Submitted:
21 January 2026
Posted:
23 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. Global Significance of Rice Production
1.2. Rice Husk as a Major Agricultural Byproduct
1.3. Challenges and Research Trends
2. Origin and Production Methods of Rice Husk Ash
2.1. Thermal Transformation Process
2.2. Overview of Production Methods
2.3. Influence of Production Methods on Rice Husk Ash Properties
2.4. Comparative Analysis of Production Methods and Selection Criteria
3. Chemical and Physical Properties of Rice Husk Ash
3.1. Chemical Composition of Rice Husk Ash
3.2. Physical Properties of Rice Husk Ash
3.3. Factors Affecting the Chemical and Physical Properties
3.4. Pozzolanic Activity of Rice Husk Ash
4. Applications and Uses of Rice Husk Ash
4.1. Construction Materials
4.1.1. Concrete Applications
4.1.2. Brick Production
4.2. Silica Extraction
4.3. Ceramic Applications
4.4. Environmental Applications
4.5. Emerging Applications
4.5.1. Nanotechnology
4.5.2. Materials Science
5. Discussion on Rice Husk Ash Utilization
5.1. Critical Analysis of Current Research
5.2. Comparative Advantages and Limitations
5.2.1. Environmental Advantages
5.2.2. Material Performance Advantages
5.2.3. Economic Advantages
5.2.4. Limitations
5.3. Implementation Barriers
5.3.1. Technical Challenges
5.3.2. Economic Barriers
5.3.3. Regulatory and Policy Barriers
5.3.4. Logistical and Infrastructural Barriers
6. Conclusion and Future Research
6.1. Conclusion
6.2. Future Research Directions
Author Contributions
Funding
Ethics, Consent to Participate, and Consent to Publish
Data Availability Statement
Competing Interests
Clinical Trial Number
References
- Alliance Bioversity and CIAT, Importance of Rice Crop Research. Alliance Bioversity and CIAT. 2025. Available online: https://alliancebioversityciat.org/crops/rice/importance (accessed on 8 May 2025).
- Linares, F. African rice ( Oryza glaberrima ): History and future potential. Proc. Natl. Acad. Sci. U.S.A 2002, 99(25), 16360–16365. [Google Scholar] [CrossRef] [PubMed]
- TorontoPho, Rice and Culture: How this Simple Grain Shapes the Culinary Traditions of Different Societies. TorontoPho. 2025. Available online: https://www.torontopho.com/blogs/rice-and-culture-how-this-simple-grain-shapes-the-culinary-traditions-of-different-societies.html (accessed on 8 May 2025).
- USDA; Economic Research Service. Rice. U.S. Department of Agriculture, 2025. Available online: https://www.ers.usda.gov/topics/crops/rice (accessed on 8 May 2025).
- USDA, Foreign Agricultural Service, Rice - Production. U.S. Department of Agriculture, 2025. Available online: https://www.fas.usda.gov/data/production/commodity/0422110 (accessed on 8 May 2025).
- Childs, N.; Abadam, V. Rice outlook: April 2025 (Report No. RCS-25C). U.S. Department of Agriculture, Economic Research Service, 2025. Available online: https://ers.usda.gov/sites/default/files/_laserfiche/outlooks/111379/RCS-25C.pdf?v=34269 (accessed on 8 May 2025).
- DFGRUPO, The Global Importance of Rice. DFGRUPO, 2023. Available online: https://www.dfgrupo.com/en/the-global-importance-of-rice/ (accessed on 8 May 2025).
