Submitted:
29 December 2025
Posted:
30 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. EDF Substrate: Maximum Persistent Entropy and Entanglement Basis
2.1. Maximum von Neumann Entropy
2.1.1. Antisymmetric State in Persistent Entanglement
2.2. No Collapse and No Annihilation
2.3. Asymptotic Circular Flow
2.4. Entropy Descent Across Dimensions
3. 1D Worldline and the A to AAA Generational Triplication
| n | Normalized Energy () | Implication | |
| 1 (Single) | 1 | 1 | Higher E |
| 3 (Triplicated) | 2 | 2/3 | Lower E per strand, favored |
4. Emergence of Fundamental Constants from Projection Kernels
4.1. 12-Fold Angular Kernel and the Emergence of
4.2. Braid Closure at 12 Crossings and Color Confinement
4.3. Writhe Saturation and the Emergence of
5. UV Finiteness and Strict Entropy Descent: Categorical Theorems
5.1. Strict Ultraviolet Finiteness at All Loop Orders
5.2. Strict Monotonic Entropy Decrease and the Thermodynamic Arrow
| Layer | Kernel Artifact | Entropy Loss | UV Bound Contribution |
|---|---|---|---|
| Phase interference | Orthogonal trace-out | Initial mode cap | |
| 12-fold truncation | deformation | Angular momentum | |
| Braid closure | Open-end loss | No fractional charge | |
| Writhe saturation | Strain | Curvature bound |
6. Entropic Momentum in the Dimensional Hierarchy
6.1. Thermodynamic Derivation
6.2. Golden Algebra Extension for Hierarchy
6.3. Quantum and Pre-Geometric Extensions
6.4. Implications for EDF
7. Testable Predictions
7.1. 12-Fold Spectral Resonances in Low-Dimensional Analogues
7.2. Projection-Dependent Gravitational Coupling
7.3. Discrete Temporal Ticks in High-Energy Tunneling
7.4. Entropy-Driven Arrow in Closed Quantum Systems
8. Discussion and Conclusions
8.1. Discussion
8.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EDF | Entropic Dimensional Framework |
| GR | General Relativity |
| QFT | Quantum Field Theory |
| LQG | Loop Quantum Gravity |
| AEP | Asymptotic Equipartition Property |
Appendix A. Summary of EDF Formalizations and Derivations
| Key Formalizations/Concepts | Derivations/Emergent Phenomena | Short Notes |
|---|---|---|
| Maximal entanglement with von Neumann entropy ; Duality operator ; Orthogonal states ; Axiom 1. | No collapse/annihilation (convex combination of expectations); Asymptotic circular flow on ; Persistent entanglement via Plethysm decomposition. | Basis from AEP and supersymmetric Golden oscillators at ; Enforces pregeometric maximum entropy. |
| Key Formalizations/Concepts | Derivations/Emergent Phenomena | Short Notes |
|---|---|---|
| Projection to real line ; Non-trivial kernel discards non-real modes; Soliton interference term. | Single soliton (A); Triplication A → AAA for three generations (composite with ); Energy balance via Fibonacci numbers favoring narrower states. | Generations as projection artifacts; Soliton propagation on spiral trajectory; Causal arrow from energy drop . |
| Key Formalizations/Concepts | Derivations/Emergent Phenomena | Short Notes |
|---|---|---|
| 12-fold angular kernel; Compactification to ; Axiom 2 (angular sector kernel). | Emergence of ; Quantization unit from entropy partitioning; Fibonacci sum enforcing 12 quanta. | Cascade to braids/writhe; Golden algebra deformation ; Normalization aligns with action units. |
| Key Formalizations/Concepts | Derivations/Emergent Phenomena | Short Notes |
|---|---|---|
| Braid group on three strands; Closure at 12 crossings; Axiom 2 (braid closure kernel). | Color confinement from integer linking ; No free colored states (open braids discarded); Călugăreanu theorem linking . | Topological origin of QCD; Representations close modulo 12; Enforces hadron formation. |
| Key Formalizations/Concepts | Derivations/Emergent Phenomena | Short Notes |
|---|---|---|
| Writhe saturation ; Projection to Lorentzian manifold; Axiom 2 (writhe kernel). | Emergence of ; Einstein gravity from saturation; Curvature ; Holographic entropy alignment. | Unifies with previous 12-fold multiplicity (); Semiclassical GR limit; Prevents topological singularities. |
| Key Formalizations/Concepts | Derivations/Emergent Phenomena | Short Notes |
|---|---|---|
| Functorial chain with kernels; Strong subadditivity; Golden entropy rates. | UV finiteness (); Monotonic entropy descent ; Entropic momentum . | Thermodynamic arrow from information loss; No regulators needed; Golden derivative ; Testable predictions (e.g., 12-fold resonances). |
