Submitted:
13 January 2026
Posted:
14 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Blood Brain Barrier
3. Pathophysiological Barriers to Effective Drug Delivery in Major CNS Diseases
3.1. Neurodegenerative Diseases
3.1.1. Alzheimer’s Disease
3.1.2. Multiple Sclerosis
3.1.3. Parkinson’s Disease
3.2. Stroke
3.3. Brain Tumors
4. Approaches for CNS Drug Delivery
4.1. Intravenous Drug Delivery
4.2. Intra-Arterial Drug Delivery
4.3. Focused Ultrasound
4.4. Transnasal (Intranasal) Delivery
4.5. Intrathecal and Intraventricular Delivery
4.6. Intracerebral Injection
4.7. Polymeric Wafer Implants for Local Drug Delivery
| Approach | Suitable Drug Carriers | Disease Targets | Strengths | Limitations | Key References |
|---|---|---|---|---|---|
| Intravenous (IV) Delivery |
|
|
|
|
[76,77,80] |
| Intra-arterial (IA) Delivery |
|
|
|
|
[81,83] |
| Focused Ultrasound (FUS) |
|
|
|
|
[84,85,86] |
| Intranasal Delivery |
|
|
|
|
[90,91,92] |
| Intrathecal / Intraventricular Delivery |
|
|
|
|
[31,94] |
| Intracerebral Injection |
|
|
|
|
[97,98,99] |
| Polymeric Wafer Implants (Gliadel) |
|
|
|
|
[71,100,101] |
5. Modeling Approaches
5.1. Physiologically Based Pharmacokinetic (PBPK) Models
5.2. Continuum Models
5.3. Molecular Dynamics and Atomistic Simulations
5.4. Hybrid and Multiscale Models
5.5. Machine-Learning and Data-Driven Models
| Modeling Approach | Major Assumptions | Strengths | Limitations | References |
|---|---|---|---|---|
| PBPK Models |
|
|
|
[5,6,105,110] |
| Continuum Models (CFD, Advection–Diffusion, Porous Media) |
|
|
|
[3,10,11,116,123] |
| Molecular Dynamics / Atomistic Simulations |
|
|
|
[7,8,125] |
| Hybrid and Multiscale Models |
|
|
|
[4,128,132,133] |
| Machine-Learning / Data-Driven Models |
|
|
|
[12,13,120] |
6. Future Perspective
Conflicts of Interest
References
- Alves, P. A.; Camargo, L. C.; Souza, G. M. d.; Mortari, M. R.; Homem-de Mello, M. Computational modeling of pharmaceuticals with an emphasis on crossing the blood–brain barrier. Pharmaceuticals 2025, 18(2), 217. [Google Scholar] [CrossRef]
- Yousfan, A.; Al Rahwanji, M. J.; Hanano, A.; Al-Obaidi, H. A comprehensive study on nanoparticle drug delivery to the brain: application of machine learning techniques. Molecular Pharmaceutics 2023, 21(1), 333–345. [Google Scholar] [CrossRef]
- Khani, M.; Burla, G. K. R.; Sass, L. R.; Arters, O. N.; Xing, T.; Wu, H.; Martin, B. A. Human in silico trials for parametric computational fluid dynamics investigation of cerebrospinal fluid drug delivery: impact of injection location, injection protocol, and physiology. Fluids and Barriers of the CNS 2022, 19(1), 8. [Google Scholar] [CrossRef]
- Goraya, S. A.; Ding, S.; Miller, R. C.; Arif, M. K.; Kong, H.; Masud, A. Modeling of spatiotemporal dynamics of ligand-coated particle flow in targeted drug delivery processes. Proceedings of the National Academy of Sciences 2024, 121(22), e2314533121. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Valitalo, P. A.; Huntjens, D. R.; Proost, J. H.; Vermeulen, A.; Krauwinkel, W.; Beukers, M. W.; van den Berg, D.-J.; Hartman, R.; Wong, Y. C. Predicting drug concentration-time profiles in multiple cns compartments using a comprehensive physiologically-based pharmacokinetic model. CPT: pharmacometrics & systems pharmacology 2017, 6(11), 765–777. [Google Scholar]
- Sato, S.; Liu, S.; Goto, A.; Yoneyama, T.; Okita, K.; Yamamoto, S.; Hirabayashi, H.; Iwasaki, S.; Kusuhara, H. Advanced translational pbpk model for transferrin receptor-mediated drug delivery to the brain. Journal of Controlled Release 2023, 357, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Sheng, Y.; Wang, W. Recent advances of studies on cell-penetrating peptides based on molecular dynamics simulations. Cells 2022, 11(24), 4016. [Google Scholar] [CrossRef] [PubMed]
- Ivanczi, M.; Balogh, B.; Kis, L.; Mandity, I. Molecular dynamics simulations of drug-conjugated cell-penetrating peptides. Pharmaceuticals 2023, 16(9), 1251. [Google Scholar] [CrossRef]
- Clancy, C. E.; An, G.; Cannon, W. R.; Liu, Y.; May, E. E.; Ortoleva, P.; Popel, A. S.; Sluka, J. P.; Su, J.; Vicini, P. Multiscale modeling in the clinic: drug design and development. Annals of biomedical engineering 2016, 44(9), 2591–2610. [Google Scholar] [CrossRef]
