Pasture-based ruminant systems link nitrogen (N) nutrition with ecosystem N cycling. Grazing ruminants convert fibrous forages into milk and meat but excrete 65 to 80% of ingested N, creating excreta hotspots that drive ammonia volatilization, nitrate leaching, and nitrous oxide (N₂O) emissions. This review synthesizes ecological and rumen-nutrition evidence on N flows, emphasizing microbial processes, biological N₂ fixation, plant diversity, and urine patch biogeochemistry, and evaluates strategies to improve N use efficiency (NUE). We examine rumen N metabolism in relation to microbial protein synthesis, urea recycling, and dietary factors including crude protein concentration, energy supply, forage composition, and plant secondary compounds that modulate protein degradability and microbial N capture, thereby influencing N partitioning among animal products, urine, and feces, as reflected in milk and blood urea N. Also, examine how grazing patterns and excreta distribution, assessed with sensor technologies, modify N flows. Evidence indicates that integrated management combining dietary manipulation, forage diversity, targeted grazing, and decision tools can increase farm-gate NUE from 20-25% to over 30% while sustaining performance. Framing these processes within the global N cycle positions pasture-based ruminant systems as critical leverage points for aligning ruminant production with environmental and climate sustainability goals.