Preprint
Review

This version is not peer-reviewed.

Current Modeling Approaches for Drug Delivery to the Central Nervous System

Submitted:

13 January 2026

Posted:

14 January 2026

You are already at the latest version

Abstract
Central nervous system (CNS) disorders constitute a significant global health challenge; however, the development of therapeutic agents is considerably impeded by the difficulty in delivering effective concentrations within the brain. This comprehensive review delineates the current landscape of computational modeling techniques employed to address the formidable challenges associated with CNS drug delivery, with a particular emphasis on the anatomical barriers and physiological transport mechanisms pertinent to major neurological diseases. We categorize modeling approaches ranging from the atomistic scale, including molecular dynamics simulations of drug-blood-brain barrier (BBB) interactions, to macroscopic continuum and Physiologically Based Pharmacokinetic (PBPK) models that elucidate systemic distribution and overall brain exposure. We critically assess these models concerning established delivery routes, such as intranasal and intrathecal administration, as well as emerging methods, including focused ultrasound-mediated BBB opening and targeted nanoparticle delivery. This review underscores the growing importance of integrating complex physiological phenomena, such as glymphatic flow and cerebrospinal fluid (CSF) dynamics, into predictive models. Finally, we explore the emerging opportunities involving multiscale digital twins of the CNS that integrate molecular interactions, vascular hemodynamics, CSF and perivascular flow, and parenchymal transport within patient-specific anatomical geometries. The role of machine learning and surrogate modeling in expediting the prediction of drug transport parameters and optimizing delivery strategies is also examined. By providing a structured overview of current computational tools, this review aims to guide researchers in the design of more robust computational platforms for CNS drug delivery.
Keywords: 
;  ;  ;  ;  ;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated