Submitted:
26 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Morphological Characteristics of Ophiopogon japonicus

2.2. Overall Structure and Working Principle of the Root-Soil Separation Device
2.3. Key Component Structural Design
2.4. Simulation of Root-Soil Separation Mechanism
2.4.1. Acquisition of Simulation Parameters
2.4.2. Discrete Element Modeling of Ophiopogon japonicus Plants and Soil Complexes

2.4.3. Simulation Test Plan

2.5. Field Trial Validation Protocol
3. Results and Discussion
3.1. Patterns of Plant and Stem Changes

3.2. Effects of Vibration Frequency, Amplitude, and Conveying Speed on Separation Efficiency
3.3. Interaction Analysis
| No. | Conveying speed (m/s) | Vibration frequency (Hz) | Amplitude (mm) | Contact number | D80 (mm) |
|---|---|---|---|---|---|
| 1 | 1 | 0 | -1 | 18 | 690 |
| 2 | -1 | -1 | 0 | 39 | 600 |
| 3 | 0 | -1 | -1 | 36 | 555 |
| 4 | 1 | -1 | 0 | 30 | 660 |
| 5 | 0 | 0 | 0 | 16 | 765 |
| 6 | 0 | 1 | 1 | 36 | 780 |
| 7 | 0 | 0 | 0 | 33 | 735 |
| 8 | 0 | 0 | 0 | 32 | 735 |
| 9 | 1 | 0 | 1 | 43 | 795 |
| 10 | 0 | -1 | 1 | 34 | 780 |
| 11 | 0 | 0 | 0 | 28 | 735 |
| 12 | -1 | 1 | 0 | 10 | 630 |
| 13 | 0 | 0 | 0 | 33 | 735 |
| 14 | -1 | 0 | 1 | 17 | 720 |
| 15 | -1 | 0 | -1 | 19 | 570 |
| 16 | 1 | 1 | 0 | 25 | 795 |
| 17 | 0 | 1 | -1 | 14 | 675 |
| Source | Sum of Squares | df | Mean Square | F-value | p-value |
|---|---|---|---|---|---|
| Model | 1186 | 6 | 197.67 | 5.51 | 0.0093 |
| A | 120.13 | 1 | 120.13 | 3.35 | 0.0973 |
| B | 364.5 | 1 | 364.5 | 10.15 | 0.0097 |
| C | 231.13 | 1 | 231.13 | 6.44 | 0.0295 |
| AB | 144 | 1 | 144 | 4.01 | 0.0731 |
| AC | 182.25 | 1 | 182.25 | 5.08 | 0.0479 |
| BC | 144 | 1 | 144 | 4.01 | 0.0731 |
| Residual | 359.06 | 10 | 35.91 | ||
| Lack of Fit | 149.86 | 6 | 24.98 | 0.4776 | 0.8002 |
| Pure Error | 209.2 | 4 | 52.3 |
| Source | Sum of Squares | df | Mean Square | F-value | p-value |
|---|---|---|---|---|---|
| Model | 93,558.31 | 9 | 10395.37 | 40.68 | < 0.0001 |
| A | 22050.00 | 1 | 22050.00 | 86.29 | < 0.0001 |
| B | 10153.13 | 1 | 10153.13 | 39.73 | 0.0004 |
| C | 42778.12 | 1 | 42,778.12 | 167.41 | < 0.0001 |
| AB | 2756.25 | 1 | 2756.25 | 10.79 | 0.0134 |
| AC | 506.25 | 1 | 506.25 | 1.98 | 0.2021 |
| BC | 3600.00 | 1 | 3600.00 | 14.09 | 0.0071 |
| A2 | 5686.58 | 1 | 5686.58 | 22.25 | 0.0022 |
| B2 | 4585.26 | 1 | 4585.26 | 17.94 | 0.0039 |
| C2 | 464.21 | 1 | 464.21 | 1.82 | 0.2197 |
| Residual | 1788.75 | 7 | 255.54 | ||
| Lack of Fit | 1068.75 | 3 | 356.25 | 1.98 | 0.2593 |
| Pure Error | 720.00 | 4 | 180.00 | ||
| Cor Total | 95,347.06 | 16 |
3.4. Key Parameter Optimization
3.5. Field Trial Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- State Pharmacopoeia Commission of the People’s Republic of China. Pharmacopoeia of the People’s Republic of China: Volume I; China Pharmaceutical Science and Technology Press: Beijing, 2025. [Google Scholar]
- Zhang, Wanyue; Hu, Hong; Hu, Zhichao; Wu, Ziqiang; Chen, Jun. Research Status and Development Trends of Potato-Soil Separation Technology. Agricultural Science and Technology 2025, 45, 43–47. [Google Scholar] [CrossRef]
- Liu, C.; Ma, Z.; Wang, S.; Zhao, L.; Xing, L. Research Status and Progress of Potato-Soil Separation Device in Potato Harvester. Academic Journal of Science and Technology 2025, 15, 119–123. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Zhang, C.; Zhao, Y.; Du, X.; Zhang, X.; Liu, J.; Zhang, C.; Zhao, Y.; Du, X. Design and Experimentation of Small Potato Harvester for Heavy Soil in Hilly and Mountainous Areas. Agronomy 2024, 14. [Google Scholar] [CrossRef]
- Wu, B.; Huang, T.; Qiu, X.; Zuo, T.; Wang, X.; Xie, F.; Wu, B.; Huang, T.; Qiu, X.; Zuo, T.; et al. Design and Experimental Study of Potato-Soil Separation Device for Sticky Soil Conditions. Applied Sciences 2021, 11. [Google Scholar] [CrossRef]
- Tao, G.; Zhang, Z.; Yi, S.; Xia, C.; Ma, Y. Design and Experiment of Oscillating Screen Root-Soil Separation Device for Isatis Root Harvester. Transactions of the Chinese Society of Agricultural Machinery 2022, 53, 109–119. [Google Scholar]
- Wang, F. A.; Wen, B.; Xie, X. H.; Xie, K. T.; Guo, S. W.; Zhang, Z. G. Analysis of Working Mechanism and Parameter Optimization of Conveying and Separating Device for Notoginseng Harvester. Transactions of the Chinese Society of Agricultural Machinery 2023, 54, 201–211. [Google Scholar]
