Submitted:
30 December 2025
Posted:
31 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Genomic Sequencing and Annotation of Strain SH-53
2.2. Prediction of NP-BGCs in Strain SH-53 Genome
2.3. Evaluation of Strain Bioactivity and Seed Germination Promotion
2.3.1. Detection of IAA Production Capability
2.3.2. Detection of Siderophore Production Capability of Strains
2.3.3. Physiological and Biochemical Experiments of Strain
2.3.4. Seed Germination Experiment of Strain SH-53
3. Results
3.1. Analysis of Genetic Information and Gene Structure Characteristics of the Strain Based on Whole Genome Sequencing
3.2. Exploration of Bioactivity and Mechanism Analysis Based on Whole Genome Sequencing
3.3. Gene Annotation Results
3.3.1. Analysis Results of COG Database Genes in Strain SH-53
3.3.2. Gene Analysis Results of Strain SH-53 in the GO Database
3.3.3. Results of KEGG Database Gene Analysis of Strain SH-53
3.3.4. Annotation of Carbohydrate-Active Enzymes in Strain SH-53
3.3.5. Prediction of NP BGCs in the Genome of Strain SH-53
| Cluster ID | Nucleotide Length (bp) | Gene Cluster Type | Most similar known cluster | Similarity Confidence |
| 1 | 65,411 | NRPS | surfactin | High |
| 2 | 22,598 | lanthipeptide-class-iii | ||
| 3 | 41,245 | PKS-like | butirosin A/butirosin B | |
| 4 | 20,744 | terpene | ||
| 5 | 110,124 | NRPS,T3PKS,transAT-PKS | bacillaene | High |
| 6 | 110,422 | NRPS,betalactone,transAT-PKS | fengycin | High |
| 7 | 21,884 | terpene | ||
| 8 | 41,101 | T3PKS | ||
| 9 | 20,891 | terpene-precursor | ||
| 10 | 45,529 | NRPS | ||
| 11 | 65,250 | NRP-metallophore,NRPS,RiPP-like,terpene-precursor | bacillibactin | High |
| 12 | 41,419 | other | bacilysin | High |

3.3.6. Gene Analysis of ISR in the Strain
3.3.7. Antibiotic Resistance Analysis of Strain SH-53 (CARD)
3.4. Evaluation of Biological Activity and Seed Germination Promotion by Strain SH-53
3.4.1. Evaluation of Biological Activity of Strain SH-53
3.4.2. Determination of Seed Germination-Promoting Traits of Strain SH-53
| Treatment | CK | NB | T1 | T2 | T3 |
| Germinationrate/% | 50.00±17.32a | 33.33±15.28b | 60.00±17.32a | 53.33±15.28a | 40.00±10.00b |
| Rootlength/cm | 7.97±2.66b | 0.46±0.24c | 5.56±1.20b | 7.77±2.57b | 10.10±3.19a |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazerooni, E.; Maharachchikumbura, S.; Al-Sadi, A.; Kang, S.; Yun, B.; Lee, I. Biocontrol potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. Journal of fungi 2021, 7, 472. [Google Scholar] [CrossRef]
- Ying, T.; Wu, P.; Gao, L.; Wang, C.; Zhang, T.; Liu, S.; Huang, R. Isolation and characterization of a new strain of Bacillus amyloliquefaciens and its effect on strawberry preservation. LWT 2022, 165, 113712. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, D.; Kendall, J.; Borriss, R.; Druzhinina, I.; Kubicek, C.; Shen, Q.; Zhang, R. Comparative genomic analysis of Bacillus amyloliquefaciens and Bacillus subtilis reveals evolutional traits for adaptation to plant-associated habitats. Frontiers in microbiology. 2016, 7, 2039. [Google Scholar] [CrossRef]
- Hua, Z.; Qu, Y.; Zhu, Q.; Zhou, E.; Qi, Y.; Yin, Y.; Rao, Y.; Tian, Y.; Li, Y.; Liu, L.; Castelle, C.; Hedlund, B.; Shu, W.; Knight, R.; Li, W. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota. Nat Commun. 2018, 9, 2832. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, J.; Huang, X.; Zhang, J.; Li, Q.; Lyu, L.; Ju, F.; Li, J.; Zhang, S. Exploring the role of organotrophic microbes in geochemical cycling of cold seep sediments. The Innovation Geoscience. 2025, 3, 100123–1. [Google Scholar] [CrossRef]
- Lu, Q.; Xie, Y.; Gu, F.; Tu, C.; He, J.; Guo, Q.; Wu, Y.; Xu, M.; Liu, J. Potential of Bacillus amyloliquefaciens QY-1 as a biocontrol agent of Botrytis cinerea in postharvest blueberry. Physiological and Molecular Plant Pathology 2023, 128, 102117. [Google Scholar] [CrossRef]