- Vinje, V.; Zapf, B.; Ringstad, G.; Eide, P. K.; Rognes, M. E.; Mardal, K.-A. Human brain solute transport quantified by glymphatic mri-informed biophysics during sleep and sleep deprivation. Fluids and Barriers of the CNS 2023, 20(1), 62. [Google Scholar] [CrossRef]
- Sundstrom, E.; Talat, R.; Sedaghat, A. R.; Khosla, S.; Oren, L. Computational modeling of nasal drug delivery using different intranasal corticosteroid sprays for the treatment of eustachian tube dysfunction. Journal of Engineering and Science in Medical Diagnostics and Therapy 2022, 5(3), 031103. [Google Scholar] [CrossRef]
- Debnath, G.; Vasu, B.; Gorla, R. S. R. Current state-of-the-art in multi-scale modeling in nano-cancer drug delivery: role of ai and machine learning. Cancer Nanotechnology 2025, 16(1), 45. [Google Scholar] [CrossRef]
- Pereira, T.; Abbasi, M.; Oliveira, J. L.; Ribeiro, B.; Arrais, J. Optimizing blood–brain barrier permeation through deep reinforcement learning for de novo drug design. Bioinformatics 2021, 37 Supplement_1, i84–i92. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal transduction and targeted therapy 2023, 8(1), 217. [Google Scholar] [CrossRef]
- Profaci, C. P.; Munji, R. N.; Pulido, R. S.; Daneman, R. The blood–brain barrier in health and disease: Important unanswered questions. Journal of Experimental Medicine 2020, 217(4), e20190062. [Google Scholar] [CrossRef]
- Abbott, N. J.; Rönnbäck, L.; Hansson, E. Astrocyte–endothelial interactions at the blood–brain barrier. Nature reviews neuroscience 2006, 7(1), 41–53. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, H.; Wu, Z.; Wang, T.; Li, W.; Tang, Y.; Liu, G. In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem 2018, 13(20), 2189–2201. [Google Scholar] [CrossRef] [PubMed]
- Troili, F.; Cipollini, V.; Moci, M.; Morena, E.; Palotai, M.; Rinaldi, V.; Romano, C.; Ristori, G.; Giubilei, F.; Salvetti, M. Perivascular unit: this must be the place. the anatomical crossroad between the immune, vascular and nervous system. Frontiers in neuroanatomy 2020, 14 17. [Google Scholar]
- Troili, F.; Cipollini, V.; Moci, M.; Morena, E.; Palotai, M.; Rinaldi, V.; Romano, C.; Ristori, G.; Giubilei, F.; Salvetti, M. Corrigendum: Perivascular unit: This must be the place. the anatomical crossroad between the immune, vascular and nervous system. Frontiers in Neuroanatomy 2020, 14 51. [Google Scholar] [CrossRef] [PubMed]
- Montagne, A.; Barnes, S. R.; Sweeney, M. D.; Halliday, M. R.; Sagare, A. P.; Zhao, Z.; Toga, A. W.; Jacobs, R. E.; Liu, C. Y.; Amezcua, L. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85(2), 296–302. [Google Scholar] [CrossRef] [PubMed]
- Iturria-Medina, Y.; Sotero, R. C.; Toussaint, P. J.; Mateos-Pérez, J. M.; Evans, A. C. Early role of vascular dysregulation on late-onset alzheimer’s disease based on multifactorial data-driven analysis. Nature communications 2016, 7(1), 11934. [Google Scholar] [CrossRef] [PubMed]
- Winkler, E. A.; Sengillo, J. D.; Bell, R. D.; Wang, J.; Zlokovic, B. V. Blood–spinal cord barrier pericyte reductions contribute to increased capillary permeability. Journal of Cerebral Blood Flow & Metabolism 2012, 32(10), 1841–1852. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Shinohara, M.; Shinohara, M.; Yamazaki, A.; Murray, M. E.; Liesinger, A. M.; Heckman, M. G.; Lesser, E. R.; Parisi, J. E.; Petersen, R. C. Selective loss of cortical endothelial tight junction proteins during alzheimer’s disease progression. Brain 2019, 142(4), 1077–1092. [Google Scholar] [CrossRef]
- Yamada, M.; Hamaguchi, T. The sulfation code for propagation of neurodegeneration. Journal of Biological Chemistry 2018, 293(27), 10841–10842. [Google Scholar] [CrossRef]
- Blanchard, J. W.; Bula, M.; Davila-Velderrain, J.; Akay, L. A.; Zhu, L.; Frank, A.; Victor, M. B.; Bonner, J. M.; Mathys, H.; Lin, Y.-T. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of apoe4 in pericytes. Nature medicine 2020, 26(6), 952–963. [Google Scholar] [CrossRef]
- Kisler, K.; Nelson, A. R.; Rege, S. V.; Ramanathan, A.; Wang, Y.; Ahuja, A.; Lazic, D.; Tsai, P. S.; Zhao, Z.; Zhou, Y. Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nature neuroscience 2017, 20(3), 406–416. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M. D.; Sagare, A. P.; Zlokovic, B. V. Blood–brain barrier breakdown in alzheimer disease and other neurodegenerative disorders. Nature Reviews Neurology 2018, 14(3), 133–150. [Google Scholar] [CrossRef]
