Submitted:
19 January 2026
Posted:
20 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation and Preservation of Lactic Acid Bacteria
2.3. Screening for Gluten-Degrading Activity
2.3.1. Preparation of Gluten Agar
2.3.2. Well Diffusion Assay
2.3.3. Spot Assay
2.3.4. Visualization and Measurement
2.4. Molecular Identification of Active Isolates
2.5. Statistical Analysis
3. Results
3.1. Isolation and Screening for Gluten-Degrading Activity
3.2. Molecular Identification of Gluten-Degrading Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Iversen, R.; Sollid, L.M. The immunobiology and pathogenesis of celiac disease. Annu. Rev. Pathol. Mech. Dis. 2023, 18, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Balakireva, A.V.; Zamyatnin, A.A. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 2016, 8, 644. [Google Scholar] [CrossRef] [PubMed]
- Shan, L.; Molberg, Ø.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G.M.; Khosla, C. Structural basis for gluten intolerance in celiac sprue. Science 2002, 297, 2275–2279. [Google Scholar] [CrossRef] [PubMed]
- Sollid, L.M.; Jabri, B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat. Rev. Immunol. 2013, 13, 294–302. [Google Scholar] [CrossRef]
- Lebwohl, B.; Sanders, D.S.; Green, P.H. Coeliac disease. Lancet 2018, 391, 70–81. [Google Scholar] [CrossRef]
- Lamacchia, C.; Camarca, A.; Picascia, S.; Di Luccia, A.; Gianfrani, C. Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 2014, 6, 575–590. [Google Scholar] [CrossRef]
- Vargas, F.M.; Cardoso, L.T.; Didoné, A.; Lima, J.P.M.; Venzke, J.G.; de Oliveira, V.R. Celiac disease: Risks of cross-contamination and strategies for gluten removal in food environments. Int. J. Environ. Res. Public Health 2024, 21, 124. [Google Scholar] [CrossRef]
- Yoosuf, S.; Makharia, G.K. Evolving therapy for celiac disease. Front. Pediatr. 2019, 7, 193. [Google Scholar] [CrossRef]
- Gänzle, M.G.; Loponen, J.; Gobbetti, M. Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci. Technol. 2008, 19, 513–521. [Google Scholar] [CrossRef]
- Kõiv, V.; Tenson, T. Gluten-degrading bacteria: Availability and applications. Appl. Microbiol. Biotechnol. 2021, 105, 3045–3059. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Brzozowski, B.; Stasiewicz, K.; Ostolski, M.; Adamczak, M. Reducing Immunoreactivity of Gliadins and Coeliac-Toxic Peptides Using Peptidases from L. acidophilus 5e2 and A. niger Catalysts 2020, 10(8), 923. [Google Scholar] [CrossRef]
- De Angelis, M.; Rizzello, C.G.; Fasano, A.; Clemente, M.G.; De Simone, C.; Silano, M.; Gobbetti, M. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for celiac disease. Appl. Environ. Microbiol. 2006, 72, 4490–4495. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Curiel, J.A.; Nionelli, L.; Vincentini, O.; Di Cagno, R.; Silano, M.; Coda, R. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol. 2014, 37, 59–68. [Google Scholar] [CrossRef]
- Álvarez-Sieiro, P.; Redruello, B.; Ladero, V.; Martín, M.C.; Fernández, M.; Alvarez, M.A. Screening sourdough samples for gliadin-degrading activity revealed Lactobacillus casei strains able to individually metabolize the coeliac-disease-related 33-mer peptide. Can. J. Microbiol. 2016, 62, 422–430. [Google Scholar] [CrossRef]
- Gänzle, M.G. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef]
- Yu, J.; Wang, W.H.; Menghe, B.L.; Jiri, M.T.; Wang, H.M.; Liu, W.J.; Bao, Q.H.; Lu, Q.; Zhang, J.C.; Wang, F.; Xu, H.Y.; Sun, T.S.; Zhang, H.P. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci. 2011, 94, 3229–3241. [Google Scholar] [CrossRef]