- Bin Rahman, A. N. M. R.; Zhang, J. Trends in rice research: 2030 and beyond. Food Energy Secur. 2023, 12(2), e390. [Google Scholar] [CrossRef]
- Muleya, F.; Tembo, C.; Lungu, A.; Muwila, N. Partial replacement of cement with rice husk ash in concrete production: An exploratory cost-benefit analysis for low-income communities. Eng. Manag. Prod. Serv. 2021, 13, 127–141. [Google Scholar] [CrossRef]
- Odoom, D. Factors affecting cracking and breakage of rice (Oryza sativa L.) during milling: A review. J. Food Technol. Pres. 2021, 3(1), 116. [Google Scholar] [CrossRef]
- Rodrigo, A.; Perera, S. Potential and viability of rice husk based power generation in Sri Lanka. Engineer: J. Inst. Eng. Sri Lanka 2014, 46. [Google Scholar] [CrossRef]
- Ghaly, E.; Li, B.; Zhang, Y. Physical properties of rice residues as affected by variety and climatic and cultivation conditions in three continents. Am. J. Appl. Sci. 2012, 9, 1757–1768. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Othman, A.; Zhang, Z. Performance of rice husk ash under different two periods combustion conditions and effect of particle size on the strength of mortar. Mater. Construcción 2023, 73(349), Art. no. e305. [Google Scholar] [CrossRef]
- Kook, J. W. Gasification and tar removal characteristics of rice husk in a bubbling fluidized bed reactor. Fuel 2016, 181, 942–950. [Google Scholar] [CrossRef]
- The Observatory of Economic Complexity, Rice in the Husk (Paddy or Rough) in Malaysia. OEC. 2025. Available online: https://oec.world/en/profile/bilateral-product/rice-in-the-husk-paddy-or-rough/reporter/mys (accessed on 8 May 2025).
- Pachchigar, S.; Hannl, T. K.; Öhman, M. Ash formation during combustion of rice husks in entrained flow conversion conditions. Energy Fuels 2024, 38(14), 13278–13294. [Google Scholar] [CrossRef]
- Rice Knowledge Bank, By-products. IRRI Rice Knowledge Bank, 2025. Available online: http://www.knowledgebank.irri.org/step-by-step-production/postharvest/rice-by-products (accessed on 8 May 2025).
- Global Growth Insights, Rice Husk Ash Market Size & Industry Report, 2025-2033. Global Growth Insights, 2025. Available online: https://www.globalgrowthinsights.com/market-reports/rice-husk-ash-market-108402 (accessed on 8 May 2025).
- Vaggar, G. B.; Yashwanth, K.; Sameer; Farooq, U.; Kumar, P. Benefits of rice husk ash used in cement concrete: A review. Int. J. of Engineering Research & Technology (IJERT) 2023, 12(1). [Google Scholar] [CrossRef]
- Thiedeitz, M.; Schmidt, W.; Härder, M.; Kränkel, T. Performance of Rice Husk Ash as Supplementary Cementitious Material after Production in the Field and in the Lab. Materials 2020, 13(19), 4319. [Google Scholar] [CrossRef]
- Kotwal, S. S. A literature review on use of rice husk ash as cementation material. Int. J. for Research in Applied Science & Engineering Technology 2022, 10(8). [Google Scholar] [CrossRef]
- Muthadhi, A.; Anitha, R.; Kothandaraman, S. Rice Husk Ash - Properties and its Uses: A Review. Journal of the Institution of Engineers (India): Civil Engineering Division 2007, 88, 50–56. [Google Scholar]
- Amran, M. Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications. Crystals 2021, 11(2), 168. [Google Scholar] [CrossRef]
- Adnan, Z. S. Performance of rice husk ash as a material for partial cement replacement in concrete. Materials Today: Proc. 2022, 48, 842–848. [Google Scholar] [CrossRef]
- In-Depth Industry OutlooK, Rice Husk Ash Market Size, Forecast. Verified Market Research, In-Depth Industry Outlook, 2025. Available online: https://www.verifiedmarketresearch.com/product/rice-husk-ash-market/ (accessed on 13 May 2025).
- Hossain, S. S.; Mathur, L.; Roy, P. K. Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. J. Asian Ceramic Soc. 2018, 6(4), 299–313. [Google Scholar] [CrossRef]
- Thongma; Chiarakorn, S. Recovery of silica and carbon black from rice husk ash disposed from a biomass power plant by precipitation method. IOP Conf. Ser.: Earth Environ. Sci. 2019, 373(1), 012026. [Google Scholar] [CrossRef]
- Rozainee, M. Influence of bed height on the quality of rice husk ash in a fluidised bed combustor. Int. J. Environmental Technology and Management 2013, 16, 65–81. [Google Scholar] [CrossRef]
- Kleih, U.; Hollingdale, A. C. Production of high quality rice husk ash, Natural Resources Institute, Technical Report, 1993. Available online: https://gala.gre.ac.uk/id/eprint/12130/1/Doc-0494.pdf (accessed on 13 May 2025).
