Submitted:
26 December 2025
Posted:
26 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. The Indistinguishability of Identical Particles
- Singularity Constraint: The behavior at coincidence points must be physically well-regulated, as quantum mechanics forbids identical particles from coinciding spatially.
- Exchange Invariance: The probability distribution of identical particles must be invariant under particle exchange.
2.1. Configuration Space and Equivalent Domains
2.2. Allowable Wave Function and Probability Density
3. The Statistical Behavior of Identical Particles
3.1. The Limitations of the Topological Approach
3.2. Quantum Statistics from the Principle of Indistinguishability
3.3. Topological Paths and Dynamical Phase Evolution
4. The Solution of N-Anyon System
4.1. Fundamental Concepts and Assumptions
4.2. Wave Function, Probability Density, and Energy Eigenvalues for N-Anyon System
5. Discussion
5.1. From Gauge Invariance to Indistinguishability
5.2. The Role of Topological Framework
5.3. Foundational Perspectives on Identical Particle Theory
Data Availability Statement
Acknowledgments
References
- Wang, J. H. The operator approach for representing the symmetry of many-electron systems (series I). AIP Advances 2025a, 15. [Google Scholar] [CrossRef]
- Wang, J. H. Fundamental dual-phase theory of identical particles: The existence conditions for non-abelian anyons in 2D topology (series II). Preprints.org 2025b, 2025100229, 1–17. [Google Scholar]
- Beenakker, C. W. J. Random-matrix theory of majorana fermions and topological superconductors. Rev. Mod. Phys. 2015, 87, 1037–1066. [Google Scholar] [CrossRef]
- Qi, X.-L.; Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar] [CrossRef]
- Steffensen, D.; Andersen, B. M.; Kotetes, P.; Christensen, M. H. Topological superconductivity induced by magnetic texture crystals. Phys. Rev. Research 2022, 4, 013225. [Google Scholar] [CrossRef]
- Tsui, D. C.; Störmer, H. L.; Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 1982, 48, 1559–1562. [Google Scholar] [CrossRef]
- Laughlin, R. B. Anomalous quantum hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett. 1983, 50, 1395–1398. [Google Scholar] [CrossRef]
- Yang, B. Anyons in conformal hilbert spaces: Statistics and dynamics of gapless excitations in fractional quantum hall systems. Int. J. Mod. Phys. B 2022, 36, 2230003. [Google Scholar] [CrossRef]
- Léonard, J.; Kim, S.; Kwan, J.; Segura, P.; Grusdt, F.; Repellin, C.; Goldman, N.; Greiner, M. Realization of a fractional quantum hall state with ultracold atoms. Nature 2023, 619, 495–499. [Google Scholar] [CrossRef]
- Wilczek, F. Fractional statistics and anyon superconductivity; World Scientific: Singapore, 1990. [Google Scholar]
- . Wipf, Statistical Approach to Quantum Field Theory: An Introduction, Lecture Notes in Physics, Vol. 864 (Springer, Cham, 2021).
- Hansson, T. H.; Hermanns, M.; Simon, S. H.; Viefers, S. F. Quantum hall physics: Hierarchies and conformal field theory techniques. Rev. Mod. Phys. 2017, 89, 025005. [Google Scholar] [CrossRef]
- Wu, Y.-S. General theory for quantum statistics in two dimensions. Phys. Rev. Lett. 1984, 52, 2103–2106. [Google Scholar] [CrossRef]
- Arovas, D. P.; Schrieffer, R.; Wilczek, F.; Zee, A. Statistical mechanics of anyons. Nucl. Phys. B 1985, 251, 117–126. [Google Scholar] [CrossRef]
- Moore, G.; Read, N. Nonabelions in the fractional quantum hall effect. Nucl. Phys. B 1991, 360, 362–396. [Google Scholar] [CrossRef]
- Forte, S. Quantum mechanics and field theory with fractional spin and statistics. Rev. Mod. Phys. 1992, 64, 193–236. [Google Scholar] [CrossRef]