- Nation, D. A.; Sweeney, M. D.; Montagne, A.; Sagare, A. P.; D’Orazio, L. M.; Pachicano, M.; Sepehrband, F.; Nelson, A. R.; Buennagel, D. P.; Harrington, M. G. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nature medicine 2019, 25(2), 270–276. [Google Scholar] [CrossRef]
- Zlokovic, B. V. Neurovascular pathways to neurodegeneration in alzheimer’s disease and other disorders. Nature Reviews Neuroscience 2011, 12(12), 723–738. [Google Scholar] [CrossRef]
- Lassmann, H. Multiple sclerosis pathology. Cold Spring Harbor perspectives in medicine 2018, 8(3), a028936. [Google Scholar] [CrossRef] [PubMed]
- Madadi, A. K.; Sohn, M.-J. Advances in intrathecal nanoparticle delivery: targeting the blood–cerebrospinal fluid barrier for enhanced cns drug delivery. Pharmaceuticals 2024, 17(8), 1070. [Google Scholar] [CrossRef]
- Kapate, N.; Dunne, M.; Kumbhojkar, N.; Prakash, S.; Wang, L. L.-W.; Graveline, A.; Park, K. S.; Chandran Suja, V.; Goyal, J.; Clegg, J. R. A backpack-based myeloid cell therapy for multiple sclerosis. Proceedings of the National Academy of Sciences 2023, 120(17), e2221535120. [Google Scholar] [CrossRef] [PubMed]
- Franklin, R. J.; Ffrench-Constant, C. Regenerating cns myelin—from mechanisms to experimental medicines. Nature Reviews Neuroscience 2017, 18(12), 753–769. [Google Scholar] [CrossRef] [PubMed]
- Stadelmann, C.; Timmler, S.; Barrantes-Freer, A.; Simons, M. Myelin in the central nervous system: structure, function, and pathology. Physiological reviews 2019. [Google Scholar] [CrossRef]
- Magliozzi, R.; Howell, O. W.; Nicholas, R.; Cruciani, C.; Castellaro, M.; Romualdi, C.; Rossi, S.; Pitteri, M.; Benedetti, M. D.; Gajofatto, A. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Annals of neurology 2018, 83(4), 739–755. [Google Scholar] [CrossRef]
- Gray, M. T.; Woulfe, J. M. Striatal blood–brain barrier permeability in parkinson’s disease. Journal of Cerebral Blood Flow & Metabolism 2015, 35(5), 747–750. [Google Scholar]
- Elabi, O.; Gaceb, A.; Carlsson, R.; Padel, T.; Soylu-Kucharz, R.; Cortijo, I.; Li, W.; Li, J.-Y.; Paul, G. Human α-synuclein overexpression in a mouse model of parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Scientific reports 2021, 11(1), 1120. [Google Scholar] [CrossRef]
- Leinenga, G.; Götz, J. Scanning ultrasound removes amyloid-β and restores memory in an alzheimer’s disease mouse model. Science translational medicine 2015, 7(278), 278ra33–278ra33. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.; Khatri, P. Stroke lancet, 396 (10244)(2020), View PDF View article View in Scopus; 2020; pp. 129–142. [Google Scholar]
- Feigin, V. L.; Abate, M. D.; Abate, Y. H.; Abd ElHafeez, S.; Abd-Allah, F.; Abdelalim, A.; Abdelkader, A.; Abdelmasseh, M.; Abd-Elsalam, S.; Abdi, P. Global, regional, and national burden of stroke and its risk factors, 1990–2021: a systematic analysis for the global burden of disease study 2021. The Lancet Neurology 2024, 23(10), 973–1003. [Google Scholar] [CrossRef]
- Moskowitz, M. A.; Lo, E. H.; Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 2010, 67(2), 181–198. [Google Scholar] [CrossRef]
- Wardlaw, J. M.; Murray, V.; Berge, E.; Del Zoppo, G.; Sandercock, P.; Lindley, R. L.; Cohen, G. Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis. The Lancet 2012, 379(9834), 2364–2372. [Google Scholar] [CrossRef]
- Davis, S. M.; Donnan, G. A. 4.5 hours: the new time window for tissue plasminogen activator in stroke. Stroke 2009, 40(6), 2266–2267. [Google Scholar] [CrossRef]
- Hacke, W.; Kaste, M.; Bluhmki, E.; Brozman, M.; Dávalos, A.; Guidetti, D.; Larrue, V.; Lees, K. R.; Medeghri, Z.; Machnig, T. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. New England journal of medicine 2008, 359(13), 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Jickling, G. C.; Liu, D.; Ander, B. P.; Stamova, B.; Zhan, X.; Sharp, F. R. Targeting neutrophils in ischemic stroke: translational insights from experimental studies. Journal of Cerebral Blood Flow & Metabolism 2015, 35(6), 888–901. [Google Scholar] [CrossRef]
- Li, S.; Wang, F.; Li, X.; Chen, J.; Zhang, X.; Wang, Y.; Liu, J. Dipole orientation matters: Longer-circulating choline phosphate than phosphocholine liposomes for enhanced tumor targeting. ACS applied materials & interfaces 2017, 9(21), 17736–17744. [Google Scholar]