- Liang, L.; Fu, Y.; Deng, S.; Wu, Y.; Gao, M. Genomic, antimicrobial, and aphicidal traits of Bacillus velezensis ATR2, and its biocontrol potential against ginger rhizome rot disease caused by Bacillus pumilus. Microorganisms 2021, 10, 63. [Google Scholar] [CrossRef]
- Zhao, X.; Kuipers, O. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC genomics. 2016, 17.1, 882. [Google Scholar] [CrossRef]
- Luo, L.; Zhao, C.; Wang, E.; Raza, A.; Yin, C. Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: An overview for its mechanisms. Microbiological research. 2022, 259, 127016. [Google Scholar] [CrossRef]
- Tanaka, K.; Amaki, Y.; Ishihara, A.; Nakajima, H. Synergistic effects of [Ile7] surfactin homologues with bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. Journal of agricultural and food chemistry 2015, 63, 5344–5353. [Google Scholar] [CrossRef]
- Chen, X.; Koumoutsi, A.; Scholz, R.; Schneider, K.; Vater, J.; Süssmuth, R.; Piel, J.; Borriss, R. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Journal of biotechnology 2009, 140(1-2), 27–37. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; You, J.; Yang, J.; Zhang, Q.; Zhao, J.; Aimaier, R.; Zhang, J.; Han, S.; Zhao, H.; Zhao, H. Transcriptome and metabolome analyses reveal that Bacillus subtilis BS-Z15 lipopeptides mycosubtilin homologue mediates plant defense responses. Frontiers in Plant Science 2023, 13, 1088220. [Google Scholar] [CrossRef]
- Zeng, Q.; Xie, J.; Li, Y.; Chen, X.; Gu, X.; Yang, P.; Hu, G.; Wang, Q. Organization, evolution and function of fengycin biosynthesis gene clusters in the Bacillus amyloliquefaciens group. Phytopathology Research 2021, 3, 26. [Google Scholar] [CrossRef]
- Wang, N.; Liao, Y.; Shi, Z.; Shen, Y.; Yang, T.; Feng, L.; Yi, X.; Tang, J.; Chen, Q.; Yang, P. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities. Biotechnology Bulletin 2024, 40.2, 277–288. [Google Scholar]
- Wang, N.; Liao, Y.; Shen, Y.; Zhao, J.; Chen, Q.; Yang, P. Optimization of fermentation conditions and biocontrol effect of Bacillus amyloliquefaciens SH-53 from rhizosphere of rumex. Journal of Plant Protection 2024, 51, 817–829. [Google Scholar]
- Roller, B.; Stoddard, S.; Schmidt, T. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016, 1, 16160. [Google Scholar] [CrossRef]
- Belbahri, L.; Bouket, A.; Rekik, I.; Alenezi, F.; Vallat, A.; Luptakova, L.; Petrovova, E.; Oszako, T.; Cherrad, S.; Vacher, S.; Rateb, M. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Frontiers in microbiology 2017, 8, 1438. [Google Scholar] [CrossRef]
- She, T.; Tan, D.; Balcazar, J.; Friman, V.; Wang, D.; Zhu, D.; Ye, M.; Sun, M.; Yuan, S.; Hu, F. Phage-mediated horizontal transfer of Salmonella enterica virulence genes with regulatory feedback from the host. iMeta 2025, e70042. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Liu, C.; Zhou, S.; Liu, C.; Eldridge, D.; Ai, C.; Wilhelm, S.; Singh, B.; Liang, X.; Radosevich, M.; Yang, Q.; Tang, X.; Wei, Z.; Friman, V.; Gillings, M.; Delgado-Baquerizo, M.; Zhu, Y. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nature communications. 2025, 15, 8315. [Google Scholar] [CrossRef]
- Cai, Y.; Tao, H.; Gaballa, A.; Pi, H.; Helmann, J. The extracytoplasmic sigma factor σX supports biofilm formation and increases biocontrol efficacy in Bacillus velezensis 118. Scientific Reports 2025, 15, 5315. [Google Scholar] [CrossRef]
- Glaeser, S.; Kämpfer, P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Systematic and applied microbiology 2015, 38, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Hartmann, A.; Gao, X.; Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42–a review. Frontiers in microbiology 2015, 6, 780. [Google Scholar] [CrossRef] [PubMed]