Appendix B. Figures and Charts


References
- Tomamichel, M.; Colbeck, R.; Renner, R. A Fully Quantum Asymptotic Equipartition Property. IEEE Trans. Inf. Theory [quant-ph]. 2009, arXiv:0811.122155, 5840. [Google Scholar] [CrossRef]
- Tomamichel, M.; Renner, R. The uncertainty relation for smooth entropies. Phys. Rev. Lett. 2011, 106, 110506. [Google Scholar] [CrossRef] [PubMed]
- Lieb, E. H.; Ruskai, M. B. Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 1973, 14, 1938. [Google Scholar] [CrossRef]
- Christandl, M.; Schuch, N.; Winter, A. Entanglement of the Antisymmetric State. arXiv [quant-ph]. 2009, arXiv:0910.4151. [Google Scholar] [CrossRef]
- Pashaev, O. K. Quantum Calculus of Fibonacci Divisors and Fermion-Boson Entanglement for Infinite Hierarchy of N=2 Supersymmetric Golden Oscillator. arXiv [quant-ph]. 2024, arXiv:2410.04169. [Google Scholar] [CrossRef]
- Hawking, S. W.; Penrose, R. The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 1970, 314, 529. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, arXiv:gr442, 593. [Google Scholar] [CrossRef]
- Xu, W. A unified spacetime theory based on complex 4-manifold. Int. J. Phys. 2017, 5, 16. [Google Scholar]
- Yang, C.-D. Quantum trajectories and the yin-yang diagram. Physics 2024, 6, 964. [Google Scholar]
- E. P. Verlinde, On the Origin of Gravity and the Laws of Newton, J. High Energy Phys. [hep-th]. 2011, arXiv:1001.07852011(04), 029. [CrossRef]
- Padmanabhan, T. Emergence and Entanglement: The classical gravitational field as an ensemble of entropic modes. Phys. Rev. D 2010, 81, 124040. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 2000, 4, 507. [Google Scholar] [CrossRef]
- Smolin, L. The thermodynamics of gravitational fields. arXiv 1995, arXiv:gr-qc/9503013. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys. 1995, 36, 6377. [Google Scholar] [CrossRef]
- Peskin, M. E.; Schroeder, D. V. An Introduction to Quantum Field Theory; Westview Press, 1995. [Google Scholar]
- Rovelli, C. Quantum Gravity; Cambridge University Press, 2004. [Google Scholar]
- Polchinski, J. String Theory, Vols. I & II; Cambridge University Press, 1998. [Google Scholar]
- J. A. Wheeler, Geometrodynamics and the issue of the final state, in Relativity, Groups and Topology 1964.
- R. Penrose, The Road to Reality; Jonathan Cape, 2004.
- Bekenstein, J. D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- S. W. Hawking, Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199. [CrossRef]
- Pashaev, O. K. Fibonacci–Lucas q-deformed calculus and supersymmetric golden oscillators. arXiv 2024, arXiv:2410.04169. [Google Scholar]
- Christandl, M.; Schuch, N.; Winter, A. Highly entangled states with low entanglement cost. Phys. Rev. Lett. 2010, 104, 240405. [Google Scholar] [CrossRef] [PubMed]
- Lieb, E. H.; Ruskai, M. B. A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 1973, 30, 434. [Google Scholar] [CrossRef]
- Uhlmann, A. The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 1976, 9, 273. [Google Scholar] [CrossRef]
- Fuller, F. B. Decomposition of the linking number of a closed ribbon Călugăreanu–White–Fuller theorem. Proc. Natl. Acad. Sci. USA 1978, 75, 3557. [Google Scholar] [CrossRef] [PubMed]
- Hawking, S. W.; Ellis, G. F. R. The Large Scale Structure of Space-Time; Cambridge University Press, 1973. [Google Scholar]
- Penrose, R. Gravitational collapse and space-time singularities. Phys. Rev. Lett. 1965, 14, 57. [Google Scholar] [CrossRef]
- Wald, R. M. General Relativity; University of Chicago Press, 1984. [Google Scholar]
- Peskin, M. E.; Schroeder, D. V. An Introduction to Quantum Field Theory; Westview Press, 1995. [Google Scholar]
- Rovelli, C. Quantum Gravity; Cambridge University Press, 2004. [Google Scholar]
- Polchinski, J. String Theory, Vols. I & II; Cambridge University Press, 1998. [Google Scholar]
- Wheeler, J. A. On the nature of quantum geometrodynamics. Ann. Phys. (N.Y.) 1957, 2, 604. [Google Scholar] [CrossRef]
- Penrose, R. Twistor algebra. J. Math. Phys. 1967, 8, 345. [Google Scholar] [CrossRef]
- Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R. D. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521. [Google Scholar] [CrossRef]
- Susskind, L. The Anthropic Landscape of String Theory. arXiv 2003, arXiv:hep-th/0302219. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
