Abe, Y.; Suzuki, H. Follicular loss of the cryopreserved canine ovary after xenotransplantation. J. Mamm. Ova Res. 2009, 26, 61–65. [Google Scholar] [CrossRef]
- Ackermann, C.L.; Asa, C.S.; Krisher, R.; Bauman, K.; Casey, S.; Lopes, M.D. Evaluation of follicular growth and tissue viability in vitrified/warmed domestic dog ovaries after in vitro culture. Reprod. Domest. Anim. 2016, 52, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Jivago, J.L.P.R.; Paulini, F.; Silva, R.C.; Araujo, M.S.; Marinho, A.P.S.; Lucci, C.M. Cryopreservation and characterization of canine preantral follicles. Cryobiology 2018, 81, 34–42. [Google Scholar] [CrossRef]
- Ñaupas, L.V.S.; Brito, D.C.C.; De Souza, S.S.; Brandão, F.A.S.; Da Silva, R.F.; Raposo, R.S.; Rodrigues, A.P.R. Alpha lipoic acid supplementation improves ovarian tissue vitrification outcome: An alternative to preserve the ovarian function of Morada Nova ewes. Reprod. Sci. 2021, 28, 3109–3122. [Google Scholar] [CrossRef] [PubMed]
- Gavish, Z.; Peer, G.; Roness, H.; Cohen, Y.; Meirow, D. Follicle activation and “burn-out” contribute to post-transplantation follicle loss in ovarian tissue grafts: The effect of graft thickness. Hum. Reprod. 2014, 29, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Pegg, D.E. Principles of cryopreservation. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2007; Volume 368, pp. 39–57. [Google Scholar]
- Shaw, J.M.; Oranratnachai, A.; Trounson, A.O. Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 2000, 53, 59–72. [Google Scholar] [CrossRef]
- Zhang, J.M.; Sheng, Y.; Cao, Y.Z.; Wang, H.Y.; Chen, Z.J. Effects of cooling rates and ice-seeding temperatures on the cryopreservation of whole ovaries. J. Assist. Reprod. Genet. 2011, 28, 627–633. [Google Scholar] [CrossRef]
- Amstislavsky, S.; Lindeberg, H.; Luvoni, G.C. Reproductive technologies relevant to the genome resource bank in Carnivora. Reprod. Domest. Anim. 2012, 47, 164–175. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.; Mbemya, G.T.; Guerreiro, D.D.; Brito, D.C.C.; Donfack, N.J.; Morais, M.L.G.S.; Rodrigues, G.Q.; Bruno, J.B.; Rocha, R.M.P.; Alves, B.G.; Apgar, G.A.; Cibin, F.W.S.; Figueiredo, J.R.; Ribeiro, A.P.R. Effect of catalase or alpha lipoic acid supplementation in the vitrification solution of ovine ovarian tissue. Biopreserv. Biobank 2018, 16, 258–269. [Google Scholar] [CrossRef]
- Bizarro-Silva, C.; Bergamo, L.Z.; Costa, C.B.; González, S.M.; Yokomizo, D.N.; Rossaneis, A.C.; Verri, W.A., Jr.; Sudano, M.J.; Andrade, E.R.; Alfieri, A.A.; et al. Evaluation of cryopreservation of bovine ovarian tissue by analysis of reactive oxygen species, toxicity, morphometry, and morphology. Vet. Sci. 2024, 11, 579. [Google Scholar] [CrossRef]
- Candelaria, J.I.; Botigelli, R.C.; Guiltinan, C.; et al. Three-dimensional culture in a bioengineered matrix and somatic cell complementation to improve growth and survival of bovine preantral follicles. J. Assist. Reprod. Genet. 2025, 42, 1509–1523. [Google Scholar] [CrossRef]
- Lopes, E.P.F.; Rodrigues, G.Q.; Brito, D.C.C.; Rocha, R.M.P.; Ferreira, A.C.A.; Sá, N.A.R.; Alcântara, G.L.H.; Alves, B.G.; Figueiredo, J.R.; Zelinski, M.; Rodrigues, A.P.R. Vitrification of caprine secondary and early antral follicles as a perspective to preserve fertility function. Reprod. Biol. 2020, 20, 371–378. [Google Scholar] [CrossRef]
- Tahaei, L.S.; Eimani, H.; Hajmusa, G.; Fathi, R.; Rezazadeh Valojerdi, M.; Shahverdi, A.; Eftekhari-Yazdi, P. Follicle development of xenotransplanted sheep ovarian tissue into male and female immunodeficient rats. Int. J. Fertil. Steril. 2015, 9, 354–360. [Google Scholar]
