Submitted:
09 December 2025
Posted:
10 December 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Study Area and Methods
2.1. Meteorological Data
2.2. Quality Control
2.3. Climate Change Analysis
2.4. Comparison Between Present and Past
2.5. Normalization and Gap-Filling
2.6. Monthly Aggregation of Data
2.7. Wavelet Harmonic Analysis
2.7.1. Bivariate Wavelet Transform: Cross-Wavelet Transform (XWT) and Wavelet Coherence (WTC)
3. Results
3.1. Meteorological Description of the Stations
3.2. Climate Change Indices Analysis
3.3. Past and Present Seasonal Analysis
3.4. Harmonic Analysis




4. Discussion
5. Conclusions
Appendix A

References
- Ortiz Tirado, P.X.; Serrano Vincenti, M.S.F. Crisis Climática en los Andes. Una Panorámica en Torno a sus Impactos, Adaptaciones y Respuestas. In Colapso climático en la región Andina: Dimensiones ecosistémicas, socioeconómicas y sociopolíticas; Editorial Universitaria Abya-Yala, 2024; pp. 15–56. ISBN 978-9978-10-995-3. [Google Scholar]
- Cordero, R.; Feron, S.; Damiani, A.; Llanillo, P.; Carrasco, J.; Jorquera, J.; Sepúlveda Araya, E.; Carrera, J. Cambio Climático - Respuestas a Las Preguntas Claves; (in Spanish). 2019; ISBN 978-956-401-251-3. [Google Scholar]
- Wang, M.; Zhang, Z.; Hu, T.; Liu, X. A Practical Single-Channel Algorithm for Land Surface Temperature Retrieval: Application to Landsat Series Data. Journal of Geophysical Research: Atmospheres 2019, 124, 299–316. [Google Scholar] [CrossRef]
- Serrano Vincenti, S.; Ruiz, J.C.; Bersosa, F. Heavy rainfall and temperature proyections in a climate change scenario over Quito, Ecuador. La Granja 2016, 25, 16. [Google Scholar] [CrossRef]
- Toulkeridis, T.; Tamayo, E.; Simón-Baile, D.; Merizalde-Mora, M.J.; Reyes -Yunga, D.F.; Viera-Torres, M.; Heredia, M. Climate Change According to Ecuadorian Academics-Perceptions versus Facts. Granja 2020, 31, 21–49. [Google Scholar] [CrossRef]
- Montenegro, M.; Campozano, L.; Urdiales-Flores, D.; Maisincho, L.; Serrano-Vincenti, S.; Borbor-Cordova, M.J. Assessment of the Impact of Higher Temperatures Due to Climate Change on the Mortality Risk Indexes in Ecuador Until 2070. Front Earth Sci (Lausanne) 2022, 9. [Google Scholar] [CrossRef]
- Serrano-Vincenti, S.; Guamán-Pozo, J.; Chuqui, J.; Tufiño, R.; Franco-Crespo, C. Measuring the Effects of Climate Change on Traditional Crops in Tropical Highlands, Ecuador. Front Sustain Food Syst 2025, 9. [Google Scholar] [CrossRef]
- Hidalgo, D.; Domínguez, C.G.; Villacís, M.T.; Ruíz, J.C.; Maisincho, L.; Cáceres, B.E.; Crespo-Pérez, V.; Condom, T.; Piedra, D. Carihuairazo glacier retreat and its perception in the cunucyacu community; retroceso del glaciar del Carihuairazo y sus implicaciones en la comunidad de Cunucyacu. Granja 2024, 39, 94–116. [Google Scholar] [CrossRef]
- Mariana, Luna Cadena; Pacheco, K.A. Community-Based Adaptation to Climate Change in Ventanas Subtropical Zone: Validating Climate Projections with In-Situ Data. In Proceedings of the Smart Technologies, Systems and Applications; Narváez Fabián, R., Villa, M.N., Eds.; Springer Nature Switzerland: Cham, 2026; pp. 310–324. [Google Scholar]
- Luna Cadena, M.; Yánez González, L.; Serrano Vincenti, S. Urban Agriculture for Climate Resilience and Sustainability in Quito: A MESMIS-Based Evaluation. In Proceedings of the Proceedings of the 20th International Multidisciplinary Congress on Science and Technology, CIT 2025, Quito, Ecuador, August 2025; pp. 1–12. [Google Scholar]
- García-Parra, M.A.; De La Barrera, F.; Leguizamón, N.Z.P.; Colmenares-Cruz, R.A.; Cancimance, A.; Soler-Fonseca, D. THE SUSTAINABLE DEVELOPMENT GOALS IN AMERICA: OVERVIEW. Granja 2022, 36. [Google Scholar] [CrossRef]
- Antunez, U.G.Q.; Monterroso Rivas, A.I.; Calderon, F.; Adán Guillermo, R.G. Aptitude of coffee (Coffea arabica L.) And cacao (Theobroma cacao l.) Crops considering climate change; Aptitud de los cultivos de café (Coffea arabica L.) Y cacao (Theobroma cacao L.) Considerando escenarios de cambio climático. Granja 2022, 36. [Google Scholar] [CrossRef]
- Arias-Muñoz, P.; Chamorro-Benavides, E.L.; Patiño-Yar, S.A.; Jácome-Aguirre, G.; Rosales, O. Efectos del cambio de uso de suelo y cambio climático en la distribución potencial de la caña de azúcar en el valle del Chota, Ecuador; Effects of change in land use and climate change on the potential distribution of sugarcane at valle del Chota, Ecuador. Granja 2025, 42, 88–103. [Google Scholar] [CrossRef]
- INEC Tungurahua Perfil Demográfico. Censo Ecuador. 2024.