- Nagies, S.; Wang, B.; Knapp, A. C.; Eckardt, A.; Harshman, N. L. Beyond braid statistics: Constructing a lattice model for anyons with exchange statistics intrinsic to one dimension. SciPost Phys. 2024, 16, 086. [Google Scholar] [CrossRef]
- Wilczek, F. Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 1982a, 48, 1144–1146. [Google Scholar] [CrossRef]
- Wilczek, F. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 1982b, 49, 957–959. [Google Scholar] [CrossRef]
- Arovas, D. P.; Schrieffer, J. R.; Wilczek, F. Fractional statistics and the quantum hall effect. Phys. Rev. Lett. 1984, 53, 722–723. [Google Scholar] [CrossRef]
- Haldane, F. D. M. Fractional statistics in arbitrary dimensions: A generalization of the pauli principle. Phys. Rev. Lett. 1991, 67, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-S. Statistical distribution for generalized ideal gas of fractional-statistics particles. Phys. Rev. Lett. 1994, 73, 922–925. [Google Scholar] [CrossRef]
- Dolev, M.; Heiblum, M.; Umansky, V.; Stern, A.; Mahalu, D. Observation of a quarter of an electron charge at the v=5/2 quantum hall state. Nature 2008, 452, 829–834. [Google Scholar] [CrossRef]
- Kapfer, M.; Roulleau, P.; Santin, M.; Farrer, I.; Ritchie, D. A.; Glattli, D. C. A Josephson relation for fractionally charged anyons. Science 2019, 363, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wu, Y.; Zhang, R.; Sun, J.; Shan, P.; Wang, P.; Zhu, Z.; Pfeiffer, L. N.; West, K. W.; Liu, H.; Xie, X. C.; Lin, X. 3/2 fractional quantum hall plateau in confined two-dimensional electron gas. Nat. Commun. 2019, 10, 4351. [Google Scholar] [CrossRef] [PubMed]
- Veillon, A.; Piquard, C.; Glidic, P.; Sato, Y.; Aassime, A.; Cavanna, A.; Jin, Y.; Gennser, U.; Anthore, A.; Pierre, F. Observation of the scaling dimension of fractional quantum hall anyons. Nature 2024, 632, 517–521. [Google Scholar] [CrossRef]
- Nayak, C.; Wilczek, F. 2n-quasihole states realize 2n-1-dimensional spinor braiding statistics in paired quantum hall states. Nucl. Phys. B 1996, 479, 529–553. [Google Scholar] [CrossRef]
- Ivanov, D. A. Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev. Lett. 2001, 86, 268–271. [Google Scholar] [CrossRef]
- Lindner, N. H.; Berg, E.; Refael, G.; Stern, A. Fractionalizing majorana fermions: Non-abelian statistics on the edges of abelian quantum hall states. Phys. Rev. X 2012, 2, 041002. [Google Scholar] [CrossRef]
- Barkeshli, M.; Jian, C.-M.; Qi, X.-L. Twist defects and projective non-abelian braiding statistics. Phys. Rev. B 2013, 87, 045130. [Google Scholar] [CrossRef]
- Greiter, M.; Wilczek, F. Fractional statistics. Annu. Rev. Condens. Matter Phys. 2024, 15, 131–157. [Google Scholar] [CrossRef]
- Nayak, C.; Simon, S. H.; Stern, A.; Freedman, M.; Sarma, S. D. Non-abelian anyons and topological quantum computation. Rev. Mod. Phys. 2008, 80, 1083–1159. [Google Scholar] [CrossRef]
- Alicea, J.; Oreg, Y.; Refael, G.; von Oppen, F.; Fisher, M. P. A. Non-abelian statistics and topological quantum information processing in 1d wire networks. Nat. Phys. 2011, 7, 412–417. [Google Scholar] [CrossRef]
- Aasen, D.; Hell, M.; Mishmash, R. V.; Higginbotham, A.; Danon, J.; Leijnse, M.; Jespersen, T. S.; Folk, J. A.; Marcus, C. M.; Flensberg, K.; Alicea, J. Milestones toward majorana-based quantum computing. Phys. Rev. X 2016, 6, 031016. [Google Scholar] [CrossRef]
- Lahtinen, V.; Pachos, J. K. A short introduction to topological quantum computation. SciPost Phys. 2017, 3, 021. [Google Scholar] [CrossRef]