- Mefleh, M.; Darwish, A.M.G.; Mudgil, P.; Maqsood, S.; Boukid, F. Traditional Fermented Dairy Products in Southern Mediterranean Countries: From Tradition to Innovation. Fermentation 2022, 8, 743. [Google Scholar] [CrossRef]
- Leszczyńska, J.; Szczepankowska, A.K.; Majak, I.; Mańkowska, D.; Smolińska, B.; Ścieszka, S.; Diowksz, A.; Cukrowska, B.; Aleksandrzak-Piekarczyk, T. Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases. Nutrients 2024, 16, 976. [Google Scholar] [CrossRef]
- Rashmi, B.S.; Gayathri, D.; Vasudha, M.; Prashantkumar, C.S.; Kumbhar, Y.B. Gluten hydrolyzing activity of Bacillus spp. isolated from sourdough. Microb. Cell Fact. 2020, 19, 130. [Google Scholar] [CrossRef]
- Liang, J.; Chai, K.; Wang, X.; Li, J.; Zhu, L.; Zhang, G. From gluten structure to immunogenicity: Investigating the effects of lactic acid bacteria and yeast co-fermentation on wheat allergenicity in steamed buns. Food Chem. 2025, 492, 145356. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, C.G.; De Angelis, M.; Di Cagno, R.; Camarca, A.; Silano, M.; Losito, I.; Gobbetti, M. Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: New perspectives for celiac disease. Appl. Environ. Microbiol. 2007, 73, 4499–4507. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Jia, X.; Liu, C.; Meng, X.; Zhang, K.; Tao, S.; Xue, W. Sourdough yeast-bacteria interactions results in reduced immunogenicity by increasing depolymerization and hydrolysis of gluten. Innov. Food Sci. Emerg. Technol. 2023, 84, 103281. [Google Scholar] [CrossRef]
- Usal, M.; Özgölet, M.; Arici, M.; Törnük, F. Enzymatic and antimicrobial activities of lactic acid bacteria and yeasts isolated from boza, a traditional fermented grain based beverage. Food Biosci. 2024, 61, 104681. [Google Scholar] [CrossRef]
- Zolnikova, O.; Dzhakhaya, N.; Bueverova, E.; Sedova, A.; Kurbatova, A.; Kryuchkova, K.; Butkova, T.; Izotov, A.; Kulikova, L.; Yurku, K.; et al. The Contribution of the Intestinal Microbiota to the Celiac Disease Pathogenesis along with the Effectiveness of Probiotic Therapy. Microorganisms 2023, 11, 2848. [Google Scholar] [CrossRef]
- Mickowska, B.; Romanova, K.; Urminská, D. Reduction of immunoreactivity of rye and wheat prolamins by lactobacilli and flavourzyme proteolysis during sourdough fermentation—A way to obtain low-gluten bread. J. Food Nutr. Res. 2019, 58, 153–166. Available online: http://www.vup.sk/en/download.php?bulID=2015.
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The genus Enterococcus: Between probiotic potential and safety concerns—An update. Front. Microbiol. 2018, 9, 1791. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; Lebeer, S. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Francavilla, R.; Cristofori, F.; Vacca, M.; Barone, M.; De Angelis, M. Advances in understanding the potential therapeutic applications of gut microbiota and probiotic mediated therapies in celiac disease. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 323–333. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Curiel, J.A.; Nionelli, L.; Vincentini, O.; Di Cagno, R.; Silano, M.; Gobbetti, M.; Coda, R. Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol. 2014, 37, 59–68. [Google Scholar] [CrossRef]
- Kõiv, V.; Tenson, T. Gluten-degrading bacteria: availability and applications. Appl. Microbiol. Biotechnol. 2021, 105, 3045–3059. [Google Scholar] [CrossRef]




| Spanish Samples (ES) | Algerian Samples (DZ) |
|---|---|
| QB: Cow Cheese | BZ: Traditional Bouhaza Cheese |
| LF: Fermented Milk | BP: Spicy Bouhaza |
| QS: Solid Cheese | CAB: Goat Cheese |
| CH: Goat Cheese | KIF: Kefir |
| QF: Fresh Cheese | CAM: Camembert Cheese |