- Pachchigar, S.; Takehara, M. D. B.; Pettersson, E.; Öhman, M. Ash transformation processes during pulverized fuel combustion of rice husks. Energy & Fuels 39(9), 4481–4493, 2025. [CrossRef]
- Rozainee, M.; Ngo, S.; Salema, A. A.; Tan, K. G. Fluidized bed combustion of rice husk to produce amorphous siliceous ash. Energy for Sustainable Development 2008, 12(1), 33–42. [Google Scholar] [CrossRef]
- Madhu Vershit, H.; Kaur, A.; Vasudha, L. Exploitation of rice husk and ash: A review. Pharma Innovation 2023, 12(3), 5203–5208. [Google Scholar]
- Vijaya, R.; Idrishi, R.; Singh, S.; Islam, M. “Processing of rice husk and its applications,” in Rice husk biomass: Processing, properties and applications; Jawaid, M., Parmar, B., Eds.; Springer Nature Singapore, 2025; pp. 1–26. [Google Scholar] [CrossRef]
- Sekifuji, R. Optimal combustion of rice husks and recycling of amorphous silica. Doctoral Thesis, Ishikawa Prefectural University, 2022. Available online: https://ishikawa-pu.repo.nii.ac.jp/record/212/files/2021_sekifuji_fulltext.pdf (accessed on 13 May 2025).
- Dizaji, H. B. Generation of High Quality Biogenic Silica by Combustion of Rice Husk and Rice Straw Combined with Pre- and Post-Treatment Strategies—A Review. Applied Sciences 2019, 9(6), 1083. [Google Scholar] [CrossRef]
- Lundgren, J. Biomass gasification for hydrogen production, IEA Bioenergy, 2025. Available online: https://www.ieabioenergy.com/wp-content/uploads/2025/03/IEA-Bioenergy_T33_Bio-H2_Final_v2.pdf (accessed on 13 May 2025).
- Kaniapan, S. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques. Int. J. Environ. Res. Public Health 2022, 19(6), 3427. [Google Scholar] [CrossRef]
- Herrera, K. Use of biochar from rice husk pyrolysis: Part A: Recovery as an adsorbent in the removal of emerging compounds. ACS Omega 2022, 7(9), 7625–7637. [Google Scholar] [CrossRef]
- Baraitaru, A. Synthesis of rice husk ash through various methods and determination of the highest silicon content for subsequent applications. AIP Conf. Proc. 2019, 2129(1), 020093. [Google Scholar] [CrossRef]
- Geethakarthi, A. Novel approaches towards sustainable management of an agricultural residue - The rice husk. Nature Environ. and Pollution Tech. 2021, 20(1), 349–355. [Google Scholar] [CrossRef]
- Li, Z. Review on Rice Husk Biochar as an Adsorbent for Soil and Water Remediation. Plants 2023, 12(7), 1524. [Google Scholar] [CrossRef]
- Blissett, R. Valorisation of rice husks using a TORBED® combustion process. Fuel Process. Technol. 2017, 159, 247–255. [Google Scholar] [CrossRef]
- Xi; Zhang, N.; Duan, H.; He, J.; Song, G.; Li, H.; Shi, X. Optimization of rice husk ash concrete design towards economic and environmental assessment. Environmental Impact Assessment Review 2023, 103, 107229. [Google Scholar] [CrossRef]
- Liu, X. A review on recent advances in the comprehensive application of rice husk ash. Research on Chemical Intermediates 2016, 42, 893–913. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Jiang, F.; Chen, H. The Role and Mechanism of Rice Husk Ash Particle Characteristics in Cement Hydration Process. Materials 2024, 17(22), 5594. [Google Scholar] [CrossRef] [PubMed]