- Nogueira, R. G.; Jadhav, A. P.; Haussen, D. C.; Bonafe, A.; Budzik, R. F.; Bhuva, P.; Yavagal, D. R.; Ribo, M.; Cognard, C.; Hanel, R. A. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. New England Journal of Medicine 2018, 378(1), 11–21. [Google Scholar] [CrossRef]
- Campbell, B. C.; Mitchell, P. J.; Kleinig, T. J.; Dewey, H. M.; Churilov, L.; Yassi, N.; Yan, B.; Dowling, R. J.; Parsons, M. W.; Oxley, T. J. Endovascular therapy for ischemic stroke with perfusion-imaging selection. New England Journal of Medicine 2015, 372(11), 1009–1018. [Google Scholar] [CrossRef]
- Hettiaratchi, M. H.; O’Meara, M. J.; Teal, C. J.; Payne, S. L.; Pickering, A. J.; Shoichet, M. S. Local delivery of stabilized chondroitinase abc degrades chondroitin sulfate proteoglycans in stroke-injured rat brains. Journal of controlled release 2019, 297, 14–25. [Google Scholar] [CrossRef]
- Karimi-Abdolrezaee, S.; Eftekharpour, E.; Wang, J.; Morshead, C. M.; Fehlings, M. G. Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. Journal of Neuroscience 2006, 26(13), 3377–3389. [Google Scholar] [CrossRef] [PubMed]
- George, P. M.; Oh, B.; Dewi, R.; Hua, T.; Cai, L.; Levinson, A.; Liang, X.; Krajina, B. A.; Bliss, T. M.; Heilshorn, S. C. Engineered stem cell mimics to enhance stroke recovery. Biomaterials 2018, 178, 63–72. [Google Scholar] [CrossRef]
- Yamawaki-Ogata, A.; Hashizume, R.; Satake, M.; Kaneko, H.; Mizutani, S.; Moritan, T.; Ueda, Y.; Narita, Y. A doxycycline loaded, controlled-release, biodegradable fiber for the treatment of aortic aneurysms. Biomaterials 2010, 31(36), 9554–9564. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Du, Y.; Wang, Y.; Wang, M.; Wang, L.; Yu, N.; Luo, S.; Wu, F.; Yang, G. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: a review. International Journal of Biological Macromolecules 2024, 257, 128658. [Google Scholar] [CrossRef]
- Bolan, F.; Louca, I.; Heal, C.; Cunningham, C. J. The potential of biomaterial-based approaches as therapies for ischemic stroke: a systematic review and meta-analysis of pre-clinical studies. Frontiers in Neurology 2019, 10, 924. [Google Scholar] [CrossRef]
- Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. Journal of controlled release 2016, 235, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A. M. Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. The Lancet Neurology 2016, 15(8), 869–881. [Google Scholar] [CrossRef] [PubMed]
- Lochhead, J. J.; Thorne, R. G. Intranasal delivery of biologics to the central nervous system. Advanced drug delivery reviews 2012, 64(7), 614–628. [Google Scholar] [CrossRef]
- Hu, Q.; Katti, P. S.; Gu, Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014, 6(21), 12273–12286. [Google Scholar] [CrossRef]
- Chu, S.; Shi, X.; Tian, Y.; Gao, F. ph-responsive polymer nanomaterials for tumor therapy. Frontiers in oncology 2022, 12, 855019. [Google Scholar] [CrossRef]
- Sipos, D.; Raposa, B. L.; Freihat, O.; Simon, M.; Mekis, N.; Cornacchione, P.; Kovács, Á. Glioblastoma: clinical presentation, multidisciplinary management, and long-term outcomes. Cancers 2025, 17(1), 146. [Google Scholar] [CrossRef]
- Cagney, D. N.; Martin, A. M.; Catalano, P. J.; Redig, A. J.; Lin, N. U.; Lee, E. Q.; Wen, P. Y.; Dunn, I. F.; Bi, W. L.; Weiss, S. E. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study. Neuro-oncology 2017, 19(11), 1511–1521. [Google Scholar] [CrossRef]
- Miroshnikova, Y. A.; Mouw, J. K.; Barnes, J. M.; Pickup, M. W.; Lakins, J. N.; Kim, Y.; Lobo, K.; Persson, A. I.; Reis, G. F.; McKnight, T. R. Tissue mechanics promote idh1-dependent hif1α–tenascin c feedback to regulate glioblastoma aggression. Nature cell biology 2016, 18(12), 1336–1345. [Google Scholar] [CrossRef]
- Habic, A.; Novak, M.; Majc, B.; Lah Turnsek, T.; Breznik, B. Proteases regulate cancer stem cell properties and remodel their microenvironment. Journal of Histochemistry & Cytochemistry 2021, 69(12), 775–794. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nature materials 2013, 12(11), 991–1003. [Google Scholar] [CrossRef]
- Xia, Y.; Rao, L.; Yao, H.; Wang, Z.; Ning, P.; Chen, X. Engineering macrophages for cancer immunotherapy and drug delivery. Advanced materials 2020, 32(40), 2002054. [Google Scholar] [CrossRef]
- Hossain, M. A.; Liu, G.; Dai, B.; Si, Y.; Yang, Q.; Wazir, J.; Birnbaumer, L.; Yang, Y. Reinvigorating exhausted cd8+ cytotoxic t lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Medicinal Research Reviews 2021, 41(1), 156–201. [Google Scholar] [CrossRef]
