Submitted:
26 January 2026
Posted:
26 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design
2.3. Tomato Soil-Borne Disease Survey
2.4. Tomato Yield Survey
2.5. Data Analysis
3. Results
3.1. Effects of Different Fumigant Treatments on Soil Bacterial and Fungal Communities
3.1.1. Soil SamplesDepth Evaluation and ASV Clustering Analysis
3.1.2. Effects of Different Fumigation Treatments on the α Diversity of Soil Bacteria and Fungi
3.1.3. Analysis of Bacteria and Fungi in Soil Under Different Fumigation Treatments at the Phylum Level
3.1.4. Analysis of the Dominant Bacterial and Fungal Genera in Soil Under Different Fumigation Treatments
3.1.5. Special Communities of Soil Bacteria and Fungi Under Different Fumigation Treatments
3.2. Effects of Different Fumigation Treatments on Tomato Yield
3.3. Effects of Different Fumigation Treatments on Major Soil-Borne Diseases of Tomato
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhowmik, D.; Kumar, K.S.; Paswan, S.; Srivastava, S. Tomato-A Natural Medicine and Its Health Benefits. Journal of Pharmacogn and Phytochem. 2012, 1, 33–43. [Google Scholar]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Ally, N.M.; Neetoo, H.; Ranghoo-Sanmukhiya, V.M.; Coutinho, T.A. Greenhouse-grown tomatoes: microbial diseases and their control methods: a review. International Journal of Phytopathology 2023, 12, 99–127. [Google Scholar] [CrossRef]
- Su, L.; Li, H.; Wang, J.; Gao, W.; Shu, X.; Sun, X.; Wang, K.; Duan, Y.; Liu, Y.; Kuramae, E.; Zhang, R.; Shen, B. Composition, function and succession of bacterial communities in the tomato rhizosphere during continuous cropping. Biol Fertil Soils 2023, 59, 723–732. [Google Scholar] [CrossRef]
- Liu, T.; Cheng, Z.; Meng, H.; Ahmad, I.; Zhao, H. Growth, yield and quality of spring tomato and physicochemical properties of medium in a tomato/garlic intercropping system under plastic tunnel organic medium cultivation. Scientia Horticulturae 2014, 170, 159–168. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, G.; Zhang, F.; Sun, Z.; Geng, G.; Li, T. Effects of Continuous Tomato Monoculture on Soil Microbial Properties and Enzyme Activities in a Solar Greenhouse. Sustainability 2017, 9, 317. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.; Bakker, P.A. The rhizosphere microbiome and plant health. Trends Plant Science 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant health: Feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol. 2019, 103, 1155–1166. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Sheflin, A.M.; Manter, D.K.; Vivanco, J.M. Manipulating the soil microbiome to increase soil health and plant fertility. Biology and Fertility of Soils 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [PubMed]
- Panth, M.; Hassler, S.C.; Baysal-Gurel, F. Methods for Management of Soilborne Diseases in Crop Production. Agriculture 2020, 10, 16. [Google Scholar] [CrossRef]
