Submitted:
15 January 2026
Posted:
15 January 2026
You are already at the latest version
Abstract
Keywords:
1. Conceptual Foundations
1.1. Axiomatic Basis
1.2. Ontology and Screen Specification
Discretization
Breadth vs. Depth
Deep Pixel as Collimator
Internal Phase Space
1.3. Entropic Principle: Action as Distinguishability
Lemma (Fixed Container)
1.4. Topological Budget: Deriving the Channel Multiplicity N
Additivity
Bulk Baseline
Tip Regulator
Global Defect Budget
Fermionic Completion (Twist)
Master Equation
1.5. Discretizing Stiffness and Calibration
Constitutive Relation
Numerical Calibration from G
Pixel energy budget
Separation of Scales
Thermodynamic License: Recovering with Finite Resolution
1.6. Heuristic Correspondences
1.7. Emergent Time
1.8. Parametric Closure and Consistency
2. Coherency Action and Dynamics
2.1. Variational Protocol
2.2. Entropic Action Principle
2.3. Spectral EFT Representation
2.4. Matter and Gauge Forces
2.5. Saturation Plateau
2.6. Recovery of Standard Limits
2.7. Relation to Existing Approaches
3. Geometric Origin of Constants and Cosmological Dynamics
3.1. Coherency Ledger
| Quantity | Prediction | Observation | Deviation |
| Chapter 1 (Conceptual Foundations) | |||
| Matter density [M,P] | |||
| Appendix A: Primordial Saturation and Capacity | |||
| Scalar amplitude [M,P] | |||
| Spectral tilt [M,P] | |||
| Tensor ratio r [B,P] | Consistent | ||
| Spectral running [M,P] | Consistent | ||
| Scalaron mass [I,D] | GeV | GeV | |
| stiffness [I,D] | |||
| Coherence duration [I,P] | |||
| Appendix B: Gauge Couplings as Entropic Stiffness | |||
| Fine-structure cst. [M,P] | ppb | ||
| UV EM coupling [S,P] | |||
| UV Strong coupling [S,P] | |||
| Coupling Ratio [S,D] | |||
| Weak mixing [S,P] | Consistent | ||
| Appendix C: Electroweak Saturation and Mass Generation | |||
| Higgs mass [M,P] | GeV | GeV | |
| VEV v [M,P] | GeV | GeV | |
| Top mass [M,P] | GeV | GeV | |
| Higgs quartic [I,D] | |||
| Appendix D: Lepton Mass Spectrum | |||
| Proton mass [M,P] | 942 MeV | 938 MeV | |
| Mass ratio () [M,P] | |||
| Electron mass [M,D] | MeV | MeV | |
| Muon mass [M,P] | MeV | MeV | |
| Tau mass [M,P] | GeV | GeV | |
| Tau lifetime [M,D] | s | s | |
| Appendix E: Late-Time Cosmological Phenomenology from Finite-Resolution Boundaries | |||
| Structure growth [M,E] | Consistent | ||
| Horizon accel [H,E] | m/s2 | ||
| Vacuum floor [H,E] | m/s2 | ||
3.2. Derivation Summary and Insights
Primordial Sector: Amplitude as a Capacity Limit (Appendix A)
Gauge Sector: Screen as a Thermal Crystal (Appendix B)
Mass Sector: Tension vs. Stiffness (Appendix C)
Lepton Sector: Accessibility Modes (Appendix D)
Dark Sector: Gravity as Transmission Efficiency (Appendix E)
4. Conclusions and Outlook
4.1. Action as Distinguishability
4.2. Discretizing Capacity, Not Coordinates
4.3. Cross-Sector Locking and Model Rigidity
4.4. Theoretical Lineage
4.5. Falsifiability and Outlook
Appendix A. Primordial Saturation and Capacity
Appendix A.1. Geometric Stiffness and Activation
Appendix A.2. Coherence Duration (N*)
Appendix A.3. Primordial Observables
Scalar Amplitude (As)
Appendix A.4. Summary
Appendix A.5. Model Compression Audit
Appendix B. Gauge Couplings as Entropic Stiffness
Appendix B.1. Stiffness Quantization and Lattice Duality
Appendix B.2. Strong Sector Prediction
Appendix B.3. Electromagnetic Prediction at UV (M s ) and RGE Consistency Check
Internal Consistency Check: Integer Locking of UV Couplings
Appendix B.4. Electromagnetic Sector at IR - Fine-Structure Constant (Geometric)
Appendix B.5. Summary
Appendix B.6. Model Compression Audit
Appendix C. Electroweak Saturation and Mass Generation
Appendix C.1. Unitary Pixel Budget (Epix)
Appendix C.2. Higgs Boson: Entropic Saturation
Appendix C.3. Vacuum Expectation Value: Noise Floor Saturation
Appendix C.4. Top Quark: Dipole Coherence Limit
Appendix C.5. Structural Ratio Locks (Tree-level)
Appendix C.6. Summary
Appendix C.7. Model Compression Audit
Appendix D. Lepton Mass Spectrum
Appendix D.1. Hadronic Anchor (m p ): Geometric Transmutation
Appendix D.2. Spectral Selection Principles
Appendix D.3. Lepton Cascade