- Fröhlich, J.; Studer, U. M. Gauge invariance and current algebra in nonrelativistic many-body theory. Rev. Mod. Phys. 1993, 65, 733–802. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.-C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef]
- Naber, G. L. Topology, Geometry and Gauge fields: Foundations. In Texts in Applied Mathematics, 2nd ed.; Springer, 2011; Vol. 25. [Google Scholar]
- Basu, S. Topological Phases in Condensed Matter Physics; Springer, 2023. [Google Scholar]
- Messiah, A.; Greenberg, O. W. Symmetrization postulate and its experimental foundation. Phys. Rev. 1964, 136, B248–B267. [Google Scholar] [CrossRef]
- Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics; Addison-Wesley: Reading, MA, 1965; Vol. 3. [Google Scholar]
- Landau, L. D.; Lifshitz, E. M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Course of Theoretical Physics: Pergamon, New York, 1977; Vol. 3. [Google Scholar]
- Laidlaw, M. G. G.; DeWitt, C. M. Feynman functional integrals for systems of indistinguishable particles. Phys. Rev. D 1971, 3, 1375–1378. [Google Scholar] [CrossRef]
- Schulman, L. S. Approximate topologies. J. Math. Phys. 1971, 12, 304–308. [Google Scholar] [CrossRef]
- Girvin, S. M.; MacDonald, A. H. Off-diagonal long-range order, oblique confinement, and the fractional quantum hall effect. Phys. Rev. Lett. 1987, 58, 1252–1255. [Google Scholar] [CrossRef]
- Canright, G. S.; Girvin, S. M. Fractional statistics: Quantum possibilities in two dimensions. Science 1990, 247, 1197–1205. [Google Scholar] [CrossRef]
- Wen, X.-G.; Zee, A. Quantum statistics and superconductivity in two spatial dimensions. Nucl. Phys. B 1990, 15, 135–156. [Google Scholar] [CrossRef]
- Lopez, A.; Fradkin, E. Universal properties of the wave functions of fractional quantum hall systems. Phys. Rev. Lett. 1992, 69, 2126–2129. [Google Scholar] [CrossRef]
- Fubini, S. Vertex operators and quantum hall effect. Mod. Phys. Lett. A 1991, 6, 347–358. [Google Scholar] [CrossRef]
- Murthy, G.; Shankar, R. Hamiltonian theories of the fractional quantum hall effect. Rev. Mod. Phys. 2003, 75, 1101–1158. [Google Scholar] [CrossRef]
- ydżba, P.; Jacak, J. Many-body wave functions for correlated systems in magnetic fields: Monte Carlo simulations in the lowest landau level. J. Phys.: Condens. Matter 2018a, 30, 365601. [Google Scholar]
- Leinaas, J. M.; Myrheim, J. On the theory of identical particles. Nuovo Cimento B 1977, 37, 1–23. [Google Scholar] [CrossRef]
- Einarsson, T. Fractional statistics on a torus. Phys. Rev. Lett. 1990, 64, 1995–1998. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum Mechanics, 2nd ed.; Wiley-VCH: Weinheim, 2019. [Google Scholar]
- Goldin, G. A.; Menikoff, R.; Sharp, D. H. Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect. J. Math. Phys. 1981, 22, 1664–1668. [Google Scholar] [CrossRef]
- Topology and Condensed Matter Physics, Texts and Readings in Physical Sciences; Bhattacharjee, S. M., Mahan, M. J., Bandyopadhyay, A., Eds.; Springer: Singapore, 2017; Vol. 19. [Google Scholar]
- Girvin, S. M.; Jach, T. Formalism for the quantum hall effect: Hilbert space of analytic functions. Phys. Rev. B 1984, 29, 5617–5625. [Google Scholar] [CrossRef]
- Jain, J. K. Composite-fermion approach for the fractional quantum hall effect. Phys. Rev. Lett. 1989, 63, 199–202. [Google Scholar] [CrossRef]
- Mandal, S. S.; Jain, J. K. Theoretical search for the nested quantum hall effect of composite fermions. Phys. Rev. B 2002, 66, 155302. [Google Scholar] [CrossRef]