- Arvanitis, C. D.; Ferraro, G. B.; Jain, R. K. The blood–brain barrier and blood–tumour barrier in brain tumours and metastases. Nature Reviews Cancer 2020, 20(1), 26–41. [Google Scholar] [CrossRef]
- Vaupel, P. The role of hypoxia-induced factors in tumor progression. The oncologist 2004, 9(S5), 10–17. [Google Scholar] [CrossRef]
- Nance, E. A.; Woodworth, G. F.; Sailor, K. A.; Shih, T.-Y.; Xu, Q.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A dense poly (ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Science translational medicine 2012, 4(149), 149ra119–149ra119. [Google Scholar] [CrossRef] [PubMed]
- Bobo, R. H.; Laske, D. W.; Akbasak, A.; Morrison, P. F.; Dedrick, R. L.; Oldfield, E. H. Convection-enhanced delivery of macromolecules in the brain. Proceedings of the National Academy of Sciences 1994, 91(6), 2076–2080. [Google Scholar] [CrossRef]
- Gutenberg, A.; Lumenta, C.; Braunsdorf, W.; Sabel, M.; Mehdorn, H.; Westphal, M.; Giese, A. The combination of carmustine wafers and temozolomide for the treatment of malignant gliomas. a comprehensive review of the rationale and clinical experience. Journal of neuro-oncology 2013, 113(2), 163–174. [Google Scholar] [CrossRef] [PubMed]
- Hynynen, K.; McDannold, N.; Vykhodtseva, N.; Jolesz, F. A. Noninvasive mr imaging–guided focal opening of the blood-brain barrier in rabbits. Radiology 2001, 220(3), 640–646. [Google Scholar] [CrossRef]
- Kulkarni, J. A.; Witzigmann, D.; Chen, S.; Cullis, P. R.; Van Der Meel, R. Lipid nanoparticle technology for clinical translation of sirna therapeutics. Accounts of chemical research 2019, 52(9), 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Kamerkar, S.; LeBleu, V. S.; Sugimoto, H.; Yang, S.; Ruivo, C. F.; Melo, S. A.; Lee, J. J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic kras in pancreatic cancer. Nature 2017, 546(7659), 498–503. [Google Scholar] [CrossRef]
- Haqqani, A. S.; Bélanger, K.; Stanimirovic, D. B. Receptor-mediated transcytosis for brain delivery of therapeutics: receptor classes and criteria. Frontiers in Drug Delivery 2024, 4, 1360302. [Google Scholar] [CrossRef] [PubMed]
- Patel, T.; Zhou, J.; Piepmeier, J. M.; Saltzman, W. M. Polymeric nanoparticles for drug delivery to the central nervous system. Advanced drug delivery reviews 2012, 64(7), 701–705. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Gursoy-Ozdemir, Y.; Kaya, M.; Eslami Abriz, A.; Zarebkohan, A.; Rahbarghazi, R.; Sokullu, E. Exosomal delivery of therapeutic modulators through the blood–brain barrier; promise and pitfalls. Cell & Bioscience 2021, 11(1), 142. [Google Scholar] [CrossRef]
- Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacologica Sinica 2017, 38(6), 754–763. [Google Scholar] [CrossRef]
- Rapoport, S. I. Osmotic opening of the blood–brain barrier: principles, mechanism, and therapeutic applications. Cellular and molecular neurobiology 2000, 20(2), 217–230. [Google Scholar] [CrossRef]
- Pardridge, W. M. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. Frontiers in drug delivery 2023, 3, 1227816. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.; Ben-Shalom, N.; D’Amico, R. S.; Boockvar, J. A. Intra-arterial drug delivery for brain tumors; Current Status and Future Directions: Arterial Treatment of Neurological Diseases, 2025; pp. 109–117. [Google Scholar]
- Caraway, C. A.; Gaitsch, H.; Wicks, E. E.; Kalluri, A.; Kunadi, N.; Tyler, B. M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers 2022, 14(14), 2963. [Google Scholar] [CrossRef]
- Lu, X.; Dong, J.; Zheng, D.; Li, X.; Ding, D.; Xu, H. Reperfusion combined with intraarterial administration of resveratrol-loaded nanoparticles improved cerebral ischemia–reperfusion injury in rats. Nanomedicine: Nanotechnology, Biology and Medicine 2020, 28, 102208. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Hynynen, K.; Lipsman, N. Applications of focused ultrasound in the brain: from thermoablation to drug delivery. Nature Reviews Neurology 2021, 17(1), 7–22. [Google Scholar] [CrossRef]