- Vayghan, A. G.; Khaloo, A. R.; Nasiri, S.; Rajabipour, F. Studies on the effect of retention time of rice husk combustion on the ash’s chemo-physical properties and performance in cement mixtures. J. Mater. Civ. Eng. 2012, 24(6), 691–697. [Google Scholar] [CrossRef]
- Hossain, S. S.; Mathur, L.; Roy, P. K. Rice husk/rice husk ash as an alternative source of silica in ceramics: A review. J. Asian Ceram. Soc. 2018, 6(4), 299–313. [Google Scholar] [CrossRef]
- Kaleli, M. J.; Kamweru, P. K.; Gichumbi, J. M.; Ndiritu, F. G. Characterization of rice husk ash prepared by open air burning and furnace calcination. Journal of Chemical Engineering and Materials Science 2020, 11(2), 24–30. [Google Scholar] [CrossRef]
- Ullal, V. N.; S. H., T; A. K., P. Rice husk ash utilization, composition and properties: A brief review. Journal of Metals, Materials and Minerals 2022, 32(4), 37–46. [Google Scholar] [CrossRef]
- Bie, R.-S.; Song, X.-F.; Liu, Q.-Q.; Ji, X.-Y.; Chen, P. Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement. Cement and Concrete Composites 2015, 55, 162–168. [Google Scholar] [CrossRef]
- Raheem, A. A.; Kareem, M. A. Chemical Composition and Physical Characteristics of Rice Husk Ash Blended Cement. International Journal of Engineering Research in Africa 2017, 32, 25–35. [Google Scholar] [CrossRef]
- Thiedeitz, M.; Schmidt, W.; Härder, M.; Kränkel, T. Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab. Materials (Basel, Switzerland) 2020, 13(19), 4319. [Google Scholar] [CrossRef]
- Bui, D. D.; Hu, J.; Stroeven, P. Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. Cement and Concrete Composites 2005, 27(3), 357–366. [Google Scholar] [CrossRef]
- Nair, D. G.; Fraaij, A.; Klaassen, A. A. K.; Kentgens, A. P. M. A structural investigation relating to the pozzolanic activity of rice husk ashes. Cement and Concrete Research 2008, 38(6), 861–869. [Google Scholar] [CrossRef]
- Ubayi, S. M.; Mathur, V.; Abubakar, B. S.; Ungogo, H. I. Rice husk ash in concrete: A review of cement replacement proportions and mechanical properties. International Journal in Engineering Science 2024, 1(5), 1–15. [Google Scholar] [CrossRef]
- Patel, H. Rice husk ash in concrete: Uses, pros & cons, Gharpedia, 2019. Available online: https://gharpedia.com/blog/rice-husk-ash-in-concrete-pros-cons/ (accessed on 8 May 2025).
- Kumar, R. Utilization of rice husk ash as a partial replacement for cement in concrete. M.S. thesis, Massachusetts Institute of Technology, 2017. Available online: https://dspace.mit.edu/handle/1721.1/107587 (accessed on 8 May 2025).
- Quora User, What are the advantages and disadvantages of rice husk?, Quora. 2025. Available online: https://www.quora.com/What-are-the-advantages-and-disadvantages-of-rice-husk (accessed on 8 May 2025).
- Islam, K.; Hossain, Z. Use of rice husk ash (RHA) as a supplementary cementitious material in producing normal concrete. MATEC Web of Conferences 2019, 271, pp. 07007. [Google Scholar] [CrossRef]
- Endale, S. A.; Taffese, W. Z.; Vo, D.-H.; Yehualaw, M. D. Rice Husk Ash in Concrete. Sustainability 2023, 15(1), 137. [Google Scholar] [CrossRef]
- Rice Husk Ash Asia, Application, Rice Husk Ash Asia. 2025. Available online: https://www.ricehuskashasia.com/17793637/application (accessed on 8 May 2025).