- Wu, Z.; Sai, Y.; Xie, K.; Zhang, Z.; Guo, R.; Wang, P. Optimization of Vibration Point Position for Notoginseng Separation Device Based on DEM-MBD Simulation. Transactions of the Chinese Society of Agricultural Machinery 2025, 56, 264–274. [Google Scholar]
- Pan, Y.; Yang, R.; Zhang, H.; Zhang, J.; Zha, X.; Qiu, Z.; Wu, M. Experiment and Optimization of the Potato-Soil Separation and Conveying Device for a Harvester Using RecurDyn-EDEM Coupling Simulation. International Journal of Agricultural and Biological Engineering 2025, 18, 149–156. [Google Scholar]
- Yan, Shuai; Cui, Qingliang; Yanqing, Zhang; Guang, Li; Zhihong, Zhao; Nan, An. Design and Experiment of a Drum-Type Root-Soil Separation Test Bench for Codonopsis Harvesting. Journal of Gansu Agricultural University 2023, 58, 226–234. [Google Scholar] [CrossRef]
- Wang, C.; Li, P.; Zhao, Z.; Pan, W.; Han, Q.; He, Z.; Yang, M.; Zhang, Z. Performance Analysis on Root-Soil Separation of Panax Notoginseng Using DEM-CFD Method and Air-Jet System. Computers and Electronics in Agriculture 2025, 239, 111050. [Google Scholar] [CrossRef]
- Liu, W. R.; Zhang, G. Z.; Liu, H. P.; Zhou, Y.; Wang, H. C.; Pei, L.; Li, Z. H. Design and Testing of Centrifugal Rotating Root-Soil Separation Device for Taro Harvester. Transactions of the Chinese Society for Agricultural Engineering 2024, 40, 14–26. [Google Scholar]
- Luo Jun; Liu Yu; Jiang Huixia; Zhao Bangtai; Liu Bo; Guo Jia; Ye Jianghong; Mei Linsen; Li Yun; Guo Xi. Design Study of Soil Separation Device for Mechanized Harvesting of Ophiopogon Root Tubers. Southern Agricultural Machinery 2022, 53, 1–4.
- Lu Jinqing; Sun He; Dui Han; Peng Mannan; Yu Jiayu. Improved Design and Testing of Separation and Conveying Device for Potato Digger in Heavy Clay Soil. Transactions of the Chinese Society of Agricultural Machinery 2017, 48, 146–155.
- Li Aichao; Zheng Zhi’an; Huang Luqi; Gao Lei; Cui Baocong; Wei Qing. Design and Testing of a Front-Mounted Digging Small Track-Type Ophiopogon Harvesting Machine. Research in Agricultural Mechanization 2024, 46, 58–65. [CrossRef]
- Rodriguez Hurtado, L. Simulation and Testing of a Vibrating Digger Blade for Root Crops. Doctor of Philosophy, Louisiana State University and Agricultural & Mechanical College.
- Fang, W.; Wang, X.; Han, D.; Zang, N.; Chen, X.; Ohiemi, I.E. Parameter Optimization and Disturbance Analysis of the Film Picking Device of the Chain-Type Plough Layer Residual Film Recovery Machine Based on DEM-MBD Coupling. Computers and Electronics in Agriculture 2024, 222, 109041. [Google Scholar] [CrossRef]
- Cheng, J.; Zheng, K.; Xia, J.; Liu, G.; Jiang, L.; Li, D.; Cheng, J.; Zheng, K.; Xia, J.; Liu, G.; et al. Analysis of Adhesion between Wet Clay Soil and Rotary Tillage Part in Paddy Field Based on the Discrete Element Method. Processes 2021, 9. [Google Scholar] [CrossRef]
- Sun, K.; Yu, J.; Zhao, J.; Liang, L.; Wang, Y.; Yu, Y. A DEM-Based General Modeling Method and Experimental Verification for Wheat Plants in the Mature Period. Computers and Electronics in Agriculture 2023, 214, 108283. [Google Scholar] [CrossRef]
- NY/T 3481-2019; Rhizome Chinese Medicinal Materials Harvesters Traditional Specification of Quality Evaluation. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2019.
- DG/T 189-2024; Rhizome Chinese Medicinal Materials Harvesters. Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China.










| Parameter | Soil | Plant | chain rod |
|---|---|---|---|
| Poisson’s Ratio | 0.26 | 0.35 | 0.3 |
| Shear modulus/GPa | 0.96 | 0.44 | 79 |
| Density/kg·m⁻³ | 1260 | 1021 | 7865 |
| Parameter | Soil- chain rod | Soil-Plant | Soil-Soil | Plant-chain rod |
|---|---|---|---|---|
| Static Friction Coefficient | 0.30 | 0.30 | 0.30 | 0.30 |
| Rolling friction coefficient | 0.05 | 0.05 | 0.15 | 0.01 |
| Impact recovery coefficient | 0.30 | 0.30 | 0.30 | 0.30 |
| Number. | Conveying speed (m/s) | Vibration frequency (Hz) | Amplitude (mm) |
|---|---|---|---|
| 1 | 0.8 | 8 | 15 |
| 2 | 1.0 | 10 | 20 |
| 3 | 1.2 | 12 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