- Grasso, G.; Torregrossa, F.; Noto, M.; Bruno, E.; Feraco, P.; Buscemi, F.; Bartolotta, T. V.; Gagliardo, C. Mr-guided focused ultrasound–induced blood-brain barrier opening for brain metastasis: a review. Neurosurgical focus 2023, 55(2), E11. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, P.; Sun, S.; Liang, X. Applications of micro/nanotechnology in ultrasound-based drug delivery and therapy for tumor. Current medicinal chemistry 2021, 28(3), 525–547. [Google Scholar]
- Lipsman, N.; Meng, Y.; Bethune, A. J.; Huang, Y.; Lam, B.; Masellis, M.; Herrmann, N.; Heyn, C.; Aubert, I.; Boutet, A. Blood–brain barrier opening in alzheimer’s disease using mr-guided focused ultrasound. Nature communications 2018, 9(1), 2336. [Google Scholar] [CrossRef]
- Chen, K.-T.; Chai, W.-Y.; Lin, Y.-J.; Lin, C.-J.; Chen, P.-Y.; Tsai, H.-C.; Huang, C.-Y.; Kuo, J. S.; Liu, H.-L.; Wei, K.-C. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Science Advances 2021, 7(6), eabd0772. [Google Scholar] [CrossRef]
- Wu, H.; Zhou, Y.; Wang, Y.; Tong, L.; Wang, F.; Song, S.; Xu, L.; Liu, B.; Yan, H.; Sun, Z. Current state and future directions of intranasal delivery route for central nervous system disorders: a scientometric and visualization analysis. Frontiers in pharmacology 2021, 12, 717192. [Google Scholar] [CrossRef]
- Dufes, C.; Olivier, J.-C.; Gaillard, F.; Gaillard, A.; Couet, W.; Muller, J.-M. Brain delivery of vasoactive intestinal peptide (vip) following nasal administration to rats. International journal of pharmaceutics 2003, 255(1-2), 87–97. [Google Scholar] [CrossRef]
- Alcala-Barraza, S. R.; Lee, M. S.; Hanson, L. R.; McDonald, A. A.; Frey, W. H.; McLoon, L. K. Intranasal delivery of neurotrophic factors bdnf, cntf, epo, and nt-4 to the cns. Journal of drug targeting 2010, 18(3), 179–190. [Google Scholar] [CrossRef]
- Awad, R.; Avital, A.; Sosnik, A. Polymeric nanocarriers for nose-to-brain drug delivery in neurodegenerative diseases and neurodevelopmental disorders. Acta Pharmaceutica Sinica B 2023, 13(5), 1866–1886. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, F.; Wang, K.; Zhong, Y.; Wei, X.; Wang, Q.; Zhang, H. Engineered exosomes: a promising drug delivery strategy for brain diseases. Current Medicinal Chemistry 2022, 29(17), 3111–3124. [Google Scholar] [CrossRef]
- Oliveira, J. M.; Carvalho, L.; Silva-Correia, J.; Vieira, S.; Majchrzak, M.; Lukomska, B.; Stanaszek, L.; Strymecka, P.; Malysz-Cymborska, I.; Golubczyk, D. Hydrogel-based scaffolds to support intrathecal stem cell transplantation as a gateway to the spinal cord: clinical needs, biomaterials, and imaging technologies. NPJ Regenerative medicine 2018, 3(1), 8. [Google Scholar] [CrossRef]
- Strazielle, N.; Ghersi-Egea, J.-F. Potential pathways for cns drug delivery across the blood-cerebrospinal fluid barrier. Current pharmaceutical design 2016, 22(35), 5463–5476. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, V.; Richardson, R. M. Gene therapy for neurodegenerative diseases. Neurotherapeutics 2019, 16(1), 166–175. [Google Scholar] [CrossRef] [PubMed]
- Arjomandnejad, M.; Dasgupta, I.; Flotte, T. R.; Keeler, A. M. Immunogenicity of recombinant adeno-associated virus (aav) vectors for gene transfer. BioDrugs 2023, 37(3), 311. [Google Scholar] [CrossRef] [PubMed]
- Nance, E.; Zhang, C.; Shih, T.-Y.; Xu, Q.; Schuster, B. S.; Hanes, J. Brain-penetrating nanoparticles improve paclitaxel efficacy in malignant glioma following local administration. ACS nano 2014, 8(10), 10655–10664. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Ding, J.; Li, Z.; Tian, Y.; Zeng, M.; Wu, X.; Su, B.; Jiang, J.; Wu, C. Hydrogel-based multifunctional deep brain probe for neural sensing, manipulation, and therapy. ACS nano, 2025. [Google Scholar]
- Leong, K.; D’Amore, P.; Marletta, M.; Langer, R. Bioerodible polyanhydrides as drug-carrier matrices. ii. biocompatibility and chemical reactivity. Journal of biomedical materials research 1986, 20(1), 51–64. [Google Scholar] [CrossRef]
- Pena, E. S.; Graham-Gurysh, E. G.; Bachelder, E. M.; Ainslie, K. M. Design of biopolymer-based interstitial therapies for the treatment of glioblastoma. International journal of molecular sciences 2021, 22(23), 13160. [Google Scholar] [CrossRef]
- Ball, K.; Bouzom, F.; Scherrmann, J.-M.; Walther, B.; Decleves, X. Physiologically based pharmacokinetic modelling of drug penetration across the blood–brain barrier—towards a mechanistic ivive-based approach. The AAPS journal 2013, 15(4), 913–932. [Google Scholar] [CrossRef]