- Alsaed, M. M.; Al Mufti, R. L. The Effects of Rice Husk Ash as Bio-Cementitious Material in Concrete. Construction Materials 2024, 4(3), 629–639. [Google Scholar] [CrossRef]
- Mofijur, M.; Indra Mahlia, T. M.; Logeswaran, J.; Anwar, M.; Rahman, S. M.; Shamsuddin, A. H. Potential of rice industry biomass as a renewable energy source. Energies 2019, 12, 4116. [Google Scholar] [CrossRef]
- Ani, F. M.; Nahid, A. M. Development of brick by utilizing rice husk ash as the partial replacement for clay. Multidisciplinary Science Journal 2022, 5(1), 2023004. [Google Scholar] [CrossRef]
- Minh, L. T.; Tram, N. X. T. Utilization of rice husk ash as partial replacement with cement for production of concrete brick. MATEC Web Conf. 2017, 97, 01121. [Google Scholar] [CrossRef]
- Janbuala, S.; Wasanapiarnpong, T. Effect of Rice Husk and Rice Husk Ash on Properties of Lightweight Clay Bricks. Key Eng. Mater. 2015, 659, 74–79. [Google Scholar] [CrossRef]
- Ricehuskash, Use of rice husk ash in concrete. YouTube. 10 May 2015. [Online Video]. Available online: https://www.youtube.com/watch?v=WHfzHaivCz0.
- Amante, S. M. M.; Fabia, F. G. L.; Nasayao, S. C.; Nograda, K. L. D. Potential of rice husk ash as cement alternative in constructing bricks: Utilization for ‘Gulayan sa Paaralan’ program. Int. J. Sci. Res. Archive 2024, 11(2), 1968–1975. [Google Scholar] [CrossRef]
- Elhusna, E.; Abdullah, A.; Saleh, S.; Hasan, M.; Astriani, N.; Prakoso, B. Fly Ash and Rice Husk Ash Utilization to Enlarge Clay Brick Dimension. Proc. Int. Conf. Multidisciplinary Research for Sustainable Innovation 2024, 1, 449–456. [Google Scholar] [CrossRef]
- Damanhuri, A. A. M.; Lubis, A. M. H. S.; Hariri, A.; Herawan, S. G.; Roslan, M. H. I.; Hussin, M. S. F. Mechanical properties of rice husk ash (RHA) brick as partial replacement of clay. J. Phys.: Conf. Ser. 2020, 1529(4), 042034. [Google Scholar] [CrossRef]
- Ayite, Y. M. X. D.; P’Kla, A.; Pachoukova, I.; Bedja, K.-S. Study of rice husk ashes influence on diggable clay soil characteristics in Togo. Research Journal of Engineering Sciences 2020, 9(1), 1–6. Available online: https://www.isca.me/IJES/Archive/v9/i1/1.ISCA-RJEngS-2019-032.php.
- Ani, M.; Nahid, A. M. Development of brick by utilizing rice husk ash as the partial replacement for clay. Multidisciplinary Science Journal 2022, 5(1), 2023004. [Google Scholar] [CrossRef]
- Fernandes, J. Characterization of silica produced from rice husk ash: Comparison of purification and processing methods. Mater. Res. 2017, 20, 512–518. [Google Scholar] [CrossRef]
- Begum, M. H. A.; Hossain, M. M.; Islam, M.; Aziz, S. Pilot plant study on production of sodium silicate from rice husk ash. Appl. Res. J. 2018, 4(2), 38–42. [Google Scholar] [CrossRef]
- JUW, Extraction of Silica Gel from Rice Husk Ash. JUW. 2024. Available online: https://www.juw.edu.pk/extraction-of-silica-gel-from-rice-husk-ash/ (accessed on 8 May 2025).