- Mao, L.; Liu, X.; Sial, M.U.; Zhang, L.; Zhu, L.; Wu, C.; Cao, A. Soil application of dazomet combined with 1, 3-dichloropropene against soilborne pests for tomato production. Scientific Reports 2024, 14, 31439. [Google Scholar] [CrossRef]
- Wang, L.; Hu, T.; Ji, L.; Cao, K. Inhibitory efficacy of calcium cyanamide on the pathogens of replant diseases in strawberry. Frontiers of Agriculture in China 2007, 1, 183–187. [Google Scholar] [CrossRef]
- Triky-Dotan, S.; Austerweil, M.; Steiner, B.; Peretz-Alon, Y.; Katan, J.; Gamliel, A. Generation and dissipation of methyl isothiocyanate in soils following metam sodium fumigation: impact on Verticillium control and potato yield. Plant disease 2007, 91, 497–503. [Google Scholar] [CrossRef]
- Nicola, L.; Turco, E.; Albanese, D.; Donati, C.; Thalheimer, M.; Pindo, M.; Insam, H.; Cavalieri, D.; Pertot, I. Fumigation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Applied Soil Ecology 2017, 113, 71–79. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Y.; Han, P.; Hao, J.; Pan, H.; Liu, J. Impact of soil disinfestation on fungal and bacterial communities in soil with cucumber cultivation. Frontiers in microbiology 2021, 12, 685111. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Jiang, W.; Xu, S.; Fan, H.; Chen, X.; Shen, X.; Yin, C.; Mao, Z. An emerging chemical fumigant: two-sided effects of dazomet on soil microbial environment and plant response. Environmental Science and Pollution Research 2022, 29, 3022–3036. [Google Scholar] [CrossRef]
- Wu, R.; Li, Y.; Meng, J.; Han, J. Effects of Dazomet Fumigation Combined with Trichoderma harzianum on Soil Microbial Community Structure of Continuously Cropped Strawberry. Horticulturae 2025, 11, 35. [Google Scholar] [CrossRef]
- Liu, L.; Sun, C.; Liu, X.; He, X.; Liu, M.; Wu, H.; Tang, C.; Jin, C.; Zhang, Y. Effect of calcium cyanamide, ammonium bicarbonate and lime mixture, and ammonia water on survival of Ralstonia solanacearum and microbial community. Scientific reports 2016, 6, 19037. [Google Scholar] [CrossRef] [PubMed]
- De Ceuster, H.; Pauwels, F. Soil Disinfestations in the Belgian Horticulture- A Practice View. Acta Hortic. 1995, 382, 37–50. [Google Scholar] [CrossRef]
- Pervaiz, Z.H.; Iqbal, J.; Zhang, Q.; Chen, D.; Wei, H.; Saleem, M. Continuous Cropping Alters Multiple Biotic and Abiotic Indicators of Soil Health. Soil Systems 2020, 4, 59. [Google Scholar] [CrossRef]
- Dong, L.; Xu, J.; Zhang, L.; Yang, J.; Liao, B.; Li, X.; Chen, S. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chinese medicine 2017, 12, 18. [Google Scholar] [CrossRef]
- Meszka, B.; Malusà, E. Effects of soil disinfection on health status, growth and yield of strawberry stock plants. Crop Protection 2014, 63, 113–119. [Google Scholar] [CrossRef]
- Chen, L.; Xie, X.; Kang, H.; Liu, R.; Shi, Y.; Li, L.; Xie, J.; Li, B.; Chai, A. Efficiency of calcium cyanamide on the control of tomato soil-borne disease and their impacts on the soil microbial community. Applied Soil Ecology 2022, 176, 104522. [Google Scholar] [CrossRef]