- IPCC Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 2023.
- Gobierno Provincial de Tungurahua Agenda Tungurahua 2019 - 2021. 2021.
- Serrano-Vincenti, S.; Condom, T.; Campozano, L.; Escobar, L.A.; Walpersdorf, A.; Carchipulla-Morales, D.; Villacís, M. Harmonic Analysis of the Relationship between GNSS Precipitable Water Vapor and Heavy Rainfall over the Northwest Equatorial Coast, Andes, and Amazon Regions. 2022, 13, 1809. [Google Scholar] [CrossRef]
- Lanzante, J.R. Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data. International Journal of Climatology 1996, 16, 1197–1226. [Google Scholar] [CrossRef]
- Ocaña, F. Técnicas Estadísticas En Nutrición y Salud: Tratamiento Estadístico de Outliers y Datos Faltantes 2017.
- Chuqui González, J.A. Proyección de Los Índices de Cambio Climático En La Provincia de Tungurahua, al Año 2070 2022.
- Serrano, S.; Reisancho, A.; Lizano, R.; A.M.S.-I., M.J.B.-C. Ecciones Aprendidas al Enfrentar Los Efectos de Eventos Hidrometeorológicos Extremos En Los Sistemas Agrícolas y Servicios Ecosistémicos En. 2016, 24, 69–82. [Google Scholar] [CrossRef]
- Lina, M.; Goulard, B. Daubechies Wavelet — An Overview 1999.
- Da Silva, E.A.B.; Sampson, D.G. Successive Approximation Wavelet Vector Quantization for Image and Video Coding. In Advances in Imaging and Electron Physics; Academic Press, 1996; Vol. 97, pp. 191–255. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999; ISBN 9780080520834. [Google Scholar]
- Vilani, M.T.; Reis, N.M. da S.; Pinto Junior, O.B.; Novais, J.W.Z. Coerência Wavelets Em Variável Temperatura Do Ar Em Área Do Bioma Pantaneiro e Área de Alta Densidade Construtiva. Ensaios e Ciência: Ciências Biológicas, Agrárias e da Saúde 2018, 22, 5–11. [Google Scholar] [CrossRef]
- MathWorks Wavelet Toolbox 2024.
- Sun, Y.; Greaves, D.A.; Orgs, G.; Hamilton, A.F. de C.; Day, S.; Ward, J.A. Using Wearable Sensors to Measure Interpersonal Synchrony in Actors and Audience Members During a Live Theatre Performance. Proc ACM Interact Mob Wearable Ubiquitous Technol 2023, 7, 1–29. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlinear Process Geophys 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Sun, Y.; Greaves, D.A.; Orgs, G.; de C. Hamilton, A.F.; Day, S.; Ward, J.A. Using Wearable Sensors to Measure Interpersonal Synchrony in Actors and Audience Members During a Live Theatre Performance. Proc ACM Interact Mob Wearable Ubiquitous Technol 2023, 7, 1–29. [Google Scholar] [CrossRef]
- Atiah, W.A.; Muthoni, F.K.; Kotu, B.; Kizito, F.; Amekudzi, L.K. Trends of Rainfall Onset, Cessation, and Length of Growing Season in Northern Ghana: Comparing the Rain Gauge, Satellite, and Farmer’s Perceptions. Atmosphere (Basel) 2021, 12, 1674. [Google Scholar] [CrossRef]
- Omay, P.O.; Muthama, N.J.; Oludhe, C.; Kinama, J.M.; Artan, G.; Atheru, Z. Changes and Variability in Rainfall Onset, Cessation, and Length of Rainy Season in the IGAD Region of Eastern Africa. Theor Appl Climatol 2023, 152, 1–23. [Google Scholar] [CrossRef]
- Ferijal, T.; Batelaan, O.; Shanafield, M.; Alfahmi, F. Determination of Rainy Season Onset and Cessation Based on a Flexible Driest Period. Theor Appl Climatol 2022, 148, 91–104. [Google Scholar] [CrossRef]
- Moron, V.; Robertson, A.W.; Boer, R. Regional-Scale Rainy Season Onset Detection: A New Approach Based on Multivariate Analysis. J Clim 2013, 26, 8329–8349. [Google Scholar] [CrossRef]
- Bombardi, R.J.; Kinter, J.L.; Frauenfeld, O.W. A Global Gridded Dataset of the Characteristics of the Rainy and Dry Seasons. Bull Am Meteorol Soc 2019, 100, 1315–1328. [Google Scholar] [CrossRef]












| Code | Station | Latitude | Longitude | Altitude m.a.s.l |
Temporal range |