- Alam, M.; Biswas, M.; Mia, M.; Alam, S.; Hossain, M. The influence of rice husk ash on mechanical properties of the mortar and concrete: A critical review. Open Journal of Civil Engineering 2024, 14, 65–81. [Google Scholar] [CrossRef]
- Dhaneswara; Fatriansyah, J. F.; Situmorang, F. W.; Haqoh, A. N. Synthesis of amorphous silica from rice husk ash: Comparing HCl and CH3COOH acidification methods and various alkaline concentrations. Int. J. Technol. 2020, 11(1), 200–208. [Google Scholar] [CrossRef]
- Steven, S.; Restiawaty, E.; Pasymi, P.; Bindar, Y. An appropriate acid leaching sequence in rice husk ash extraction to enhance the produced green silica quality for sustainable industrial silica gel purpose. J. Taiwan Inst. Chem. Eng. 2021, 126, 338–348. [Google Scholar] [CrossRef]
- Climate Action Reserve, Low-carbon cement ASTM standards guidelines, Climate Action Reserve, 2024. Available online: https://climateactionreserve.org/wp-content/uploads/2024/01/LCC-ASTM-Standards-Guidelines_.pdf (accessed on 8 May 2025).
- Sungkono, K. D. Characteristics of clay tile with rice husk ash on absorption and flexural strength. Proc. 1st Int. Conf. Comput. Sci. Eng. Technol. (ICCSET 2018), 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Maingam, P.; Wangrakdiskul, U.; Piyarat, N. Potential of alternative waste materials: Rice husk ash and waste glass cullet with boric acid addition for low-fired unglazed tiles. AIMS Mater. Sci. 2021, 8(2), 283–300. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Gupta, V. K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Ind. Eng. Chem. Res. 2011, 50(24), 13589–13613. [Google Scholar] [CrossRef]
- El-Said, A. G.; Badawy, N. A.; Garamon, S. E. Adsorption of heavy metal ions from aqueous solutions onto rice husk ash low cost adsorbent. J. Environ. Anal. Toxicol. 2018, 8(1), 1–7. [Google Scholar] [CrossRef]
- WasteX, 7 Surprising Uses of Rice Husks that Turn Trash into Treasure. WasteX. 2024. Available online: https://www.wastex.io/post/rice-husk-uses (accessed on 8 May 2025).
- Tipsotnaiyana, N.; Jarupan, L.; Pechyen, C. Synthesized silica powder from rice husk for printing raw materials application. Adv. Mater. Res. 2012, 506, 218–221. [Google Scholar] [CrossRef]
- Morimoto, K.; Tsuda, K.; Mizuno, D. Literature review on the utilization of rice husks: Focus on application of materials for digital fabrication. Materials 2023, 16(16), 5597. [Google Scholar] [CrossRef]
- Rihan, M. A. M.; Alahmari, S.; Turki. Review of recent development regarding strength, durability and microstructure properties of geopolymer concrete containing rice husk ash. Advances in Civil Engineering 2025, pp. 7211661, 2025. [CrossRef]
- Nseke, J.; Kirkelund, G. M.; Sithole, T. The inhibitory influence of rice husk ash on the alkali leaching and efflorescence extents of alkali activated granulated blast furnace slag. Frontiers in Built Environment 2024, 10. [Google Scholar] [CrossRef]
- Abdullah, M. N.; Mustapha, F.; Ahmad, K. A.; Mustapha, M.; Khan, T.; Singh, B.; Sebaey, T. A. Effect of Different Pre-Treatment on the Microstructure and Intumescent Properties of Rice Husk Ash-Based Geopolymer Hybrid Coating. Polymers 2022, 14(11), 2252. [Google Scholar] [CrossRef] [PubMed]
- Fortune Business Insights, Rice husk ash market size, industry share | Forecast [2025–2032], 2025. Available online: https://www.fortunebusinessinsights.com/rice-husk-ash-market-103996 (accessed on 13 May 2025).