- Larki, R.; Mehrabi-Koushki, M.; Farokhinejad, R. Identification of Chaetomium and Amesia species associated with different diseases of some herbaceous ornamentals in Ahvaz. Journal of Microbial Biology 2019, 8, 33–50. [Google Scholar]
- Ma, L.J.; Geiser, D.M.; Proctor, R.H.; Rooney, A.P.; O’Donnell, K.; Trail, F.; Gardiner, D.M.; Manners, J.M.; Kazan, K. Fusarium pathogenomics. Annual review of microbiology 2013, 67, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Mei, Z.; Zhang, X.; Xue, C.; Zhang, C.; Ma, T.; Zhang, S. Suppression of Fusarium wilt of cucumber by ammonia gas fumigation via reduction of Fusarium population in the field. Scientific Reports 2017, 7, 43103. [Google Scholar] [CrossRef]
- Zhu, J.; Ren, Z.; Huang, B.; Cao, A.; Wang, Q.; Yan, D.; Ouyang, C.; Wu, J.; Li, Y. Effects of Fumigation with Allyl Isothiocyanate on Soil Microbial Diversity and Community Structure of Tomato. Journal of agricultural and food chemistry 2020, 68, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.C. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology 1982, 4, 195–209. [Google Scholar] [CrossRef]
- Uwaremwe, C.; Bao, W.; Daoura, B.G.; Mishra, S.; Zhang, X.; Shen, L.; Xia, S.; Yang, X. Shift in the rhizosphere soil fungal community associated with root rot infection of Plukenetia volubilis Linneo caused by Fusarium and Rhizopus species. International microbiology: the official journal of the Spanish Society for Microbiology 2024, 27, 1231–1247. [Google Scholar] [CrossRef]
- Xiang, D.; Wu, Y.; Li, H.; Liu, Q.; Zhou, Z.; Chen, Q.; Zhang, N.; Xu, L. Soil Fungal Diversity and Community Composition in Response to Continuous Sweet Potato Cropping Practices. Phyton-International Journal of Experimental Botany 2021, 90, 1247–1258. [Google Scholar] [CrossRef]
- Dangi, S.R.; Gerik, J.S.; Tirado-Corbalá, R.; Ajwa, H. Soil microbial community structure and target organisms under different fumigation treatments. Applied and Environmental Soil Science 2015, 1, 673264. [Google Scholar] [CrossRef]
- Jia, H.; Khashi-ur-Rahman, M.; Wu, F.; Zhou, X. Effects of rotation of Indian mustard on cucumber seedling rhizosphere fungal community composition. International Journal of Agriculture and Biology 2020, 23, 757–762. [Google Scholar] [CrossRef]
- Nielsen, J.C.; Grijseels, S.; Prigent, S.; Ji, B.; Dainat, J.; Nielsen, K.F.; Frisvad, J.C.; Workman, M.; Nielsen, J. Global analysis of biosynthetic gene clusters reveals vast potential of secondary metabolite production in Penicillium species. Nature microbiology 2017, 2, 17044. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Gupta, V.V.; Harvey, P.R.; Ryder, M.H. The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Canadian Journal of Microbiology 2007, 53, 106–115. [Google Scholar] [CrossRef]