- Ball, K.; Bouzom, F.; Scherrmann, J.-M.; Walther, B.; Declèves, X. A physiologically based modeling strategy during preclinical cns drug development. Molecular pharmaceutics 2014, 11(3), 836–848. [Google Scholar] [CrossRef]
- Bloomingdale, P.; Bakshi, S.; Maass, C.; van Maanen, E.; Pichardo-Almarza, C.; Yadav, D. B.; van der Graaf, P.; Mehrotra, N. Minimal brain pbpk model to support the preclinical and clinical development of antibody therapeutics for cns diseases. Journal of pharmacokinetics and pharmacodynamics 2021, 48(6), 861–871. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Soliman, A.; Rodriguez-Vera, L.; Schmidt, S.; Muniz, P.; Rodriguez, M.; Forcadell, M.; Gonzalez-Perez, E.; Vozmediano, V. Interspecies brain pbpk modeling platform to predict passive transport through the blood–brain barrier and assess target site disposition. Pharmaceutics 2024, 16(2), 226. [Google Scholar] [CrossRef] [PubMed]
- Gaohua, L.; Neuhoff, S.; Johnson, T. N.; Rostami-Hodjegan, A.; Jamei, M. Development of a permeability-limited model of the human brain and cerebrospinal fluid (csf) to integrate known physiological and biological knowledge: Estimating time varying csf drug concentrations and their variability using in vitro data. Drug metabolism and pharmacokinetics 2016, 31(3), 224–233. [Google Scholar] [CrossRef]
- Monine, M.; Norris, D.; Wang, Y.; Nestorov, I. A physiologically-based pharmacokinetic model to describe antisense oligonucleotide distribution after intrathecal administration. Journal of Pharmacokinetics and Pharmacodynamics 2021, 48(5), 639–654. [Google Scholar] [CrossRef]
- Shannon, R. J.; Carpenter, K. L.; Guilfoyle, M. R.; Helmy, A.; Hutchinson, P. J. Cerebral microdialysis in clinical studies of drugs: pharmacokinetic applications. Journal of pharmacokinetics and pharmacodynamics 2013, 40(3), 343–358. [Google Scholar] [CrossRef] [PubMed]
- Drath, I.; Richter, F.; Feja, M. Nose-to-brain drug delivery: from bench to bedside. Translational neurodegeneration 2025, 14(1), 23. [Google Scholar] [CrossRef]
- Rygg, A.; Hindle, M.; Longest, P. W. Linking suspension nasal spray drug deposition patterns to pharmacokinetic profiles: A proof-of-concept study using computational fluid dynamics. Journal of Pharmaceutical Sciences 2016, 105(6), 1995–2004. [Google Scholar] [CrossRef]
- Burgess, A.; Shah, K.; Hough, O.; Hynynen, K. Focused ultrasound-mediated drug delivery through the blood–brain barrier. Expert review of neurotherapeutics 2015, 15(5), 477–491. [Google Scholar] [CrossRef]
- Wu, S.-K.; Chu, P.-C.; Chai, W.-Y.; Kang, S.-T.; Tsai, C.-H.; Fan, C.-H.; Yeh, C.-K.; Liu, H.-L. Characterization of different microbubbles in assisting focused ultrasound-induced blood-brain barrier opening. Scientific reports 2017, 7(1), 46689. [Google Scholar] [CrossRef]
- Nicholson, C.; Hrabetova, S. Brain extracellular space: the final frontier of neuroscience. Biophysical journal 2017, 113(10), 2133–2142. [Google Scholar] [CrossRef]
- Tzafriri, A. R.; Edelman, E. R. Convective and diffusive transport in drug delivery. Cancer Targeted Drug Delivery: An Elusive Dream 2013, 573–606. [Google Scholar]
- Krewson, C. E.; Klarman, M. L.; Saltzman, W. M. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain research 1995, 680(1-2), 196–206. [Google Scholar] [CrossRef]
- Kouzehgarani, G. N.; Feldsien, T.; Engelhard, H. H.; Mirakhur, K. K.; Phipps, C.; Nimmrich, V.; Clausznitzer, D.; Lefebvre, D. R. Harnessing cerebrospinal fluid circulation for drug delivery to brain tissues. Advanced Drug Delivery Reviews 2021, 173, 20–59. [Google Scholar] [CrossRef]
- Mestre, H.; Tithof, J.; Du, T.; Song, W.; Peng, W.; Sweeney, A. M.; Olveda, G.; Thomas, J. H.; Nedergaard, M.; Kelley, D. H. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nature communications 2018, 9(1), 4878. [Google Scholar] [CrossRef]
- Bohr, T.; Hjorth, P. G.; Holst, S. C.; Hrabetova, S.; Kiviniemi, V.; Lilius, T.; Lundgaard, I.; Mardal, K.-A.; Martens, E. A.; Mori, Y. The glymphatic system: Current understanding and modeling. IScience 2022, 25(9). [Google Scholar] [CrossRef]
- Quirk, K.; Boster, K. A.; Tithof, J.; Kelley, D. H. A brain-wide solute transport model of the glymphatic system. Journal of the Royal Society Interface 2024, 21(219), 20240369. [Google Scholar] [CrossRef]
- Vishnumurthy, P.; Radulesco, T.; Bouchet, G.; Regard, A.; Michel, J. Computational fluid dynamics approach for direct nose-to-brain drug delivery: A systematic review and meta-analysis. Journal of Personalized Medicine 2025, 15(10), 447. [Google Scholar] [CrossRef]