- Sylla, J.; Alsanius, B.; Krüger, E.; Reineke, A.; Strohmeier, S.; Wohanka, W. Leaf microbiota of strawberries as affected by biological control agents. Phytopathology. 2013, *103*(10), 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Shao, J.; Li, B.; Yan, X.; Shen, Q.; Zhang, R. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Applied and environmental microbiology. 2013, 79, 808–815. [Google Scholar] [CrossRef]
- Belbahri, L.; Bouket, A.; Rekik, I.; Alenezi, F.; Vallat, A.; Luptakova, L.; Petrovova, E.; Oszako, T.; Cherrad, S.; Vacher, S.; Rateb, M. Comparative genomics of Bacillus amyloliquefaciens strains reveals a core genome with traits for habitat adaptation and a secondary metabolites rich accessory genome. Frontiers in microbiology 2017, 8, 1438. [Google Scholar] [CrossRef]
- Liu, H.; Prajapati, V.; Prajapati, S.; Bais, H.; Lu, J. Comparative genome analysis of Bacillus amyloliquefaciens focusing on phylogenomics, functional traits, and prevalence of antimicrobial and virulence genes. Frontiers in Genetics 2021, 12, 724217. [Google Scholar] [CrossRef]
- Lam, V.; Meyer, T.; Arias, A.; Ongena, M.; Höfte, M. Contribution of Bacillus cyclic lipopeptides iturin and fengycin to control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 2021, 9, 1441. [Google Scholar] [CrossRef]
- Lv, J.; Da, R.; Cheng, Y.; Tuo, X.; Wei, J.; Jiang, K.; Monisayo, A.; Han, B. Mechanism of antibacterial activity of Bacillus amyloliquefaciens C-1 lipopeptide toward anaerobic Clostridium difficile. BioMed Research International 2020, 2020, 3104613. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, P.; Liu, Y.; Tabl, K.; Guo, M.; Zhang, J.; Wu, A.; Liao, Y.; Huang, T.; He, W. Iturin and fengycin lipopeptides inhibit pathogenic Fusarium by targeting multiple components of the cell membrane and their regulative effects in wheat. Journal of Integrative Plant Biology 2025, 67, 2184–2197. [Google Scholar] [CrossRef]
- Lam, V.; Meyer, T.; Arguelles Arias, A.; Ongena, M.; Oni, F.; Höfte, M. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 2021, 9, 1441. [Google Scholar] [CrossRef]
- Parker, J.; Walsh, C. Action and timing of BacC and BacD in the late stages of biosynthesis of the dipeptide antibiotic bacilysin. Biochemistry 2013, 52, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, H.; Chen, L.; Zhang, H.; Dong, X.; Xiong, Q.; Zhang, R. Root-secreted spermine binds to Bacillus amyloliquefaciens SQR9 histidine kinase KinD and modulates biofilm formation. Molecular Plant-Microbe Interactions 2020, 33, 423–432. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, J.; Guo, Y.; Wang, Y.; Peng, Y.; Wang, Y.; Hu, M.; Lin, W.; Wu, Z. Effects of quorum sensing and quorum quenching mediated by AHLs on plant-rhizosphere microbial interactions. Chinese Journal of Eco-Agriculture. 2024, 32, 1–14. [Google Scholar]
- Jia, R.; Wang, Y.; Wang, H.; Ji, X.; Sadiq, F.; Wang, X.; Zhang, G. The role of quorum sensing effector ComA in regulating biofilm formation and surfactin production in Bacillus subtilis ASAG 010. Food Bioscience 2025, 106842. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, N.; Xia, L.; Li, Q.; Shao, J.; Shen, Q.; Zhang, R. ResDE two-component regulatory system mediates oxygen limitation-induced biofilm formation by Bacillus amyloliquefaciens SQR9. Applied and Environmental Microbiology 2018, 84, e02744-17. [Google Scholar] [CrossRef]
- Shao, Z.; Gu, S.; Zhang, X.; Xue, J.; Yan, T.; Guo, S.; Pommier, T.; Jousset, A.; Yang, T.; Xu, Y.; Shen, Q.; Wei, Z. Siderophore interactions drive the ability of Pseudomonas spp. consortia to protect tomato against Ralstonia solanacearum. Horticulture Research 2024, 11, uhae186. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Wei, Z.; Shao, Z.; Friman, V.; Cao, K.; Yang, T.; Kramer, J.; Wang, X.; Li, M.; Mei, X.; Xu, Y.; Shen, Q.; Kümmerli, R.; Jousset, A. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nature Microbiology. 2020, 5, 1002–1010. [Google Scholar] [CrossRef]