- Nayak, S.; Samanta, S.; Mukherjee, A.K. Beneficial role of Aspergillus sp. in agricultural soil and environment. In Frontiers in soil and environmental microbiology; 2020; pp. 17–36. [Google Scholar]
- Soytong, K.; Kanokmedhakul, S.; Kukongviriyapa, V.; Isobe, M. Application of Chaetomium species (Ketomium) as a new broad spectrum biological fungicide for plant disease control. Fungal Divers. 2001, 7, 1–15. [Google Scholar]
- Ko, W.H.; Yang, C.H.; Lin, M.J.; Chen, C.Y.; Tsou, Y.J. Humicola phialophoroides sp. nov. from soil with potential for biological control of plant diseases. Botanical Studies 2011, 52, 197–202. [Google Scholar]
- Yang, C.H.; Lin, M.J.; Su, H.J.; Ko, W.H. Multiple resistance-activating substances produced by Humicola phialophoroides isolated from soil for control of Phytophthora blight of pepper. Botanical studies 2014, 55, 40. [Google Scholar] [CrossRef]
- Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Studies in Mycolog 2014, 78, 175–341. [Google Scholar] [CrossRef]
- Visagie, C.M.; Jacobs, K. Three new additions to the genus Talaromyces isolated from Atlantis sandveld fynbos soils. Persoonia-Molecular Phylogeny and Evolution of Fungi 2012, 28, 14–24. [Google Scholar] [CrossRef]
- Oskiera, M.; Szczech, M.; Stępowska, A.; Smolińska, U.; Bartoszewski, G. Monitoring of Trichoderma species in agricultural soil in response to application of biopreparations. Biological Control. 2017, 113, 65–72. [Google Scholar] [CrossRef]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of applied microbiology 2020, 128(6), 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Jahan, T.; Rabbee, M.F.; Islam, M.M.; Habib, M.A.; Rana, M.S.; Basak, A.; Zaki, R.M.; Hasan, M.M.; Baek, K.H. Biocontrol and beyond: the versatile roles of Streptomyces in agriculture. Reviews in Environmental Science and Bio/Technology 2025, 24, 861–884. [Google Scholar] [CrossRef]





| Kingdom | treatment | Community abundance index | Community diversity index | ||
|---|---|---|---|---|---|
| Chao1 index | Observed species | Shannon | Simpson | ||
| Bacteria | CK | 3882.77±211.97a | 3366.47±88.34a | 10.73±0.05a | 0.9989±0.0001a |
| DZ1 | 3466.94±134.27b | 3001.10±162.29b | 10.00 ±0.15c | 0.9961±0.0008bc | |
| DZ2 | 3019.60±98.12cd | 2653.87±51.71cd | 9.88±0.12cd | 0.9964±0.0007b | |
| MS1 | 2892.61±259.11d | 2488.50±168.63d | 9.73±0.24de | 0.9949±0.0017c | |
| MS2 | 3354.01±134.27bc | 2988.30±65.43b | 10.49±0.04ab | 0.9986±0.0001a | |
| CC1 | 2845.14±275.04d | 2426.53±226.33d | 9.50 ±0.16e | 0.9950±0.0007bc | |
| CC2 | 3105.69±215.78cd | 2801.47±132.86bc | 10.29±0.07b | 0.9982±0.0001a | |
| Fungi | CK | 369.17±16.94a | 368.83±17.02a | 6.32±0.10ab | 0.9676±0.0051a |
| DZ1 | 252.78±36.41cd | 250.33±33.30cd | 5.77±0.14cd | 0.9577±0.0091ab | |
| DZ2 | 400.45 ±22.41a | 399.63±21.60a | 6.62±0.46a | 0.9745±0.0082a | |
| MS1 | 265.94 ±11.48cd | 265.63±11.47cd | 5.83±0.16bc | 0.9571±0.0079ab | |