- Kim, S.S. Revisiting the role of heterotopic ovarian transplantation: Futility or fertility? Reprod. Biomed. Online 2014, 28, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Gosden, R.G.; Baird, D.T.; Wade, J.C.; Webb, R. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 °C. Hum. Reprod. 1994, 9, 597–603. [Google Scholar] [CrossRef]
- Baird, D.T.; Webb, R.; Campbell, B.K.; Harkness, L.M.; Gosden, R.G. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 °C. Hum. Reprod. 1999, 14, 2539–2546. [Google Scholar]
- Imhof, M.; Bergmeister, H.; Lipovac, M.; Rudas, M.; Hofstetter, G.; Huber, J.C. Orthotopic transplantation of cryopreserved ovarian tissue in a sheep model: Effects on follicular development, angiogenesis, and ovarian function. Reproduction 2006, 131, 809–821. [Google Scholar]
- Campbell, B.K.; Hernandez-Medrano, J.; Onions, V.; Pincott-Allen, C.; Albon, S.; Clutton-Brock, T.H.; Webb, R. Ovarian tissue cryopreservation and transplantation in sheep: Effects on follicular development and ovarian function. Reproduction 2014, 147, 889–898. [Google Scholar]
- Torre, A.; Vertu-Ciolino, D.; Mazoyer, C.; Selva, J.; Lornage, J.; Salle, B. Safeguarding fertility with whole ovary cryopreservation and microvascular transplantation. Transplantation 2016, 100, 1889–1897. [Google Scholar] [CrossRef] [PubMed]
- Bordes, A.; Lornage, J.; Demirci, B.; Franck, M.; Guerin, J.F.; Salle, B. Normal gestations and live births after orthotopic autograft of vitrified-warmed hemi-ovaries into ewes. Hum. Reprod. 2005, 20, 2745–2748. [Google Scholar] [CrossRef]
- Lornage, J.; Courbière, B.; Mazoyer, C.; Odagescu, V.; Baudot, A.; Bordes, A.; Poirel, M.T.; Franck, M.; Salle, B. Ovarian tissue vitrification: Cortex and whole ovary in sheep. Gynecol. Obstet. Fertil. 2006, 34, 746–753. [Google Scholar] [CrossRef]
- Diehl, R.; Ferrara, F.; Müller, C.; Dreyer, A.Y.; Mcleod, D.D.; Fricke, S.; Boltze, J. Immunosuppression for in vivo research: State-of-the-art protocols and experimental approaches. Cell. Mol. Immunol. 2017, 14, 146–179. [Google Scholar] [CrossRef]
- Arav, A.; Revel, A.; Nathan, Y.; Bor, A.; Gacitua, H.; Yavin, S.; Gavish, Z.; Uri, M.; Elami, A. Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum. Reprod. 2005, 20, 3554–3559. [Google Scholar] [CrossRef]
- Grazul-Bilska, A.T.; Banerjee, J.; Yazici, I.; et al. Morphology and function of cryopreserved whole ovine ovaries after heterotopic autotransplantation. Reprod. Biol. Endocrinol. 2008, 6, 16. [Google Scholar] [CrossRef]
- Arav, A.; Gavish, Z.; Elami, A.; Natan, Y.; Revel, A.; Silber, S.; Gosden, R.G.; Patrizio, P. Ovarian function six years after cryopreservation and transplantation of whole sheep ovaries. Reprod. Biomed. Online 2010, 20, 48–52. [Google Scholar] [CrossRef]
- Vatanparast, M.; Khalili, M.A.; Yari, N.; Omidi, M.; Mohsenzadeh, M. Evaluation of sheep ovarian tissue cryopreservation with slow freezing or vitrification after chick embryo chorioallantoic membrane transplantation. Cryobiology 2018, 81, 178–184. [Google Scholar] [CrossRef]
- Donfack, N.J.; Alves, K.A.; Alves, B.G.; Rocha, R.M.P.; Bruno, J.B.; Lima, L.F.; Lobo, C.H.; Santos, R.R.; Domingues, S.F.S.; Bertolini, M.; Smitz, J.; Rodrigues, A.P.R. In vivo and in vitro strategies to support caprine preantral follicle development after ovarian tissue vitrification. Reprod. Fertil. Dev. 2018, 30, 1055–1065. [Google Scholar] [CrossRef]
- Widad, S.; Nurdiati, D.S.; Ayuandari, S.; et al. Primordial follicle survival of goat ovarian tissue after vitrification and transplantation on chorioallantoic membrane. Middle East Fertil. Soc. J. 2020, 25, 34. [Google Scholar] [CrossRef]