- Montejano-Ramírez, V.; Valencia-Cantero, E. Cross-talk between iron deficiency response and defense establishment in plants. International Journal of Molecular Sciences 2023, 24, 6236. [Google Scholar] [CrossRef] [PubMed]
- Neilands, J.B. Siderophores: structure and function of microbial iron transport compounds. Journal of Biological Chemistry 1995, 270, 26723–26726. [Google Scholar] [CrossRef]
- Xu, X.; Qiao, W.; Dong, Y.; Yang, H.; Xu, H.; Qiao, M. 3-Butanediol dehydrogenase is more efficient than acetoin reductase at metabolizing reserve carbon to improve carbon cycling pathways in Lactococcus lactis N8. International Journal of Biological Macromolecules 2025, 299, 140023. [Google Scholar] [CrossRef]
- Ryu, C.; Farag, M.; Hu, C.; Reddy, M.; Kloepper, J.; Paré, P. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology. 2004, 134, 1017–1026. [Google Scholar] [CrossRef]
- Mihalovits, L.; Ferenczy, G.; Keserű, G. Catalytic mechanism and covalent inhibition of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA): implications to the design of novel antibacterials. Journal of Chemical Information and Modeling 2019, 59, 5161–5173. [Google Scholar] [CrossRef] [PubMed]
- Nirody, J.; Budin, I.; Rangamani, P. ATP synthase: Evolution, energetics, and membrane interactions. Journal of General Physiology. 2020, 152, e201912475. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Zhao, W.; Liu, D.; Yang, R.; Cui, Z.; Zou, D.; Li, D.; Wei, X.; Xiong, H.; Niu, C. Screening, identification, engineering, and characterization of Bacillus-derived α-amylase for effective tobacco starch degradation. International Journal of Biological Macromolecules 2024, 282, 137364. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Liu, X.; Wu, M.; Ge, S. Molecular insights into the antifungal mechanism of bacilysin. Journal of molecular modeling 2018, 24, 118. [Google Scholar] [CrossRef]
- Erega, A.; Stefanic, P.; Dogsa, I.; Danevčič, T.; Simunovic, K.; Klančnik, A.; Možina, S.; Mulec, M. Bacillaene mediates the inhibitory effect of Bacillus subtilis on Campylobacter jejuni biofilms. Applied and Environmental Microbiology 2021, 87, e02955-20. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, Z.; Chen, Y.; Wang, J.; Xiao, R.; Wang, X.; Liu, B.; Chen, M.; He, J. Lipopeptide C17 fengycin B exhibits a novel antifungal mechanism by triggering metacaspase-dependent apoptosis in Fusarium oxysporum. Journal of Agricultural and Food Chemistry 2024, 72, 7943–7953. [Google Scholar] [CrossRef]
- Tang, Q.; Bie, X.; Lu, Z.; Lv, F.; Tao, Y.; Qu, X. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology 2014, 52, 675–680. [Google Scholar] [CrossRef]
- Lyng, M.; Jørgensen, J.; Schostag, M.; Jarmusch, S.; Aguilar, D.; Lozano-Andrade, C.; Kovács, Á. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. The ISME journal. 2024, 18, wrad001. [Google Scholar] [CrossRef]
- Wang, J.; Xie, X.; Li, B.; Yang, L.; Song, F.; Zhou, Y.; Jiang, M. Complete genome analysis and antimicrobial mechanism of Bacillus velezensis GX0002980 reveals its biocontrol potential against mango anthracnose disease. Microbiology Spectrum 2025, 13, e02685-24. [Google Scholar] [CrossRef]
- Moshe, M.; Gupta, C.; Sela, N.; Minz, D.; Banin, E.; Frenkel, O.; Cytryn, E. Comparative genomics of Bacillus cereus sensu lato spp. biocontrol strains in correlation to in-vitro phenotypes and plant pathogen antagonistic capacity. Frontiers in Microbiology 2023, 14, 996287. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Zhou, X.; Du, C.; Fang, J.; Li, X.; Zhao, J.; Ding, F.; Wang, Y.; Zhang, Q.; Wang, Z.; Liu, J.; Dong, G.; Zhang, J.; Xu, F.; Xu, W. Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels. Plant Physiology 2025, 197, kiae676. [Google Scholar] [CrossRef]
