Submitted:
19 November 2025
Posted:
24 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments
References
- Rather, M.A.; Ravi, L.; et al. An experimental study of the energy band alignments of B(Al, Ga)N heterojunctions. Appl. Phys. Lett. 2023, 123, 012101. [Google Scholar] [CrossRef]
- Williams, L.; Kioupakis, E. BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs. Appl. Phys. Lett. 2017, 111, 211107. [Google Scholar] [CrossRef]
- Turiansky, M.E.; Shen, J.-X.; Wickramaratne, D.; Van de Walle, C.G. First-principles study of bandgap bowing in BGaN alloys. J. Appl. Phys. 2019, 126, 095706. [Google Scholar] [CrossRef]
- AlQatari, F.; Liao, C.-H.; Li, X. Demonstration of MOCVD-grown BGaN with over 10% boron composition. AIP Adv. 2022, 12, 085318. [Google Scholar] [CrossRef]
- Shen, J.-X.; Turiansky, M.E.; Wickramaratne, D.; Van de Walle, C.G. Thermodynamics of boron incorporation in BGaN. Phys. Rev. Mater. 2021, 5, L030401. [Google Scholar] [CrossRef]
- Gunning, B.P.; Moseley, M.W.; Koleske, D.D.; Allerman, A.A.; Lee, S.R. Phase degradation in BxGa1−xN films grown at low temperature by metalorganic vapor phase epitaxy. J. Cryst. Growth 2017, 464, 190. [Google Scholar] [CrossRef]
- Zdanowicz, E.; Iida, D.; Pawlaczyk, L.; Serafinczuk, J.; Szukiewicz, R.; Kudrawiec, R.; Hommel, D.; Ohkawa, K. Boron influence on bandgap and photoluminescence in BGaN grown on AlN. J. Appl. Phys. 2020, 127, 165703. [Google Scholar] [CrossRef]
- Mozdzynska, E.B.; Kaminski, P.; Kozłowski, R.; et al. Effect of the growth temperature on the formation of deep-level defects and optical properties of epitaxial BGaN. J. Mater. Sci. 2022, 57, 17347. [Google Scholar] [CrossRef]
- Baghdadli, T.; Ould Saad Hamady, S.; Gautier, S.; et al. Electrical and structural characterizations of BGaN thin films grown by metal-organic vapor-phase epitaxy. Phys. Status Solidi C. [CrossRef]
- Mozdzynska, E.B.; Złotnik, S.; Ciepielewski, P.; Gaca, J.; Wojcik, M.; Michałowski, P.P.; Rosinski, K.; Pietak, K.; Rudzinski, M.; Jezierska, E.; et al. Insights on boron impact on structural characteristics in epitaxially grown BGaN. J. Mater. Sci. 2022, 57, 7265–7275. [Google Scholar] [CrossRef]
- Kajikawa, Y. Analysis of the Hall-effect data on Mn-doped GaAs with taking into account the Hall factor for nearest-neighbor hopping conduction. Phys. Status Solidi C 2016, 13(5–6), 387–394.
- Wolos, A.; Wilamowski, Z.; Piersa, M.; Strupinski, W.; Lucznik, B.; Grzegory, I.; Porowski, S. Properties of metal-insulator transition and electron spin relaxation in GaN:Si. Phys. Rev. B 2011, 83, 165206. [Google Scholar] [CrossRef]
- Gunning, B.; Lowder, J.; Moseley, M.; Doolittle, W.A. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN. Appl. Phys. Lett. 2012, 101, 082106. [Google Scholar] [CrossRef]
- Lancefield, D.; Eshghi, H. Temperature-dependent hole transport in GaN. J. Phys.: Condens. Matter, 2001, 13(39), 8939–8947. [Google Scholar]
- Kinoshita, T.; Obata, T.; Yanagi, H.; Inoue, S. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 2013, 102(9), 092109. [Google Scholar] [CrossRef]
- Chen, C.-C.; Lin, Y.-R.; Lin, Y.-W.; Su, Y.-C.; Chen, C.-C.; Huang, T.-C.; Wu, P.-H.; Yang, C. C.; Mou, S.; Averett, K. L. Improvement of p-type AlGaN conductivity with an alternating Mg-doped/undoped AlGaN layer structure. Micromachines 2020, 11(6), 598. [Google Scholar]
- Neumann, H. Influence of impurity band conduction on the electrical characteristics of p-type GaAs. Cryst. Res. Technol. 1988, 23, 1377. [Google Scholar] [CrossRef]
- Shklovskii, B.I.; Efros, A.L. Electronic Properties of Doped Semiconductors; Springer-Verlag: Berlin, Germany, 1984. [Google Scholar]
- Koon, D.W.; Castner, T.G. Variable-range hopping and the Hall coefficient in Si:As. Solid State Commun. 1987, 64(11).
- Mansfield, R. In Hopping Transport in Solids; Pollak, M. , Shklovskii, B.I., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; p. 349. [Google Scholar]
- Bezaquen, M.; Belache, B.; Blaauw, C. Electrical properties of Cd-doped and Mg-doped InP. Phys. Rev. B 1992, 46, 6732. [Google Scholar] [CrossRef] [PubMed]
- Korona, K.P.; Wysmolek, A.; Kamińska, M.; Twardowski, A.; Piersa, M.; Palczewska, M.; Strzelecka, G.; Hurban, A.; Khul, J.; Adomavicius, R.; Krotkus, A. Manganese as a fast charge carrier trapping center in InP. Physica B: Condens. Matter 2006, 382, 220–228. [Google Scholar] [CrossRef]
- Kurilenko, I.N.; Litvak–Gorskaya, L.B.; Lugovaya, G.E. Conductivity via deep impurity centers in p-InSb. Sov. Phys. Semicond. 1980, 13, 906. [Google Scholar]
- Obukhov, S.A. Nonlinear electrical properties of a system of strongly correlated electrons in a strong magnetic field. Phys. Status Solidi B 2005, 242, 1298. [Google Scholar] [CrossRef]
- Wolos, A.; Piersa, M.; Strzelecka, G.; Korona, K.P.; Hurban, A.; Kamińska, M. Mn configuration in III–V semiconductors and its influence on electric transport and semiconductor magnetism. Phys. Status Solidi C 2009, 6, 2769. [Google Scholar] [CrossRef]
- Bashir, J.; Usman, M.; Sengouga, N.; Hassani, M. Introducing boron gallium nitride as carriers’ source layer for efficient near-ultraviolet microLED. Phys. Scr. 2024, 99 125534. [Google Scholar]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