- Vieira, A.R.S.; Sousa, F.C.; Barros, C.H.S.C.; Santana, M.J.; Alves, B.G.; Teixeira, D.Í.A. Color Doppler ultrasonographic examination of ovarian grafts in goats. Vet. Sci. 2024, 11, 580. [Google Scholar] [CrossRef] [PubMed]
- Damasio, L.C.; Soares-Junior, J.M.; Iavelberg, J.; Maciel, G.A.; De Jesus Simoes, M.; Dos Santos Simoes, R.; Da Motta, E.V.; Baracat, M.C.; Baracat, E.C. Heterotopic ovarian transplantation results in less apoptosis than orthotopic transplantation in a minipig model. J. Ovarian Res. 2016, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Dolmans, M.M. Transplantation of ovarian tissue. Best Pract. Res. Clin. Obstet. Gynaecol. 2014, 28, 1188–1197. [Google Scholar] [CrossRef] [PubMed]
- Gastal, G.D.A.; Alves, B.G.; Alves, K.A.; Souza, M.E.M.; Vieira, A.D.; Varela, A.S., Jr.; Figueiredo, J.R.; Feugang, J.M.; Lucia, T., Jr.; Gastal, E.L. Ovarian fragment sizes affect viability and morphology of preantral follicles during storage at 4 °C. Reproduction 2017, 153, 577–587. [Google Scholar]
- Oktay, K.; Turkcuoglu, I.; Rodriguez-Wallberg, K.A. Four spontaneous pregnancies and three live births following subcutaneous transplantation of frozen-banked ovarian tissue. Fertil. Steril. 2011, 95, 804.e7–804.e10. [Google Scholar] [CrossRef]
- Terazono, T.; Kaedei, Y.; Tanihara, F.; Namula, Z.; Viet, V.; Takagi, M.; Inoue, M.; Sato, Y.; Taniguchi, M.; Otoi, T. Follicle formation in the canine ovary after autografting to a peripheral site. Reprod. Domest. Anim. 2012, 47, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Youm, H.W.; Lee, J.R.; Lee, J.; Jee, B.C.; Suh, C.S.; Kim, S.H. Transplantation of mouse ovarian tissue: Comparison of transplantation sites. Theriogenology 2015, 83, 854–861. [Google Scholar] [CrossRef]
- Silber, S.J.; Grudzinskas, G.; Gosden, R.G. Successful pregnancy after microsurgical transplantation of an intact ovary. N. Engl. J. Med. 2008, 359, 2617–2618. [Google Scholar] [CrossRef]
- Vieira, A.R.S.; Bersano, L.M.C.P.; Brandão, F.A.S.; Barros, C.H.S.C.; Sousa, F.C.; Rodrigues, A.L.S.; Alves, B.G.; Gomes, F.D.R.; Rodrigues, A.P.R.; Teixeira, D.Í.A. Heterotopic ovarian allotransplantation in a caprine model: Effects of implant area on morphological parameters. Anim. Reprod. Sci. 2024, 267, 107509. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.S.; Aguiar, F.L.N.; Alves, B.G.; Alves, K.A.; Brandão, F.A.S.; Brito, D.C.C.; Raposo, R.S.; Gastal, M.O.; Rodrigues, A.P.R.; Figueiredo, J.R.; Teixeira, D.Í.A.; Gastal, E.L. Equine ovarian tissue xenografting: Impacts of cooling, vitrification, and VEGF. Reprod. Fertil. 2021, 2, 251–266. [Google Scholar] [CrossRef]
- Diaz, A.A.; Kubo, H.; Handa, N.; Hanna, M.; Laronda, M.M. A systematic review of ovarian tissue transplantation outcomes by ovarian tissue processing size for cryopreservation. Front. Endocrinol. 2022, 13, 918899. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ozkavukcu, S.; Ku, S.-Y. Current and future perspectives for improving ovarian tissue cryopreservation and transplantation outcomes for cancer patients. Reprod. Sci. 2021, 28, 1746–1758. [Google Scholar] [CrossRef]
- Roness, H.; Meirow, D. Fertility preservation: Follicle reserve loss in ovarian tissue transplantation. Reproduction 2019, 158, F35–F44. [Google Scholar] [CrossRef]
- Grynberg, M.; Poulain, M.; Sebag-Peyrelevade, S.; Le Parco, S.; Fanchin, R. Ovarian tissue and follicle transplantation as an option for fertility preservation. Fertil. Steril. 2012, 97, 1260–1268. [Google Scholar] [CrossRef]
- Morais, A.N.P.; Souza, S.S.; Aguiar, F.L.N.; Gastal, G.D.A.; Brandão, F.A.S.; Souza, J.A.; Ñaupas, L.V.S.; Alves, K.A.; Alves, B.G.; Gastal, M.O.; Rodrigues, A.P.R.; Figueiredo, J.R.; Teixeira, D.Í.A.; Gastal, E.L. Short-term bovine ovarian tissue heterotopic autotransplantation: VEGF beneficial and detrimental effects. Mol. Reprod. Dev. 2025, 92, 70009. [Google Scholar] [CrossRef]