Generation 1: Electron (Global Volume)
Generation 2: Muon (Local Tangent)
Generation 3: Tau (Minimal Fiber)
Appendix D.4. Kinematic Consistency Check
Appendix D.5. Summary
Appendix D.6. Model Compression Audit
Appendix E. Late-Time Cosmological Phenomenology from Finite-Resolution Boundaries
Appendix E.1. UV Regime: Information Saturation
Appendix E.2. IR Regime: Thermodynamic Freezeout (S8)
Prediction (S8)
Appendix E.3. Acceleration Floor (a0)
Appendix E.4. Summary
Appendix E.5. Model Compression Audit
References
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef]
- Page, D.N.; Wootters, W.K. Evolution without evolution: Dynamics described by stationary observables. Phys. Rev. D 1983, 27, 2885–2892. [Google Scholar] [CrossRef]
- Sakharov, A.D. Vacuum quantum fluctuations in curved space and the theory of gravitation. Dokl. Akad. Nauk SSSR;Gen. Rel. Grav. 1967, 177 32, 70–71 365. [Google Scholar]
- Donnelly, W.; Freidel, L. Local subsystems in gauge theory and gravity. JHEP 2016, arXiv:hep09, 102. [Google Scholar] [CrossRef]
- Bousso, R. The Holographic Principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef]
- Freidel, L.; Geiller, M.; Pranzetti, D. Edge modes of gravity. Part I. Corner potentials and charges. JHEP 2020, arXiv:hep11, 026. [Google Scholar] [CrossRef]
- Kubo, R. Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. J. Phys. Soc. Jpn. 1957, 12, 570–586. [Google Scholar] [CrossRef]
- Bisognano, J.J.; Wichmann, E.H. On the duality condition for a Hermitian scalar field. J. Math. Phys. 1975, 16, 985–1007. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef]
- Susskind, L. The World as a Hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef]
- Susskind, L.; Thorlacius, L.; Uglum, J. The stretched horizon and black hole complementarity. Physical Review D 1993, 48, 3743–3761. [Google Scholar] [CrossRef]
- ’t Hooft, G. Dimensional Reduction in Quantum Gravity. Conf. Proc. C 1993, 930308, 284–296. [Google Scholar]
- Witten, E. Quantum Field Theory and the Jones Polynomial. Communications in Mathematical Physics 1989, 121, 351–399. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 1981, 23, 287–298. [Google Scholar] [CrossRef]
- Donoghue, J.F. General relativity as an effective field theory: The leading quantum corrections. Phys. Rev. D 1994, 50, 3874. [Google Scholar] [CrossRef] [PubMed]
- Viazovska, M.S. The sphere packing problem in dimension 8. Ann. Math. 2017, 185, 991–1015, [1603.04246. [Google Scholar] [CrossRef]
- Lisi, A.G. An Exceptionally Simple Theory of Everything. arXiv arXiv:0711.0770. [CrossRef]
- Chamseddine, A.H.; Connes, A. The Spectral Action Principle. Commun. Math. Phys. 1997, 186, 731–750, Foundational derivation of the Standard Model action from spectral geometry. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative Geometry; Academic Press: San Diego, 1994. [Google Scholar]
- van Suijlekom, W.D. Noncommutative Geometry and Particle Physics; Mathematical Physics Studies; Springer: Dordrecht, 2015. [Google Scholar] [CrossRef]
- Landauer, R. Irreversibility and Heat Generation in the Computing Process. IBM J. Res. Dev. 1961, 5, 183–191. [Google Scholar] [CrossRef]
- Faulkner, T.; Guica, M.; Hartman, T.; Myers, R.C.; Van Raamsdonk, M. Gravitation from Entanglement in Holographic CFTs. JHEP 2014, 03(051), 1312.7856. [Google Scholar] [CrossRef]
- Lashkari, N.; McDermott, M.B.; Van Raamsdonk, M. Gravitational dynamics from entanglement thermodynamics. JHEP 2014, arXiv:hep04, 195. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of Spacetime: The Einstein Equation of State. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef]
- Hadwiger, H. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie; Die Grundlehren der mathematischen Wissenschaften; Springer-Verlag: Berlin, Heidelberg, 1957; Vol. 93. [Google Scholar] [CrossRef]
- do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice-Hall: Englewood Cliffs, NJ, 1976. [Google Scholar]
- Fursaev, D.V.; Patrushev, A.; Solodukhin, S.N. Distributional Geometry of Squashed Cones. Phys. Rev. D 2013, arXiv:hep88, 044054. [Google Scholar] [CrossRef]
