Submitted:
26 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Biometric Data Collection
2.2. Acoustic Data Collection
2.3. Acoustic Data Analysis
2.4. Numerical Simulations of TS from Nile Tilapia
3. Results
3.1. Experimental Results
3.2. Numerical Simulations of Nile Tilapia Target Strength
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2024 – Blue Transformation in action; Technical report; FAO: Rome, 2024. [Google Scholar] [CrossRef]
- Muñoz-Benavent, P.; Andreu-García, G.; Valiente-González, J.M.; et al. Automatic Bluefin Tuna sizing using a stereoscopic vision system. ICES Journal of Marine Science 2018, 75, 390–401. [Google Scholar]
- Føre, M.; Frank, K.; Norton, T.; et al. Precision fish farming: A new framework to improve production in aquaculture. Biosystems Engineering 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Martinez-de Dios, J.R.; Serna, C.; Ollero, A. Computer vision and robotics techniques in fish farms. Robotica 2003, 21, 233–243. [Google Scholar] [CrossRef]
- Simonds, J.; MacLennan, D. Fisheries Acoustics: Theory and Practice, 2nd ed.; Blackwell Science, 2007. [Google Scholar]
- Knudsen, F.R.; Fosseidengen, J.E.; Oppedal, F.; et al. Hydroacoustic monitoring of fish in sea cages: target strength (TS) measurements on Atlantic Salmon (Salmo Salar). Fisheries Research 2004, 69, 205–209. [Google Scholar] [CrossRef]
- Kristmundsson, J.; Patursson, Ø.; Potter, J.; Xin, Q. Fish monitoring in aquaculture using multibeam echosounders and machine learning. IEEE Access 2023, 11, 108306–108316. [Google Scholar] [CrossRef]
- Puig-Pons, V.; Muñoz-Benavent, P.; Pérez-Arjona, I.; Ladino, A.; Llorens-Escrich, S.; Andreu-García, G.; Valiente-González, J.M.; Atienza-Vanacloig, V.; Ordoñez-Cebrian, P.; Pastor-Gimeno, J.I.; et al. Estimation of Bluefin Tuna (Thunnus thynnus) mean length in sea cages by acoustical means. Applied Acoustics 2022, 197, 108960. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, V.; Rodríguez-Ruiz, A.; Pérez-Arjona, I.; Encina-Encina, L. Horizontal target strength-size conversion equations for sea bass and gilt-head bream. Aquaculture 2018, 490, 178–184. [Google Scholar] [CrossRef]
- Liu, J.M.; Setiazi, H.; Borazon, E.Q. Hydroacoustic assessment of standing stock of Nile tilapia (Oreochromis niloticus) under 120 kHz and 200 kHz split-beam systems in an aquaculture pond. Aquaculture Research 2022, 53, 820–831. [Google Scholar]
- Dwinovantyo, A.; Solikin, S.; Triwisesa, E.; Triyanto, T. Title of the paper. IOP Conference Series: Earth and Environmental Science 2023, 1251, 012022. [Google Scholar] [CrossRef]
- Carrillo, L.; Puig-Pons, V.; Llorens-Escrich, S.; Pérez-Arjona, I.; Espinosa, V. Determinación del TS de la tilapia gris (Oreochromis niloticus) a 200kHz en estanques de subsuelo. In Proceedings of the 53º Congreso español de Acústica.XII Congreso Ibérico de acústica, Elche, Spain, November, 2022. [Google Scholar]
- Carrillo, L.; Puig-Pons, V.; Llorens-Escrich, S.; Pérez-Arjona, I.; Espinosa, V. Advances in biomass estimation of Nile tilapia aquaculture with acoustic methods. In Proceedings of the UACE2025 - Conference Proceedings, Halkidiki, Greece, June, 2025. [Google Scholar]
- Carrillo, L.; Morell-Monzó, S.; Puig-Pons, V.; Pérez-Arjona, I.; Espinosa, V. Biometric relationships and condition factor of Nile tilapia (Oreochromis niloticus) grown in concrete ponds with groundwater. Aquaculture International 2025. [Google Scholar] [CrossRef]
- Balk, H.; Lindem, T. Sonar4 and Sonar5 - Pro Post processing systems. Operator Manual Version 6.0.3; Oslo, Norway, 2011. [Google Scholar]
- Love, R.H. Target strength of an individual fish at any aspect. The Journal of the Acoustical Society of America 1977, 62, 1397–1403. [Google Scholar] [CrossRef]