- Boyuklieva, R.; Zagorchev, P.; Pilicheva, B. Computational, in vitro, and in vivo models for nose-to-brain drug delivery studies. Biomedicines 2023, 11(8), 2198. [Google Scholar] [CrossRef] [PubMed]
- Downs, M. E.; Buch, A.; Karakatsani, M. E.; Konofagou, E. E.; Ferrera, V. P. Blood-brain barrier opening in behaving non-human primates via focused ultrasound with systemically administered microbubbles. Scientific reports 2015, 5(1), 15076. [Google Scholar] [CrossRef]
- Arifin, D. Y.; Lee, K. Y. T.; Wang, C.-H. Chemotherapeutic drug transport to brain tumor. Journal of controlled release 2009, 137(3), 203–210. [Google Scholar] [CrossRef] [PubMed]
- Pedram, M. Z.; Shamloo, A.; Alasty, A.; Ghafar-Zadeh, E. Optimal magnetic field for crossing super-para-magnetic nanoparticles through the brain blood barrier: a computational approach. Biosensors 2016, 6(2), 25. [Google Scholar] [CrossRef]
- Müller, W. A.; Sarkis, J. R.; Marczak, L. D. F.; Muniz, A. R. Computational analysis of the simultaneous application of ultrasound and electric fields in a lipid bilayer. Biochimica et Biophysica Acta (BBA)-Biomembranes 2024, 1866(7), 184364. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Xiong, Y.; Chen, H.; Gao, X.; Dai, J.; Zhang, Y.; Zou, W.; Gao, Y.; Jiang, Z.; Han, B. Mucus adhesion vs. mucus penetration? screening nanomaterials for nasal inhalation by md simulation. Journal of Controlled Release 2023, 353, 366–379. [Google Scholar] [CrossRef] [PubMed]
- Jagger, B. R.; Kochanek, S. E.; Haldar, S.; Amaro, R. E.; Mulholland, A. J. Multiscale simulation approaches to modeling drug–protein binding. Current opinion in structural biology 2020, 61, 213–221. [Google Scholar] [CrossRef]
- Rim, J. E.; Pinsky, P. M.; Van Osdol, W. W. Multiscale modeling framework of transdermal drug delivery. Annals of biomedical engineering 2009, 37(6), 1217–1229. [Google Scholar] [CrossRef]
- Goraya, S. A. Computational modeling of nanoparticle transport and adhesion under shear-dependent flow: A multiscale digital-twin framework, Brain MultiphysicsInferred from uploaded PDF. Brain Multiphysics 2024. [Google Scholar]
- Akalın, A. A.; Dedekargınoğlu, B.; Choi, S. R.; Han, B.; Ozcelikkale, A. Predictive design and analysis of drug transport by multiscale computational models under uncertainty. Pharmaceutical research 2023, 40(2), 501–523. [Google Scholar] [CrossRef]
- Mohammadi, M.; Sefidgar, M.; Aghanajafi, C.; Kohandel, M.; Soltani, M. Computational multi-scale modeling of drug delivery into an anti-angiogenic therapy-treated tumor. Cancers 2023, 15(22), 5464. [Google Scholar] [CrossRef]
- Buchete, N.-V.; Cicha, I.; Dutta, S.; Neofytou, P. Multiscale physics-based in silico modelling of nanocarrier-assisted intravascular drug delivery. Frontiers in Drug Delivery 2024, 4, 1362660. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Q.; Cao, Y.; Yang, H.; Li, M.; Wu, F.; Zhang, Y.; Chen, G.; Wang, Q. Multiscale nir-ii imaging-guided brain-targeted drug delivery using engineered cell membrane nanoformulation for alzheimer’s disease therapy. ACS nano 2023, 17(5), 5033–5046. [Google Scholar] [CrossRef]
- Tarki, F. E.; Sharbatdar, M.; Zarrabi, M.; Vafaee, F.; Khanbabaei, G. Computational insights into intranasal drug delivery: Enhancing outcomes in pediatric cystic fibrosis. Respiratory Medicine 2025, 108430. [Google Scholar] [CrossRef]
- Zhou, L.; Nguyen, T. D.; Chiang, G. C.; Keil, S. A.; Wang, X. H.; Hu, T.-W.; Lan, H.; Xi, K.; Costa, A. P.; Tanzi, E. B. Brain glymphatic fluid mapping in alzheimer’s disease: a human mri and pet study. Brain Communications 2025, 7(3), fcaf200. [Google Scholar] [CrossRef] [PubMed]
- Taoka, T.; Ito, R.; Nakamichi, R.; Nakane, T.; Kawai, H.; Naganawa, S. Diffusion tensor image analysis along the perivascular space (dti-alps): revisiting the meaning and significance of the method. Magnetic Resonance in Medical Sciences 2024, 23(3), 268–290. [Google Scholar] [CrossRef] [PubMed]
- Vanlandewijck, M.; He, L.; Mäe, M. A.; Andrae, J.; Ando, K.; Del Gaudio, F.; Nahar, K.; Lebouvier, T.; Laviña, B.; Gouveia, L. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018, 554(7693), 475–480. [Google Scholar] [CrossRef] [PubMed]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