| MS2 | 320.68±40.62b | 319.97±40.94b | 5.22±0.33e | 0.9202±0.0222c | |
| CC1 | 231.30±19.48d | 230.33±19.16d | 5.42±0.23cde | 0.9403±0.0064bc | |
| CC2 | 290.40±9.46bc | 289.73±9.48bc | 5.28±0.37de | 0.9324±0.0209c | |
| Kingdom | Serial Number | Genus | CK | DZ1 | DZ2 | MS1 | MS2 | CC1 | CC2 |
|---|---|---|---|---|---|---|---|---|---|
| % | |||||||||
| Bacteria | 1 | Subgroup_6 | 8.10 | 5.01 | 4.19 | 4.23 | 5.72 | 3.74 | 5.72 |
| 2 | Bacillus | 3.48 | 4.76 | 11.76 | 3.29 | 3.41 | 2.27 | 0.89 | |
| 3 | SBR1031 | 3.04 | 0.99 | 4.95 | 2.58 | 3.77 | 5.33 | 4.44 | |
| 4 | Actinomadura | 0.26 | 11.08 | 2.31 | 1.02 | 0.91 | 6.57 | 0.48 | |
| 5 | Micromonospora | 1.88 | 3.82 | 7.63 | 1.29 | 1.91 | 1.58 | 1.73 | |
| 6 | A4b | 2.01 | 0.84 | 2.12 | 1.26 | 2.95 | 2.73 | 2.35 | |
| 7 | KD4-96 | 1.53 | 1.91 | 2.22 | 1.77 | 2.03 | 2.15 | 1.55 | |
| 8 | Meiothermus | 0.00 | 3.32 | 0.28 | 3.43 | 0.00 | 6.05 | 0.01 | |
| 9 | Gitt-GS-136 | 1.40 | 1.91 | 1.77 | 2.04 | 1.78 | 2.09 | 1.65 | |
| 10 | MND1 | 1.91 | 1.70 | 1.17 | 1.54 | 2.14 | 1.48 | 1.54 | |
| 11 | AKYG1722 | 1.11 | 1.67 | 1.26 | 1.90 | 1.46 | 1.75 | 1.17 | |
| 12 | Truepera | 0.25 | 0.28 | 0.38 | 6.90 | 0.82 | 0.70 | 0.29 | |
| 13 | CCD24 | 1.11 | 0.83 | 1.09 | 1.03 | 1.23 | 1.24 | 1.95 | |
| 14 | Sphingomonas | 1.64 | 0.77 | 0.76 | 1.21 | 1.03 | 1.12 | 1.60 | |
| 15 | Streptomyces | 0.73 | 1.26 | 1.58 | 0.50 | 0.90 | 1.46 | 0.95 | |
| 16 | Saccharimonadales | 1.33 | 0.41 | 0.54 | 0.95 | 0.59 | 0.85 | 2.07 | |
| 17 | S0134_terrestrial_group | 0.95 | 0.92 | 0.97 | 1.57 | 0.59 | 1.16 | 0.54 | |
| 18 | Steroidobacter | 0.71 | 0.88 | 0.70 | 1.17 | 0.80 | 0.87 | 1.54 | |
| 19 | Haliangium | 1.07 | 1.02 | 0.75 | 0.55 | 0.98 | 0.94 | 1.11 | |
| 20 | Virgisporangium | 0.73 | 0.19 | 0.75 | 0.37 | 1.01 | 0.53 | 2.80 | |
| 21 | 67-14 | 0.96 | 1.02 | 0.54 | 1.09 | 1.16 | 0.82 | 0.71 | |
| 22 | Gaiella | 0.98 | 1.19 | 0.66 | 0.95 | 0.92 | 0.80 | 0.67 | |
| 23 | Nocardioides | 1.06 | 1.43 | 0.47 | 0.33 | 1.23 | 0.47 | 0.87 | |
| 24 | Dongia | 0.69 | 0.45 | 0.38 | 0.64 | 1.03 | 0.45 | 1.38 | |
| 25 | Solirubrobacter | 1.12 | 0.61 | 0.26 | 0.43 | 1.26 | 0.36 | 0.85 | |
| 26 | Lysobacter | 1.08 | 0.37 | 0.33 | 0.35 | 0.71 | 0.38 | 1.21 | |
| 27 | Brevibacillus | 0.06 | 1.19 | 0.87 | 1.02 | 0.02 | 0.85 | 0.00 | |
| 28 | Acidibacter | 0.46 | 0.30 | 0.63 | 0.53 | 0.52 | 0.47 | 1.07 | |
| 29 | Vulcaniibacterium | 0.00 | 1.27 | 0.03 | 0.94 | 0.0 | 1.11 | 0.00 | |
| 30 | Paenisporosarcina | 0.19 | 0.17 | 0.17 | 1.28 | 0.68 | 0.09 | 0.33 | |
| 31 | Thermopolyspora | 0.00 | 1.17 | 0.51 | 0.09 | 0.00 | 0.80 | 0.00 | |
| 32 | Rhodomicrobium | 0.26 | 0.10 | 0.19 | 0.18 | 0.41 | 0.24 | 1.07 | |
| The relative abundance > 1% of the genus number. | 16 | 17 | 12 | 19 | 16 | 16 | 18 | ||
| Dominant genus proportion / % | 32.88 | 44.71 | 42.05 | 39.63 | 33.12 | 41.84 | 35.95 | ||
| Fungi | 1 | Aspergillus | 15.67 | 26.53 | 2.89 | 25.69 | 20.14 | 15.05 | 20.55 |