- McClatchie, S.; Macaulay, G.J.; Coombs, R.F. A requiem for the use of 20 log10 length for acoustic target strength with special reference to deep-sea fishes. ICES Journal of Marine Science 2003, 60, 419–428. [Google Scholar] [CrossRef]
- Pérez-Arjona, I.; Godinho, L.; Espinosa, V. Numerical simulation of target strength measurements from near to far field of fish using the method of fundamental solutions. Acta Acustica united with Acustica 2018, 104, 25–38. [Google Scholar] [CrossRef]
- Jech, J.M.; et al. Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research. Journal of the Acoustical Society of America 2015, 138, 3742–3764. [Google Scholar] [CrossRef] [PubMed]
- Foote, K.G. Importance of the swimbladder in acoustic scattering by fish: A comparison of gadoid and mackerel target strengths. Journal of the Acoustical Society of America 1980, 67, 2084–2089. [Google Scholar] [CrossRef]
- Pérez-Arjona, I.; Godinho, L.; Espinosa, V. Influence of fish backbone model geometrical features on the numerical target strength of swimbladdered fish. ICES Journal of Marine Science 2020, 77, 2870–2881. [Google Scholar] [CrossRef]
- Fässler, S.M.; Brierley, A.S.; Fernandes, P.G. A Bayesian approach to estimating target strength. ICES Journal of Marine Science 2009, 66, 1197–1204. [Google Scholar] [CrossRef]
- Anani, F.; Nunoo, F.K.E. Length-weight relationship and condition factor of Nile tilapia, Oreochromis niloticus fed farm-made and commercial tilapia diet. International Journal of Fisheries and Aquatic Studies 2016, 4, 647–650. [Google Scholar]
- Asmamaw, B.; Beyene, B.; Tessema, M.; Assefa, A. Length-weight relationships and condition factor of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) (Cichlidae) in Koka Reservoir, Ethiopia. International Journal of Fisheries and Aquatic Research 2019, 4, 47–51. [Google Scholar]
- Saenger, R.A. Bivariate normal swimbladder size allometry models and allometric exponents for 38 mesopelagic swimbladdered fish species commonly found in the North Sargasso Sea. Canadian Journal of Fisheries and Aquatic Sciences 1989, 46, 1986–2002. [Google Scholar] [CrossRef]








| Group | Fish number | Mean TL (cm) | Min TL(cm) | Max TL(cm) | Mean W(g) | std W(g) |
|---|---|---|---|---|---|---|
| 1 | 20 | 14.1 | 13.0 | 15.0 | 47 | 10 |
| 2 | 15 | 17.9 | 17.0 | 19.0 | 99 | 7 |
| 3 | 14 | 21.5 | 21.0 | 22.0 | 180 | 8 |
| 4 | 14 | 24.6 | 24.0 | 25.0 | 230 | 16 |
| 5 | 6 | 30.3 | 29.0 | 31.0 | 540 | 60 |
| 6 | 6 | 35.1 | 34.0 | 36.0 | 760 | 60 |
| 7 | 6 | 40.8 | 40.0 | 41.5 | 1380 | 20 |
| 8 | 6 | 43.7 | 43.0 | 44.0 | 1450 | 110 |
| Parameter | Value |
|---|---|
| Frequency | 201 kHz |
| Beam width | 9.9∘ |
| Pulse length | 0.1 ms |
| Ping rate | 5 pings·s−1 |
| Source level | 202.3 dB rel. 1Pa @ 1m |
| Receiver Sensitivity | −64.9 dB |
| Group | Mean TL | (dB) | (dB) | Number | ||||
|---|---|---|---|---|---|---|---|---|
| (cm) | Avg. | Med. | SD | Avg. | Med. | SD | of traces | |
| 1 | 14.1 | −44.2 | −44.0 | 3.4 | −41.3 | −41.0 | 3.5 | 1402 |
| 2 | 17.9 | −43.7 | −43.5 | 3.6 | −40.8 | −40.6 | 3.8 | 2240 |
| 3 | 21.5 | −41.7 | −40.6 | 5.7 | −39.6 | −38.6 | 6.0 | 8696 |
| 4 | 24.6 | −41.5 | −41.4 | 3.4 | −36.9 | −37.1 | 3.7 | 1698 |
| 5 | 30.3 | −38.6 | −38.7 | 4.0 | −36.4 | −36.4 | 4.0 | 5088 |
| 6 | 35.1 | −38.3 | −38.5 | 3.4 | −35.9 | −36.3 | 3.7 | 2291 |
| 7 | 40.8 | −34.9 | −34.4 | 4.5 | −32.5 | −31.9 | 4.6 | 8612 |
| 8 | 43.7 | −34.8 | −34.7 | 3.8 | −32.1 | −32.0 | 3.8 | 5400 |
| Fit | a | b (95% CI) | |
|---|---|---|---|
| 0.205 | 1.14 (1.07, 1.21) | 0.98 | |
| 3.84 (3.50, 4.18) | 0.97 | ||
| 0.0105 | 2.62 (2.39, 2.86) | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