- Nguyen, T.; Nguyen, N. T.; Pham, H. N. T.; Phung, H. H.; Nguyen, H. V. Rice husk ash and its utilization in soil improvement: An overview. Journal of Mining and Earth Sciences 2020, 61(3), 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zaid, O.; Ahmad, J.; Siddique, M. S.; Aslam, F. Effect of incorporation of rice husk ash instead of cement on the performance of steel fibers reinforced concrete. Frontiers in Materials 2021, 8, 665625. [Google Scholar] [CrossRef]
- Phatak, O. A.; Kishor, R. A systematic review on utilization of rice husk ash in manufacturing of concrete. IOP Conference Series: Earth and Environmental Science 2023, 1252(1), 012001. [Google Scholar] [CrossRef]
- Varghese, J.; Bahurudeen, A.; Ajinkya, S. D. Utilisation of rice husk ash for cleaner production of different construction products. Journal of Cleaner Production 2020, 263, 121578. [Google Scholar] [CrossRef]
- Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable and Sustainable Energy Reviews 2016, 53, 1468–1485. [Google Scholar] [CrossRef]
- Kim, J.; Fumino, H.; Kanematsu, M. Effects of rice husk ash particle size and Luxan value influence on mortar properties and proposal of hydration ratio measurement method. Materials 2024, 18(1), 21. [Google Scholar] [CrossRef] [PubMed]
- Henao; Sanchez-Echeverri, L. A.; Tovar-Perilla, N. J. Potential utilization of rice waste in the construction sector: A multi-criteria decision analysis approach. Resources 2024, 13(10), 139. [Google Scholar] [CrossRef]
- Rusmayadi; Iffah, N.; Ninasari, A.; Laksmono, R.; Rais, R.; Indriyani. Community empowerment through utilization of rice husk waste in Cirebon Regency. Amalee: Indonesian Journal of Community Research and Engagement 2023, 4(2), 571–584. [Google Scholar] [CrossRef]
- Onsongo, S. K.; Olukuru, J.; Munyao, O. M.; Mwabonje, O. The role of agricultural ashes (rice husk ash, coffee husk ash, sugarcane bagasse ash, palm oil fuel ash) in cement production for sustainable development in Africa. Discover Sustainability 2025, 6(1), 62. [Google Scholar] [CrossRef]
- Tsai, C.C.; Chang, Y.-F. Effects of rice husk biochar on carbon release and nutrient availability in three cultivation age of greenhouse soils. Agronomy 2020, 10(7), 990. [Google Scholar] [CrossRef]
- Shen, Y. Rice husk silica-derived nanomaterials for battery applications: A literature review. Journal of Agricultural and Food Chemistry 2017, 65(5), 995–1004. [Google Scholar] [CrossRef]
- Syahida, Z.; Ariffin, N. F.; Syed Mohsin, S. M.; Lim, N. H. Abdul Shukor. Review paper: Performance of rice husk ash as a material for partial cement replacement in concrete. Materials Today Proceedings 2021, 48(4), 1357–1363. [Google Scholar] [CrossRef]
- Bheel, N.; Abro, A. W.; Shar, I. A.; Dayo, A. A.; Shaikh, S.; Shaikh, Z. H. Use of rice husk ash as cementitious material in concrete. Engineering, Technology & Applied Science Research 2019, 9(3), 4209–4212. [Google Scholar] [CrossRef]
- Insider Market Research, Rice husk ash: Properties, applications and environmental impact, 2025. Available online: https://insidermarketresearch.com/environmental-impact-of-rice-husk-ash/ (accessed on 13 May 2025).
- SpendEdge, Global Rice Husk Ash Market - Procurement Intelligence Report, SpendEdge, 2017. Available online: https://procurement.spendedge.com/report/rice-husk-ash-market-procurement-research-report (accessed on 8 May 2025).