| BO: Cow and Sheep Cheese | QS: Solid Cheese |
| CUI: Cooked Cheese | QG: Gouda Cheese |
| B: Buffalo Cheese | CUI: Cooked Cheese |
| OB: Sheep Cheese | QFS: Fresh Solid Cheese |
| COV: Goat and Sheep Cheese | OBN: Sheep Cheese |
| CAB: Goat Cheese | QF: Fresh Cheese |
| AZ: Blue Cheese | OB: Sheep Cheese |
| EM: Emmental Cheese | KL: Klila (Traditional Solid Fermented Milk) |
| LF: Fermented Milk |
| Sample | Total Isolates | Well Assay Positive (n) | Well Assay Positive (%) | Spot Assay Positive (n) | Spot Assay Positive (%) |
|---|---|---|---|---|---|
| QB | 3 | 0 | 0.0% | 3 | 100.0% |
| LF | 6 | 0 | 0.0% | 3 | 50.0% |
| QS | 1 | 0 | 0.0% | 1 | 100.0% |
| CH | 4 | 1 | 25.0% | 1 | 25.0% |
| QF | 5 | 4 | 80.0% | 3 | 60.0% |
| BO | 5 | 0 | 0.0% | 4 | 80.0% |
| CUI | 3 | 0 | 0.0% | 3 | 100.0% |
| B | 13 | 1 | 7.7% | 6 | 46.2% |
| OB | 9 | 5 | 55.6% | 7 | 77.8% |
| COV | 10 | 4 | 40.0% | 5 | 50.0% |
| CAB | 5 | 3 | 60.0% | 5 | 100.0% |
| AZ | 10 | 3 | 30.0% | 2 | 20.0% |
| EM | 10 | 4 | 40.0% | 2 | 20.0% |
| Total | 84 | 25 | 29.8% | 45 | 53.6% |
| Sample | Total Isolates | Well Assay Positive (n) | Well Assay Positive (%) | Spot Assay Positive (n) | Spot Assay Positive (%) |
|---|---|---|---|---|---|
| BZ | 1 | 0 | 0.0% | 0 | 0.0% |
| BP | 3 | 3 | 100.0% | 3 | 100.0% |
| CAB II | 5 | 0 | 0.0% | 4 | 80.0% |
| KIF | 3 | 3 | 100.0% | 3 | 100.0% |
| CAM | 5 | 0 | 0.0% | 4 | 80.0% |
| QS | 1 | 0 | 0.0% | 0 | 0.0% |
| QG | 1 | 0 | 0.0% | 0 | 0.0% |
| CUI | 1 | 0 | 0.0% | 0 | 0.0% |
| QFS | 5 | 0 | 0.0% | 1 | 20.0% |
| OBN | 2 | 0 | 0.0% | 2 | 100.0% |
| QF | 1 | 0 | 0.0% | 1 | 100.0% |
| CAB1 | 1 | 0 | 0.0% | 1 | 100.0% |
| OB | 5 | 5 | 100.0% | 0 | 0.0% |
| KL | 4 | 4 | 100.0% | 3 | 75.0% |
| Total | 39 | 15 | 38.5% | 22 | 56.4% |
| Origin | Total Isolates | Well Assay Positive (%) | Spot Assay Positive (%) | Mean Halo Diameter ± SD (mm) | Halo Range (mm) |
|---|---|---|---|---|---|
| Spain | 84 | 25 (29.8%) | 45 (53.6%) | 10.2 ± 2.0 | 6 – 14 |
| Algeria | 39 | 15 (38.5%) | 22 (56.4%) | 12.6 ± 2.1 | 8 – 16 |
| Total | 123 | 40 (32.5%) | 67 (54.5%) | 11.1 ± 2.3 | 6 – 16 |
| Isolate Code | Closest Relative | Origin | Halo (mm) |
|---|---|---|---|
| BP1 | Lactiplantibacillus pentosus | DZ | 10 |
| BP2 | Lactiplantibacillus pentosus | DZ | 12 |
| BP3 | Lactiplantibacillus plantarum | DZ | 11 |
| KIF1 | Lactiplantibacillus plantarum | DZ | 12 |
| KIF2 | Lactiplantibacillus plantarum | DZ | 12 |
| KIF5 | Lactiplantibacillus plantarum | DZ | 13 |
| KL3 | Enterococcus faecalis | DZ | 11 |
| KL4 | Leuconostoc mesenteroides | DZ | 11 |
| OB1 | Enterococcus faecalis | DZ | 13 |
| OB3 | Enterococcus faecalis | DZ | 10 |
| OB4 | Enterococcus faecalis | DZ | 12 |
| OB5 | Enterococcus faecalis | DZ | 12 |
| CH5 | Enterococcus faecium | ES | 12 |
| QF1 | Enterococcus faecium | ES | 11 |
| QF2 | Lactococcus lactis | ES | 14 |
| QF3 | Enterococcus faecium | ES | 12 |
| QF5 | Enterococcus faecium | ES | 10 |
| CAB1 | Levilactobacillus brevis | ES | 11 |
| CAB4 | Enterococcus faecium | ES | 10 |
| CAB5 | Enterococcus hirae | ES | 10 |
| EM3 | Leuconostoc mesenteroides | ES | 13 |
| BI2 | Leuconostoc mesenteroides | ES | 10 |
| COVI1 | Levilactobacillus brevis | ES | 10 |
| AZ3 | Leuconostoc mesenteroides | ES | 12 |
| EMI1 | Levilactobacillus brevis | ES | 13 |
| EMI2 | Levilactobacillus brevis | ES | 12 |
| EMI3 | Levilactobacillus brevis | ES | 10 |
| OBII1 | Lactococcus lactis | ES | 14 |
| OBII2 | Lactococcus lactis | ES | 13 |
| OBII3 | Enterococcus faecalis | ES | 13 |
| OBII4 | Lactococcus lactis | ES | 12 |
| OBII5 | Lactiplantibacillus pentosus | ES | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