- Ginther, O.J.; Kot, K. Follicular dynamics during the ovulatory season in goats. Theriogenology 1994, 42, 987–1001. [Google Scholar] [CrossRef]
- Sousa, F.C.; Melo, C.H.S.; Teles Filho, A.C.A.; Avelar, S.R.G.; Moura, A.A.A.; et al. Ovarian follicular response to different hormonal stimulation treatments in Canindé goats. Anim. Reprod. Sci. 2011, 125, 88–93. [Google Scholar] [CrossRef]
- Stern, C.J.; Gook, D.; Hale, L.G.; Agresta, F.; Oldham, J.; et al. First clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after bilateral oophorectomy. Hum. Reprod. 2013, 28, 2996–2999. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Yoshioka, N.; Takae, S.; Sugishita, Y.; Tamura, M.; et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum. Reprod. 2015, 30, 608–615. [Google Scholar] [CrossRef]
- Ginther, O.J. Ultrasonic Imaging and Animal Reproduction: Book 2 – Horses; Equiservices Publishing: Cross Plains, WI, USA, 2007; p. 394p. [Google Scholar]
- Pinto, Y.; Alves, K.A.; Alves, B.G.; Souza, S.S.; Brandão, F.A.S.; et al. Heterotopic ovarian allotransplantation in goats: Preantral follicle viability and tissue remodeling. Anim. Reprod. Sci. 2020, 215, 106310. [Google Scholar] [CrossRef] [PubMed]
- Souza, S.S.; Alves, B.G.; Alves, K.A.; Brandão, F.A.S.; Brito, D.C.C.; Gastal, M.O.; et al. Heterotopic autotransplantation of ovarian tissue in a large animal model: Effects of cooling and VEGF. PLoS ONE 2020, 15, e0241442. [Google Scholar] [CrossRef] [PubMed]
- Suvarna, K.; Layton, C.; Bancroft, J. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Elsevier: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Alves, K.A.; Alves, B.G.; Gastal, G.D.A.; et al. The mare model to study the effects of ovarian dynamics on preantral follicle features. PLoS ONE 2016, 11, e0149693. [Google Scholar] [CrossRef]
- Amorim, C.A.; David, A.; Van Langendonckt, A.; Dolmans, M.M.; Donnez, J. Vitrification of human ovarian tissue: Effect of different solutions and procedures. Fertil. Steril. 2011, 95, 1094–1097. [Google Scholar] [CrossRef]
- Junqueira, L.C.; Cossermelli, W.; Brentani, R. Differential staining of collagens type I, II and III by Sirius Red and polarization microscopy. Arch. Histol. Jpn. 1978, 41, 267–274. [Google Scholar] [CrossRef]
- Bandeira, F.T.; Carvalho, A.A.; Castro, S.V.; Lima, L.F.; Viana, D.A.; Evangelista, J.S.; Pereira, M.J.; Campello, C.C.; Figueiredo, J.R.; Rodrigues, A.P. Two methods of vitrification followed by in vitro culture of the ovine ovary: Evaluation of follicular development and extracellular matrix. Reprod. Domest. Anim. 2015, 50, 177–185. [Google Scholar] [CrossRef]
- Taylor, C.R.; Levenson, R.M. Quantification of immunohistochemistry: Issues concerning methods, utility and semiquantitative assessment. Histopathology 2018, 73, 373–385. [Google Scholar] [CrossRef]
- Donfack, N.J.; Alves, K.A.; Alves, B.G.; Rocha, R.M.P.; Bruno, J.B.; Bertolini, M.; Dos Santos, R.R.; Domingues, S.F.S.; Figueiredo, J.R.; Smitz, J.; Rodrigues, A.P.R. Stroma cell-derived factor 1 and connexins (37 and 43) are preserved after vitrification and in vitro culture of goat ovarian cortex. Theriogenology 2018, 116, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Bindels, J.; Squatrito, M.; Bernet, L.; Nisolle, M.; Munaut, C. Ovarian cryopreservation with rapamycin improves fertility restoration in a murine orthotopic transplantation model. Sci. Rep. 2025, 15, 9441. [Google Scholar] [CrossRef] [PubMed]