- Liu, J.; Xie, C.; Fu, C.; Wei, X.; Wu, D. Hydrochloric Acid Pretreatment of Different Types of Rice Husk Ash Influence on the Properties of Cement Paste. Materials 2020, 13(7), 1524. [Google Scholar] [CrossRef]










| Production Method | Temperature Control | Silica Structure | Carbon Content | Energy Recovery | Environmental Impact | Production Cost |
|---|---|---|---|---|---|---|
| Uncontrolled Burning | Wide range, poor control [19] | Variable, can be crystalline [21] | High, incomplete combustion [22] | Not a focus, inefficient [29] | Severe pollution [23] | Low [32] |
| Controlled Combustion (Laboratory) | Precise control (500-800 °C optimal) [20] | Favors amorphous silica [20] | Low with good oxygen supply [20] | Not the primary goal, potential for heat recovery [20] | Lower than uncontrolled [23] | Higher due to equipment [20] |
| Industrial Furnaces | Better than uncontrolled (800-850 °C) [26] | High-quality, often amorphous [23] | Low with complete burnout [23] | Often integrated for steam/electricity [23] | Potential disposal issues [23] | Costs offset by energy recovery [26] |
| Fluidized Bed Combustion | Good control, below 1000 °C (670 °C optimal for low C) [29] | Amorphous, highly cellular [23] | Low (around 1.9%) [28] | Used for energy generation [23] | Lower than open burning [23] | Requires reactor investment, economically viable with benefits [29] |
| Gasification | High temperature (600-800 °C) [31] | Can yield amorphous silica [33] | Low, carbon converted to gas [33] | Primary goal is syngas production [32] | Cleaner than direct combustion, potential for low GHG with CCS [23] | High capital cost, competitive with alternatives [36] |
| Pyrolysis | 450-600 °C tested, 650-850 °C for amorphous silica [38] | Can yield high porosity ash [39], 85-90% amorphous at higher temp [40] | Carbon-rich biochar is the main product; ash carbon depends on conditions [38] | Promising for bio-oil, biochar, and gas production [38] | Can be nearly CO2 neutral, biochar for soil improvement [35] | Promising, low cost for biochar [41] |
| TORBED Reactor | 700-950 °C | Avoids harmful crystalline silica | Low residual carbon | Sustainable and renewable energy source | Avoids crystalline silica waste | Not detailed in snippets |
| Component | Range (%) | Reference |
|---|---|---|
| Silicon Dioxide (SiO2) | 80.00 - 95.00+ | [45] |
| Aluminum Oxide (Al2O3) | 0.04 - 2.00+ | [45] |
| Ferric Oxide (Fe2O3) | 0.05 - 1.50+ | [45] |
| Calcium Oxide (CaO) | 0.07 - 3.00+ | [45] |
| Magnesium Oxide (MgO) | 0.03 - 2.00+ | [45] |
| Potassium Oxide (K2O) | 0.72 - 4.00+ | [22] |
| Sodium Oxide (Na2O) | Trace - 0.50+ | [45] |
| Sulfur Trioxide (SO3) | 0.08 - 1.00+ | [45] |
| Phosphorus Pentoxide (P2O5) | Trace - 6.50+ | [48] |
| Loss on Ignition (LOI) | 0.76 - 12.00+ | [49] |
| Property | Range |
|---|---|
| Density (g/cm3) | 2.05 - 2.24 |
| Bulk Density (kg/m3) | 180 - 429.1 |
| Specific Surface Area (m2/kg) | 240 – 2765 |
| Average Particle Size (µm) | 3.8 - 7.41 |
| Porosity (%) | 35.08 - 67.04 |
| Water Absorption (%) | Varies significantly |
| Factors | Details | Impact on Properties | References |
|---|---|---|---|
| Combustion Temperature and Duration | -Optimal range: 500 °C–700 °C. -Above 800 °C: Crystalline silica forms. -600 °C for a longer duration improves silica purity |
-Enhances pozzolanic reactivity -Reduces carbon content |
[13,45] |
| Method of Combustion | -Controlled (industrial/lab furnaces) -Uncontrolled (open-air, self-made furnaces) |
-Controlled methods yield uniform ash with higher amorphous silica -Uncontrolled causes variability |
[48,52] |
| Pre-treatment | -Acid leaching (e.g., HCl) removes metallics -Alkaline for silica extraction |
-Increases silica purity and surface area - Enhances reactivity |
[45,49] |
| Post-combustion Processing | - Grinding increases fineness and surface area | -Improves reaction rate with Ca(OH)2 -Excessive grinding may reduce benefits |
[45,51,53] |
| Property | Concrete without RHA | Concrete with RHA (Typical) |
|---|---|---|
| Compressive Strength | Baseline | Increased |
| Workability | Baseline | May be reduced |
| Durability | Baseline | Increased |
| Resistance to Sulfate Attack | Baseline | Increased |
| Resistance to Chloride Ingress | Baseline | Increased |
| Permeability | Baseline | Reduced |
| Cost | Baseline | Potentially reduced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