From | To |
|---|---|---|---|---|---|---|---|
| M0029 | Baños | -1.260 | -78.405 | 1820 | 68 | 1950 | 2018 |
| M0126 | Patate | -1.300 | -78.500 | 2442 | 50 | 1948 | 2015 |
| M0127 | Pillaro | -1.169 | -78.553 | 2781 | 50 | 1964 | 2014 |
| M0128 | Pedro Fermín | -1.352 | -78.615 | 2897 | 37 | 1978 | 2015 |
| M0258 | Querochaca | -1.367 | -78.606 | 2863 | 39 | 1979 | 2018 |
| M1069 | Calamaca | -1.281 | -78.821 | 3417 | 27 | 1988 | 2015 |
| Index | Unit | Name | Definition | Equation |
|---|---|---|---|---|
| PRCPTOT | mm/year | Total precipitation. Annual total precipitation on wet days (days with ≥1 mm of rainfall). | <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --><!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> is daily precipitation and N is the total number of wet days in the period of interest. |
|
| SDII | mm/day | Simple daily intensity index. Average daily precipitation on wet days. | <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> | |
| R95p | mm | Very wet days. Annual total precipitation (in millimeters) exceeding the 95th percentile. | <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ -->) <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> is daily precipitation and M is the number of days exceeding the 95th percentile. |
|
| TXx | ºC |
Monthly maximum value of daily maximum temperature. | <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --><!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> be the daily maximum temperature in month k, and period j. | |
| TNx | ºC |
Monthly maximum value of daily minimum temperature. | <!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --><!-- MathType@Translator@5@5@MathML2 (no namespace).tdl@MathML 2.0 (no namespace)@ --> be the daily minimun temperature in month k, and period j. |
| Baños | Patate | Píllaro | Pedro Fermín |
Querochaca | |
|---|---|---|---|---|---|
| Min mm | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
| Max mm | 198.9 | 260 | 49.9 | 42.2 | 41.7 |
| Q1 mm | 1.1 | 0.7 | 0.6 | 1 | 0.5 |
| Q2 mm | 3.1 | 2.2 | 1.7 | 2 | 1.3 |
| Q3 mm | 7.5 | 5.4 | 4.2 | 4.4 | 3.5 |
| P90 mm | 14 | 10.3 | 8.7 | 8.6 | 7.4 |
| P99 mm | 37.5 | 26.8 | 21.2 | 22.90 | 20.9 |
| Station | Baños | Patate | Píllaro | Pedro Fermín |
Querochaca |
|---|---|---|---|---|---|
|
(SDII) [mm/day/year] p-value |
-0.005 0.719 |
-0.005 0.719 |
-0.006 0.504 |
0.013 0.175 |
0.008 0.352 |
|
(PRCPTOT) [mm/year] p-value |
-0.916 0.675 |
-0.916 0.675 |
-3.012 0.152 |
3.038 0.114 |
1.681 0.38 |
|
(R95p) [[mm/day/year] p-value |
-0.402 0.839 |
-0.366 0.852 |
-1.099 0.215 |
1.182 0.222 |
0.788 0.464 |
|
(TXx) [°C/year] p-value |
0.028** 0.004 |
0.018* 0.067 |
0.041 0.227 |
0.048* 0.049 |
0.018* 0.067 |
|
(TNx) [°C/year] p-value |
0.028** 0.019 |
0.038** 0.006 |
0.011 0.639 |
0.003 0.764 |
0.042**0 |
| Variable |
Baños 15 years |
Patate 15 years |
Píllaro 14 years |
Pedro Fermín 16 years |
Querochaca 14 years |
| Min [mm] | 3.10 21.1 |
2.60 1.10 |
2 1.60 |
3.60 4.60 |
3.20 1.5 |
| Max [mm] | 414..20 474.9 |
191.60 336 |
142.70 164.50 |
144.70 199.50 |
154.80 215.60 |
| Q1 [mm] | 63.02 72 |
24.9 19.85 |
27.87 23.17 |
24.80 26.36 |
31.40 33.50 |
| Q2 [mm] | 105.30 100.9 |
43.80 40.85 |
43.80 35.80 |
37.90 37.40 |
44.60 44.50 |
| Q3 [mm] | 153.72 138.82 |
66.30 64.25 |
64.57 57.27 |
58.10 60.77 |
62.30 70.35 |
| P90 [mm] | 199.45 187.27 |
93.72 94.66 |
82.43 100.30 |
75.32 80.07 |
82.30 83.64 |
| P99 [mm] | 272.69 290.35 |
185.616 176.44 |
133.71 136.74 |
113.06 158.34 |
110.51 127.24 |
|
Precipitación Anual acumulada [mm] |
1287.13 1198.65 |
469.52 456.77 |
553.02 417.59 |
513.33 504.08 |
578.36 616.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