- Regge, T. General relativity without coordinates. Il Nuovo Cimento (1955-1965) 1961, 19, 558–571. [Google Scholar] [CrossRef]
- Katanaev, M.O.; Volovich, I.V. Theory of defects in solids and gravity. Ann. Phys. 1992, 216, 1–28. [Google Scholar] [CrossRef]
- Di Francesco, P.; Mathieu, P.; Sénéchal, D. Conformal Field Theory; Graduate Texts in Contemporary Physics; Springer: New York, 1997. [Google Scholar] [CrossRef]
- Kitaev, A. Anyons in an exactly solved model and beyond. Annals of Physics 2006, 321, 2–111. [Google Scholar] [CrossRef]
- Dvali, G. Black Holes and Large N Species Solution to the Hierarchy Problem. Fortsch. Phys. 2010, 58, 528–536. [Google Scholar] [CrossRef]
- Frieden, B.R. Physics from Fisher Information: A Unification; Cambridge University Press, 1998. [Google Scholar]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Minkowski, P. μ→eγ at a rate of one out of 109 muon decays? Phys. Lett. B 1977, 67, 421–428. [Google Scholar] [CrossRef]
- Yanagida, T. Horizontal Gauge Symmetry and Masses of Neutrinos. In Proceedings of the Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories; Tsukuba, Japan, Sawada, O., Sugamoto, A., Eds.; 1979; p. 95. [Google Scholar]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Shannon, C.E. Communication in the Presence of Noise. Proceedings of the IRE 1949, 37, 10–21. [Google Scholar] [CrossRef]
- Casini, H. Relative entropy and the Bekenstein bound. Class. Quant. Grav. 2008, 25, 205021. [Google Scholar] [CrossRef]
- Jaynes, E.T. Information Theory and Statistical Mechanics. Physical Review 1957, 106, 620–630. [Google Scholar] [CrossRef]
- Van Raamsdonk, M. Building up spacetime with quantum entanglement. Gen. Relativ. Gravit. 2010, 42, 2323–2329. [Google Scholar] [CrossRef]
- Padmanabhan, T. Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Connes, A. Noncommutative Geometry and the Standard Model with Neutrino Mixing. JHEP 2006, 0611, 081. [Google Scholar] [CrossRef]
- Landi, G.; Rovelli, C. General Relativity in terms of Dirac Eigenvalues. Phys. Rev. Lett. 1997, 78, 3051–3054. [Google Scholar] [CrossRef]
- Vassilevich, D.V. Heat kernel expansion: user’s manual. Phys. Rep. 2003, 388, 279–360, Standard reference for the coefficients of the spectral expansion. [Google Scholar] [CrossRef]
- Gilkey, P.B. Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 2nd ed.; CRC Press, 1995. [Google Scholar]
- D’Ariano, G.M.; Perinotti, P. Derivation of the Dirac equation from principles of information processing. Phys. Rev. A 2014, 90, 062106. [Google Scholar] [CrossRef]
- Witten, E. Non-abelian bosonization in two dimensions. Commun. Math. Phys. 1984, 92, 455–472. [Google Scholar] [CrossRef]
- Baez, J.C. The Octonions. Bull. Am. Math. Soc. 2002, 39, 145–205. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Aghanim, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Baumann, D. Inflation. TASI Lectures 2011, arXiv:hep-th/0907.5424. [Google Scholar]
- Ade, P.A.R.; et al. Improved constraints on primordial gravitational waves using Planck, WMAP, and BICEP/Keck observations through the 2018 observing season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef]
- Georgi, H. Lie algebras in particle physics: from isospin to unified theories; Westview Press, 1999. [Google Scholar]
- Navas, S.; et al. Review of Particle Physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Buttazzo, D.; Degrassi, G.; Giardino, P.P.; Giudice, G.F.; Sala, F.; Salvio, A.; Strumia, A. Deconstructing the vacuum stability analysis. JHEP 2013, arXiv:hep12, 089. [Google Scholar] [CrossRef]
- Morel, L.; Yao, Z.; Cladé, P.; Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 2020, 588, 61–65. [Google Scholar] [CrossRef]
- Parker, R.H.; Yu, C.; Estey, B.; Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 2018, 360, 191–195. [Google Scholar] [CrossRef]
- Wilson, K.G. Confinement of quarks. Phys. Rev. D 1974, 10, 2445. [Google Scholar] [CrossRef]
- Abbott, T.M.C.; et al. Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Famaey, B.; McGaugh, S.S. Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Relativ. 2012, 15, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).