- Terren, C.; Bindels, J.; Nisolle, M.; Noël, A.; Munaut, C. Evaluation of an alternative heterotopic transplantation model for ovarian tissue to test pharmaceutical improvements for fertility restoration. Reprod. Biol. Endocrinol. 2022, 20, 35. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S. Revisiting the role of heterotopic ovarian transplantation: Futility or fertility? Reprod. Biomed. Online 2014, 28, 141–145. [Google Scholar] [CrossRef]
- Zand-Vakili, M.; Eimani, H.; Golkar-Narenji, A.; Eftekhari-Yazdi, P.; Shahverdi, A.; Mozdziak, P. Histological evaluation of the effect of VEGF on autotransplanted mouse ovaries. Anim. Cells Syst. 2016, 20, 260–266. [Google Scholar] [CrossRef]
- Gao, J.; Huang, Y.; Li, M.; Zhao, H.; Zhao, Y.; Li, R.; Yan, J.; Yu, Y.; Qiao, J. Effect of local basic fibroblast growth factor on subcutaneously allotransplanted ovarian tissue in ovariectomized mice. PLoS ONE 2015, 10, e0134035. [Google Scholar] [CrossRef]


| Species | Investigated Aspects | Main Findings | Reference |
|---|---|---|---|
| Sheep | Evaluation of hormonal recovery, follicular and embryonic development after transplantation of whole frozen ovaries. | Re-establishment of ovarian function in the medium/long term. | [53] |
| Sheep | Assessment of FSH response, fertilization, morphology, and vascularization following heterotopic autotransplantation of whole frozen ovaries. | Presence of follicles at multiple stages, good vascularization and proliferation, although with lower yield compared to controls. | [54] |
| Sheep | Long-term functional evaluation of orthotopic transplantation of whole frozen ovaries using microvascular anastomosis. | Preservation of ovarian function in some animals, presence of follicles at different stages, ovulations, and substantial structural and hormonal recovery. | [55] |
| Sheep | Comparison between slow freezing and vitrification of ovarian tissue transplanted onto the chorioallantoic membrane (CAM) of chicken embryos. | Improved preservation of follicular integrity after slow freezing; more pronounced necrosis following vitrification. | [56] |
| Goat | Medium-term functional analysis of orthotopic transplantation of fresh or vitrified ovarian cortex in ovariectomized goats. | Maintenance of a high percentage of morphologically normal preantral follicles and restoration of endocrine function. No follicles were identified in vitrified tissue after grafting. | [57] |
| Goat | Analysis of primordial follicle survival after vitrification and transplantation of ovarian tissue onto the CAM. | Reduction in primordial follicle density after preservation and grafting, but without increased DNA fragmentation. | [58] |
| Goat | Doppler ultrasonographic evaluation of blood perfusion in ovarian fragments implanted in the ear and neck. | Greater blood flow area in ear implants at 7 and 15 days, indicating that implantation site influences revascularization. | [59] |
| Category | Transplant type | Reference |
|---|---|---|
| Graft size | Whole ovary | [61,62] |
| Hemi-ovary | ||
| Cortical fragment | ||
| Recipient host type | Autotransplantation¹ | [63,64,65] |
| Isotransplantation² | [66] | |
| Allotransplantation³ | [11,61,67] | |
| Xenotransplantation⁴ | [68] | |
| Implantation site | Orthotopic | [61] |
| Heterotopic | [67] |
| Marker | Purpose | Reference |
|---|---|---|
| αSMA | Identification of mature blood vessels | [19,57,73] |
| SDF-1α | Evaluation of angiogenic or reparative activity | [87] |
| CD31 | Identification of newly formed blood vessels | [19,80] |
| Caspase-3 | Detection of apoptosis in stromal cells | [80] |
| DDX4 | Identification of primordial follicles | [88] |
| Ki-67 | Assessment of cell proliferation | [89] |
| PCNA | Assessment of cell proliferation | [73] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