- Lee, S.-S.; Ryu, S.; Nayak, C.; Fisher, M. P. A. Particle-hole symmetry and the ν=52 quantum hall state. Phys. Rev. Lett. 2007, 99, 236807. [Google Scholar] [CrossRef]
- Zaletel, M. P.; Mong, R. S. K. Exact matrix product states for quantum hall wave functions. Phys. Rev. B 2012, 86, 245305. [Google Scholar] [CrossRef]
- Jackson, T. S.; Read, N.; Simon, S. H. Entanglement subspaces, trial wave functions, and special hamiltonians in the fractional quantum hall effect. Phys. Rev. B 2013, 88, 075313. [Google Scholar] [CrossRef]
- Balram, A. C.; Töke, C.; Wójs, A.; Jain, J. K. Fractional quantum hall effect in graphene: Quantitative comparison between theory and experiment. Phys. Rev. B 2015, 92, 075410. [Google Scholar] [CrossRef]
- ydżba, P.; Jacak, J. Identifying particle correlations in quantum hall regime. Ann. Phys. (Berlin) 2018b, 530, 1700221. [Google Scholar] [CrossRef]
- Graß, T.; Julio-Díaz, B.; Baldelli, N.; Bhattacharya, U.; Lewenstein, M. Fractional angular momentum and anyon statistics of impurities in laughlin liquids. Phys. Rev. Lett. 2020, 125, 136801. [Google Scholar] [CrossRef]
- Fremling, M.; Slingerland, J. K. An investigation of pre-crystalline order, ruling out pauli crystals and introducing pauli anti-crystals. Sci. Rep. 2020, 10, 60556. [Google Scholar] [CrossRef]
- Rougerie, N.; Yang, Q. Anyons in a tight wave-guide and the tonks-girardeau gas. SciPost Physics Core 2023, 6, 079. [Google Scholar] [CrossRef]
- Dirac, P. A. M. The Principles of Quantum Mechanics, 4th ed.; Clarendon Press: Oxford, 1981. [Google Scholar]
- Griffiths, D. J.; Schroeter, D. F. Introduction to Quantum Mechanics, 3rd ed.; Cambridge University Press: Cambridge, 2018. [Google Scholar]
- Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 1984, 392, 45–57. [Google Scholar] [CrossRef]
- Cohen, E.; Larocque, H.; Bouchard, F.; Nejadsattari, F.; Gefen, Y.; Karimi, E. Geometric phase from aharonov–bohm to pancharatnam–berry and beyond. Nat. Rev. Phys. 2019, 1, 437–449. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics. Phys. Rev. E 2000, 62, 3135–3145. [Google Scholar] [CrossRef] [PubMed]
- Glidic, P.; Maillet, O.; Aassime, A.; Piquard, C.; Cavanna, A.; Gennser, U.; Jin, Y.; Anthore, A.; Pierre, F. Cross-correlation investigation of anyon statistics in the ν=1/3 and 2/5 fractional quantum hall states. Phys. Rev. X 2023, 13, 011030. [Google Scholar] [CrossRef]
- Lopez, A.; Fradkin, E. Fractional quantum hall effect and chern–simons gauge theories. Phys. Rev. B 1991, 44, 5246–5263. [Google Scholar] [CrossRef]
- Wen, X.-G. Topological orders and chern–simons theory in strongly correlated quantum fluid. Int. J. Mod. Phys. B 1991, 5, 1641–1648. [Google Scholar] [CrossRef]
- Iengo, R. Anyon quantum mechanics and chern-simons theory. Phys. Rep. 1992, 213, 179–269. [Google Scholar] [CrossRef]
- Marletto, C.; Vedral, V. Aharonov–bohm phase is locally generated like all other quantum phases. Phys. Rev. Lett. 2020, 125, 040401. [Google Scholar] [CrossRef]
- Saldanha, P. L. Local description of the aharonov–bohm effect with a quantum electromagnetic field. Found. Phys. 2021, 51, 1. [Google Scholar] [CrossRef]
- Gaveau, B.; Nounou, A. M.; Schulman, L. S. Homotopy and path integrals in the time-dependent aharonov–bohm effect. Found. Phys. 2011, 41, 1462–1474. [Google Scholar] [CrossRef]
- Roy, S. M. Condition for nonexistence of aharonov–bohm effect. Phys. Rev. Lett. 1980, 44, 111–114. [Google Scholar] [CrossRef]
- Olariu, S.; Popescu, I. I.; Iovitzu, I. The quantum effects of electromagnetic fluxes. Rev. Mod. Phys. 1985, 57, 339–436. [Google Scholar] [CrossRef]