| 2 | Alternaria | 3.70 | 0.59 | 10.78 | 1.69 | 13.56 | 3.38 | 4.16 | |
| 3 | Mortierella | 4.65 | 2.16 | 2.67 | 5.75 | 4.24 | 2.78 | 5.96 | |
| 4 | Zopfiella | 0.00 | 0.00 | 5.99 | 0.00 | 0.00 | 1.23 | 17.65 | |
| 5 | Myceliophthora | 3.54 | 9.16 | 0.87 | 1.16 | 1.96 | 7.01 | 0.29 | |
| 6 | Amesia | 10.75 | 7.96 | 1.72 | 2.35 | 0.30 | 0.00 | 0.00 | |
| 7 | Remersonia | 1.39 | 2.39 | 7.46 | 2.87 | 1.28 | 5.70 | 1.41 | |
| 8 | Fusarium | 3.30 | 0.21 | 1.15 | 2.91 | 8.25 | 0.24 | 0.69 | |
| 9 | Talaromyces | 0.57 | 4.93 | 0.18 | 3.33 | 1.06 | 4.10 | 0.92 | |
| 10 | Acremonium | 3.15 | 2.25 | 4.01 | 0.85 | 2.01 | 1.96 | 0.78 | |
| 11 | Sodiomyces | 1.75 | 1.68 | 0.82 | 4.26 | 2.94 | 0.38 | 0.11 | |
| 12 | Thermomyces | 0.04 | 4.52 | 0.08 | 0.00 | 0.00 | 4.48 | 0.87 | |
| 13 | Schizothecium | 0.00 | 0.00 | 8.82 | 0.00 | 0.00 | 0.00 | 0.96 | |
| 14 | Mycothermus | 0.25 | 1.15 | 1.82 | 0.49 | 0.07 | 3.50 | 0.96 | |
| 15 | Chaetomium | 3.16 | 0.17 | 0.25 | 0.76 | 0.65 | 0.05 | 0.15 | |
| 16 | Rhizophlyctis | 0.51 | 0.00 | 3.56 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 17 | Penicillium | 0.05 | 1.62 | 0.29 | 0.74 | 0.30 | 0.41 | 0.14 | |
| 18 | Humicola | 2.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | |
| 19 | Mycosphaerella | 0.2 | 1.24 | 0.1 | 1.23 | 0.03 | 0.3 | 0.03 | |
| 20 | Rhizopus | 1.92 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
| 21 | Trichoderma | 0.12 | 0.06 | 0.70 | 0.20 | 0.02 | 0.25 | 1.20 | |
| 22 | Solicoccozyma | 0.28 | 0.00 | 0.07 | 1.30 | 0.84 | 0.00 | 0.00 | |
| 23 | Ascobolus | 1.48 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.9 | |
| 24 | Curvularia | 0.00 | 0.04 | 1.44 | 0.00 | 0.16 | 0.06 | 0.14 | |
| 25 | Naganishia | 0.12 | 0.00 | 0.00 | 0.09 | 0.36 | 0.00 | 1.11 | |
| 26 | Idriella | 0.00 | 0.00 | 1.11 | 0.00 | 0.05 | 0.00 | 0.00 | |
| The relative abundance > 1% of the genus number. | 13 | 11 | 13 | 11 | 9 | 10 | 7 | ||
| Dominant genus proportion / % | 56.71 | 65.59 | 53.43 | 52.53 | 55.44 | 49.17 | 52.04 | ||
| Treatment | Average fruit per plant (units) | Average single fruit weight (g-1) | Yield kg·667 m-2 |
|---|---|---|---|
| CK | 18.00±1.00b | 145.67±6.6b | 4962.08±119.40b |
| DZ | 20.33±1.53a | 163.8±3.72a | 6190.66±428.39a |
| MS | 20.67±0.58a | 166.57±3.45a | 6402.03±247.83a |
| CC | 21.00±1.00a | 172.2±7.65a | 6719.03±280.19a |
| Treatment | Incidence % | Disease Index | ||||
|---|---|---|---|---|---|---|
| Fusarium Wilt | Bacterial Wilt | Root Rot | Fusarium Wilt | Bacterial Wilt | Root Rot | |
| CK | 17.33±2.67a | 4.67±1.70a | 15.33±1.70a | 9.60±2.14a | 4.60±2.04a | 12.60±1.54a |
| DZ | 4.00±1.94b | 0.00±0.00b | 2.67±1.24c | 1.60±0.86b | 0.00±0.00b | 0.80±0.39c |
| MS | 12.67±2.86a | 0.00±0.00b | 8.67±1.33b | 6.00±1.67ab | 0.00±0.00b | 4.53±1.85b |
| CC | 5.33±1,70b | 0.00±0.00b | 4.67±1,33bc | 2.4±0.78b | 0.00±0.00b | 1.47±0.68c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
