Submitted:
24 December 2025
Posted:
26 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
- First-principles trajectory generation without endpoint pre-sampling
- Quantum paths guided by wavefunction evolution and interference potential
- Classical paths modeled through single-slit diffusion
- Consistent EI calculation without data filtering bias
- Physical interpretation of causal emergence
3. Simulation Implementation
- 1.
- Global parameters: Defines the experimental setup including grid dimensions, slit positions, and physical constants.
- 2.
- Physical wavefunction evolution: Implements the quantum interference potential that guides particle paths.
- 3.
- Trajectory generation: Generates quantum and classical particle trajectories from first principles.
- 4.
- Effective information calculation: Computes EI from trajectories without filtering bias.
- 5.
- Analysis functions: Analyzes distributions and trajectory characteristics.
- 6.
- Visualization: Generates comprehensive plots of results.
4. Results
4.1. Trajectory Analysis
4.2. Effective Information Analysis
4.3. Causal Emergence Analysis
5. Discussion
6. Conclusion
Appendix A. Complete Simulation Code with 12-Panel Visualization
- First-principles trajectory generation without endpoint pre-sampling
- Quantum interference potential calculation and wavefunction evolution
- Decoherence effects modeling and classical diffusion paths
- Effective information computation for both coarse-grained and fine-grained descriptions
- Comprehensive analysis of trajectory characteristics and interference patterns
- Generation of 12-panel visualization summarizing all key results
- Data export to CSV files for further analysis
Appendix B. Supplementary Results and Implementation Details
- evp_first_principles_results.png: 12-panel visualization figure (Figure 1 in the main text)
- evp_first_principles_results.csv: Complete simulation results including EI values for all decoherence levels and binning granularities
- evp_particle_samples.csv: Sample particle trajectories for key decoherence levels ()
Appendix C. Complete Simulation Code
Appendix C.1. Full Simulation Code with 12-Panel Visualization
















Appendix C.2. Code Structure Summary
- 1.
- Global parameters: Defines the experimental setup, physical constants, and simulation parameters.
- 2.
- Wavefunction evolution: Implements quantum interference potential and diffraction envelope calculations.
- 3.
- Trajectory generation: Generates particle trajectories from first principles, with decoherence effects.
- 4.
- Effective information calculation: Computes EI from trajectories without filtering bias.
- 5.
- Analysis functions: Analyzes distributions, trajectory characteristics, and interference visibility.
- 6.
- Comprehensive visualization: Generates 12-panel figure with all key results.
- 7.
- Data output: Saves simulation results to CSV files and images.
Appendix C.3. Dependencies and Requirements
- numpy≥ 1.20.0
- matplotlib≥ 3.4.0
- pandas≥ 1.3.0
- scipy≥ 1.7.0
- tqdm≥ 4.62.0
Appendix C.4. Running the Simulation
- 1.
- Generate 10,000 particle trajectories across 6 decoherence levels
- 2.
- Compute effective information for coarse and fine-grained descriptions
- 3.
- Generate 12-panel visualization of all results
- 4.
- Save results to CSV files for further analysis
- 5.
- Display key statistics and physical interpretation
Appendix C.5. Output Files
- evp_first_principles_results.png: 12-panel visualization figure
- evp_first_principles_results.csv: Complete simulation results
- evp_particle_samples.csv: Sample particle trajectories
Appendix D. Simulation Parameters
Appendix D.1. Physical Parameters
| Parameter | Value | Description |
|---|---|---|
| Grid width | 101 | Simulation grid width in arbitrary units |
| Slit positions | [35, 65] | X-coordinates of the two slits |
| Source Y | 0 | Y-coordinate of particle source |
| Slit Y | 15 | Y-coordinate of slit plane |
| Screen Y | 80 | Y-coordinate of detection screen |
| Wavelength | 2.0 | Quantum wavelength |
| Number of particles | 10,000 | Total particles simulated |
Appendix D.2. Decoherence Parameters
- : Pure quantum (full coherence)
- : Weak decoherence
- : Moderate decoherence
- : Strong decoherence
- : Very strong decoherence
- : Fully classical (no coherence)
Appendix D.3. Discretization Parameters
- 15 bins
- 20 bins
- 25 bins
- 30 bins
- 35 bins
- 40 bins
References
- Feynman, R. P.; Leighton, R. B.; Sands, M. The Feynman Lectures on Physics . In Quantum Mechanics; Addison-Wesley, 1965; Vol. 3. [Google Scholar]
- Hoel, E. P.; Albantakis, L.; Tononi, G. Quantifying causal emergence shows that macro can beat micro. Proceedings of the National Academy of Sciences 2013, 110(49), 19790–19795. [Google Scholar] [CrossRef] [PubMed]
- Zurek, W. H. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics 2003, 75(3), 715. [Google Scholar] [CrossRef]
- Bohm, D. A suggested interpretation of the quantum theory in terms of "hidden" variables. Physical Review 1952, 85(2), 166–179. [Google Scholar] [CrossRef]
- Born, M. Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 1926, 37(12), 863–867. [Google Scholar] [CrossRef]
- Quantum Theory and Measurement; Wheeler, J. A., Zurek, W. H., Eds.; Princeton University Press, 1983. [Google Scholar]
- Griffiths, D. J. Introduction to Quantum Mechanics, 2nd ed.; Pearson Prentice Hall, 2005. [Google Scholar]
- Nielsen, M. A.; Chuang, I. L. Quantum Computation and Quantum Information, 10th anniversary ed.; Cambridge University Press, 2010. [Google Scholar]
- Ballentine, L. E. Quantum Mechanics: A Modern Development; World Scientific, 1998. [Google Scholar]
- Schlosshauer, M. Decoherence and the Quantum-to-Classical Transition; Springer, 2007. [Google Scholar]




Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