- Anandan, J. The geometric phase. Nature 1992, 360, 307–313. [Google Scholar] [CrossRef]
- Sudarshan, E. C. G.; Anandan, J.; Govindarajan, T. R. A group theoretic treatment of the geometric phase. Phys. Lett. A 1992, 164, 133–137. [Google Scholar] [CrossRef]
- Aharonov, Y.; Coleman, S.; Goldhaber, A. S.; Nussinov, S.; Popescu, S.; Reznik, B.; Rohrlich, D.; Vaidman, L. Aharonov–bohm and berry phases for a quantum cloud of charge. Phys. Rev. Lett. 1994, 73, 918–921. [Google Scholar] [CrossRef]
- Aharonov, Y.; Cohen, E.; Rohrlich, D. Nonlocality of the aharonov–bohm effect. Phys. Rev. A 2016, 93, 042110. [Google Scholar] [CrossRef]
- Pearle, P.; Rizzi, A. Quantized vector potential and alternative views of the magnetic aharonov–bohm phase shift. Phys. Rev. A 2017, 95, 052124. [Google Scholar] [CrossRef]
- Chen, Z. Observable-geometric phases and quantum computation. Int. J. Theor. Phys. 2020, 59, 1255–1276. [Google Scholar] [CrossRef]
- Vedral, V. Geometric phases and topological quantum computation. Int. J. Quantum Inform. 2003, 1, 1–23. [Google Scholar] [CrossRef]
- Haldane, F. D. M. Geometrical description of the fractional quantum hall effect. Phys. Rev. Lett. 2011, 107, 116801. [Google Scholar] [CrossRef]
- Lundholm, D.; Rougerie, N. Emergence of fractional statistics for tracer particles in a laughlin liquid. Phys. Rev. Lett. 2016, 116, 170401. [Google Scholar] [CrossRef]
- Yakaboylu, E.; Ghazaryan, A.; Lundholm, D.; Rougerie, N.; Lemeshko, M.; Seiringer, R. Quantum impurity model for anyons. Phys. Rev. B 2020, 102, 144109. [Google Scholar] [CrossRef]
- Correggi, M.; Fermi, D. Magnetic perturbations of anyonic and aharonov–bohm schrödinger operators. J. Math. Phys. 2021, 62, 032101. [Google Scholar] [CrossRef]
- Girardot, T. Average field approximation for almost bosonic anyons in a magnetic field. J. Math. Phys. 2020, 61, 071901. [Google Scholar] [CrossRef]
- Valenti-Rojas, G.; Westerberg, N.; Öhberg, P. Synthetic flux attachment. Phys. Rev. Research 2020, 2, 033453. [Google Scholar] [CrossRef]
- Hu, Y.; Murthy, G.; Rao, S.; Jain, J. K. Kohn-sham density functional theory of abelian anyons. Phys. Rev. B 2021, 103, 035124. [Google Scholar] [CrossRef]
- noz de las Heras, A. M.; Macaluso, E.; Carusotto, I. Anyonic molecules in atomic fractional quantum hall liquids: A quantitative probe of fractional charge and anyonic statistics. Phys. Rev. X 2020, 10, 041058. [Google Scholar] [CrossRef]
- Girardot, T.; Rougerie, N. Semiclassical limit for almost fermionic anyons. Commun. Math. Phys. 2021, 387, 427–480. [Google Scholar] [CrossRef]
- Fresta, L.; Moosavi, P. Approaching off-diagonal long-range order for 1+1-dimensional relativistic anyons. Phys. Rev. B 2021, 103, 085140. [Google Scholar] [CrossRef]
- Laughlin, R. B. The relationship between high-temperature superconductivity and the fractional quantum hall effect. Science 1988a, 242, 525–533. [Google Scholar] [CrossRef]
- Laughlin, R. B. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett. 1988b, 60, 2677–2680. [Google Scholar] [CrossRef]
- Chen, Y. H.; Wilczek, F.; Witten, E.; Halperin, B. I. On anyon superconductivity. Int. J. Mod. Phys. B 1989, 3, 1001–1067. [Google Scholar] [CrossRef]
- Halperin, B. I.; March-Russell, J.; Wilczek, F. Consequences of time-reversal-symmetry violation in models of high-tc superconductors. Phys. Rev. B 1989, 40, 8726–8744. [Google Scholar] [CrossRef] [PubMed]