- Sorokan, A.; Veselova, S.; Benkovskaya, G.; Maksimov, I. Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after colorado potato beetle damage. Plants 2021, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Hussein, K.; Kadhum, N.; Yassera, Y. The role of bacteria Bacillus subtilis in improving rooting response of Mung bean (Vigna ratiata) cuttings. Journal of Contemporary Medical Sciences 2016, 2, 88–92. [Google Scholar]
- Li, Y.; Gao, M.; Zhang, W.; Liu, Y.; Wang, S.; Zhang, H.; Li, X.; Yu, S.; Lu, L. Halotolerant Enterobacter asburiae A103 isolated from the halophyte Salix linearistipularis: Genomic analysis and growth-promoting effects on Medicago sativa under alkali stress. Microbiological Research 2024, 289, 127909. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Q.P. Studying of the promotion mechanism of Bacillus subtilis QM3 on wheat seed germination based on β-amylase. Open Life Sciences 2020, 15, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Dong, A.; Xiong, G.; Liu, Y.; Hossain, M.S.; Liu, S.; Qiu, D. Production of highly active extracellular amylase and cellulase from Bacillus subtilis ZIM3 and a recombinant strain with a potential application in tobacco fermentation. Frontiers in Microbiology 2020, 11, 1539. [Google Scholar] [CrossRef]
- Khan, S.; Kaur, K.; Kumar, V.; Tiwari, S. Iron transport and homeostasis in plants: current updates and applications for improving human nutrition values and sustainable agriculture. Plant Growth Regulation 2023, 100, 373–390. [Google Scholar] [CrossRef]
- Saleem, A.; Zulfiqar, A.; Saleem, M.; Ali, B.; Saleem, M.; Ali, S.; Tufekci, E.; Tufekci, A.; Rahimi, M.; Mostafa, R. Alkaline and acidic soil constraints on iron accumulation by Rice cultivars in relation to several physio-biochemical parameters. BMC Plant Biology 2023, 23, 397. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Chen, Y.; Wang, M.; Lu, Q.; Wang, K.; Dou, Z.; Chi, Z.; Qiu, W.; Dai, J.; Niu, L.; Cui, J.; Wei, Z.; Zhang, F.; Kümmerli, R.; Zuo, Y. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Nature communications 2024, 15, 839. [Google Scholar] [CrossRef]
- Vishnu; Sharma, P.; Kaur, J.; Gosal, S.; Walia, S. Characterization of Sulfur Oxidizing Bacteria and Their Effect on Growth Promotion of Brassica napus L. Journal of Basic Microbiology 2024, 64, e2400239. [Google Scholar] [CrossRef]
- Liu, H.; Hou, Y.; Wang, Y.; Li, Z. Enhancement of sulfur conversion rate in the production of L-cysteine by engineered Escherichia coli. Journal of Agricultural and Food Chemistry 2019, 68, 250–257. [Google Scholar] [CrossRef]
- Kohli, A.; Gupta, V.; Krishnamurthy, S.; Hasnain, S.; Prasad, R. Specificity of drug transport mediated by CaMDR1: a major facilitator of Candida albicans. Journal of Biosciences 2001, 26, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Pata, J.; Sharma, S.; Monk, B.; Falson, P.; Prasad, R. Directed mutational strategies reveal drug binding and transport by the MDR transporters of Candida albicans. Journal of Fungi 2021, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xu, Z.; Zhang, G.; Xia, L.; Dong, X.; Li, Q.; Liles, M.; Shao, J.; Shen, Q.; Zhang, R. A genomic island in a plant beneficial rhizobacterium encodes novel antimicrobial fatty acids and a self-protection shield to enhance its competition. Environ. Microbiol. 2019, 21, 3455–3471. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhou, C.; Qiu, F.; Peng, D.; Wang, X.; Li, X. Acid-resistant Bacillus velezensis effectively controls pathogenic Colletotrichum capsici and improves plant health through metabolic interactions. Applied and Environmental Microbiology 2025, 91, e00340-25. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Zeng, L.; Xu, T.; Sun, S.; Yan, S.; Yang, L.; Huang, Y.; Jia, J.; Dou, T. Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology 2021, 61, 1049–1070. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.