- Fetter, A. L.; Hanna, C. B.; Laughlin, R. B. Random-phase approximation in the fractional-statistics gas. Phys. Rev. B 1989, 39, 9679–9681. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-H.; Fisher, M. P. A. Anyon superconductivity and the fractional quantum hall effect. Phys. Rev. Lett. 1989, 63, 903–906. [Google Scholar] [CrossRef]
- Theophilou, I.; Thanos, S.; Theophilou, A. K. Spin contamination for hartree–fock, optimized effective potential, and density functional approximations. J. Chem. Phys. 2007, 127, 234103. [Google Scholar] [CrossRef]
- Kitsaras, M.-P.; Stopkowicz, S. Spin contamination in mp2 and cc2, a surprising issue. J. Chem. Phys. 2021, 154, 131101. [Google Scholar] [CrossRef]
- Stahl, T. L.; Banerjee, S.; Sokolov, A. Y. Quantifying and reducing spin contamination in algebraic diagrammatic construction theory of charged excitations. J. Chem. Phys. 2022, 157, 044106. [Google Scholar] [CrossRef]
- Sala, F. D.; Görling, A. Open-shell localized hartree–fock approach for an efficient effective exact-exchange kohn–sham treatment of open-shell atoms and molecules. J. Chem. Phys. 2003, 118, 10439–10454. [Google Scholar] [CrossRef]
- Heckert, M.; Heun, O.; Gauss, J. Towards a spin-adapted coupled-cluster theory for high-spin open-shell states. J. Chem. Phys. 2006, 124, 124105. [Google Scholar] [CrossRef]
- Alcoba, D. R.; Torre, A.; Lain, L.; Massaccesi, G. E.; na, O. B. O.; Capuzzi, P. Spin contamination-free n-electron wave functions in the excitation-based configuration interaction treatment. J. Chem. Phys. 2016, 145, 014109. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Truhlar, D. G. Status and challenges of density functional theory. Trends Chem. 2020, 2, 302–318. [Google Scholar] [CrossRef]
- Wang, Z.; Guo, M.; Wang, F. Single-precision open-shell ccsd and ccsd(t) calculations on graphics processing units. Phys. Chem. Chem. Phys. 2020, 22, 25103–25111. [Google Scholar] [CrossRef]
- Herrmann, N.; Hanrath, M. A correctly scaling rigorously spin-adapted and spin-complete open-shell ccsd implementation for arbitrary high-spin states. J. Chem. Phys. 2022, 156, 054111. [Google Scholar] [CrossRef]
- Schaefer, H. F. Methods of Electronic Structure Theory; Plenum, New York, 1977. [Google Scholar]
- Wang, K.; Song, C. X.; Jönsson, P.; Zanna, G. D.; Schiffmann, S.; Godefroid, M.; Gaigalas, G.; Zhao, X. H.; Si, R.; Chen, C. Y.; Yan, J. Benchmarking atomic data from large-scale multiconfiguration Dirac-Hartree-Fock calculations for astrophysics: S-like ions from Cr IX to Cu XIV. Astrophys. J. Suppl. Ser. 2018, 239, 30. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Møller, C.; Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev. 1934, 46, 618–622. [Google Scholar] [CrossRef]
- Burmistrov, S. N. Statistical and Condensed Matter Physics; Springer: Singapore, 2025. [Google Scholar]




| Physical Quantity | Domain | Domain |
|---|---|---|
| Particle Configuration | ||
| Potential energy | ||
| Hamiltonian | ||
| Wave function | ||
| Probability Density |
| Type | Bosons | Fermions | Anyons |
|---|---|---|---|
| Parameter | |||
| Periodicity | |||
| Relative phase | |||
| Exchange phase | |||
| Phase Relation | |||
| Conserved quantity | |||
| Eigenvalue of | 1 | 1 | 1 |
| Conceptual Domain | Conventional Framework | This Framework |
|---|---|---|
| Phase Type | Global phase | Relative phase |
| Physical Foundation | Gauge invariance | Indistinguishability |
| Statistical Phase | Path-dependent | Path-independent |
| Wave Function | Multi-valued | Double-valued |
| Interference Term | Omitted | Included |
| Exchange Invariance | Fails to Satisfy | Strictly Satisfied |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
