Submitted:
10 November 2025
Posted:
11 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Fundamentals of Algae-Based Coatings
2.1. Chemistry & Functional Compounds
2.2. Coating Formulation & Application
2.3. Advantages Over Conventional Coatings
3. Production & Scalability Challenges
3.1. Algae Cultivation Systems
3.1.1. Types of Algae Cultivation Systems
3.1.2. Key Challenges in Algae Cultivation for Coatings
3.2. Biomass Processing & Extraction Techniques
3.3. Challenges in Large-Scale Production and Cost Considerations
4. Multi-Functional Performance Analysis
4.1. Mechanical Properties
4.2. Protective Properties
4.3. Environmental Impact
5. Economic Viability & Industrial Adoption
5.1. Cost Analysis vs. Petroleum-Based Coatings
5.2. Market Readiness & Commercial Barriers
5.3. Regulatory Standards & Future Implementation Strategies
6. Conclusions
References
- Abdelhamid, F.M., Elshopakey, G.E., Aziza, A.E., 2020. Ameliorative effects of dietary Chlorella vulgaris and β-glucan against diazinon-induced toxicity in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 96, 213–222. [CrossRef]
- Alvira, D., Antorán, D., Manyà, J.J., 2022. Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chem. Eng. J. 447. [CrossRef]
- Banerjee, I., Pangule, R.C., Kane, R.S., 2011. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv. Mater. 23, 690–718.
- Barakat, K.M., Ismail, M.M., Abou El Hassayeb, H.E., El Sersy, N.A., Elshobary, M.E., 2022. Chemical characterization and biological activities of ulvan extracted from Ulva fasciata (Chlorophyta). Rend. Lincei 33, 829–841. [CrossRef]
- Bedoux, G., Pliego-Cortés, H., Dufau, C., Hardouin, K., Boulho, R., Freile-Pelegrín, Y., Robledo, D., Bourgougnon, N., 2020. Production and properties of mycosporine-like amino acids isolated from seaweeds. Adv. Bot. Res. 95, 213–245. [CrossRef]
- Bin Abu Sofian, A.D.A., Lim, H.R., Manickam, S., Ang, W.L., Show, P.L., 2024. Towards a Sustainable Circular Economy: Algae-Based Bioplastics and the Role of Internet-of-Things and Machine Learning. ChemBioEng Reviews 11, 39–59. [CrossRef]
- Brannum, D.J., Price, E.J., Villamil, D., Kozawa, S., Brannum, M., Berry, C., Semco, R., Wnek, G.E., 2019. Flame-retardant polyurethane foams: one-pot, bioinspired silica nanoparticle coating. ACS Appl. Polym. Mater. 1, 2015–2022.
- Cabral, E.M., Mondala, J.R.M., Oliveira, M., Przyborska, J., Fitzpatrick, S., Rai, D.K., Sivagnanam, S.P., Garcia-Vaquero, M., O’Shea, D., Devereux, M., Tiwari, B.K., Curtin, J., 2021. Influence of molecular weight fractionation on the antimicrobial and anticancer properties of a fucoidan rich-extract from the macroalgae Fucus vesiculosus. Int. J. Biol. Macromol. 186, 994–1002. [CrossRef]
- Caldwell, G.S., In-Na, P., Hart, R., Sharp, E., Stefanova, A., Pickersgill, M., Walker, M., Unthank, M., Perry, J., Lee, J.G.M., 2021. Immobilising microalgae and cyanobacteria as biocomposites: New opportunities to intensify algae biotechnology and bioprocessing. Energies 14. [CrossRef]
- Calovi, M., Rossi, S., 2023. Comparative Analysis of the Advantages and Disadvantages of Utilizing Spirulina-Derived Pigment as a Bio-Based Colorant for Wood Impregnator. Coatings 13. [CrossRef]
- Calovi, M., Zanardi, A., Rossi, S., 2024. Recent Advances in Bio-Based Wood Protective Systems: A Comprehensive Review. Appl. Sci. (Switzerland) 14. [CrossRef]
- Carreira-Casais, A., Otero, P., Garcia-Perez, P., Garcia-Oliveira, P., Pereira, A.G., Carpena, M., Soria-Lopez, A., Simal-Gandara, J., Prieto, M.A., 2021. Benefits and drawbacks of ultrasound-assisted extraction for the recovery of bioactive compounds from marine algae. Int. J. Environ. Res. Public Health 18. [CrossRef]
- Chandra, R., Iqbal, H.M.N., Vishal, G., Lee, H.S., Nagra, S., 2019. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery. Bioresour. Technol. 278, 346–359. [CrossRef]
- Chattopadhyay, D.K., Raju, K.V.S.N., 2007. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci. (Oxford) 32, 352–418. [CrossRef]
- Cheah, Y.T., Chan, D.J.C., 2021. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered 12, 7577–7599. [CrossRef]
- Cole, G.M., Greene, J.M., Quinn, J.C., McDaniel, B., Kemp, L., Simmons, D., Hodges, T., Nobles, D., Weiss, T.L., McGowen, J., McDaniel, S., 2023. Integrated techno-economic and life cycle assessment of a novel algae-based coating for direct air carbon capture and sequestration. J. CO2 Util. 69. [CrossRef]
- Cruz, C.G., da Silveira, J.T., Ferrari, F.M., Costa, J.A.V., da Rosa, A.P.C., 2019. The use of poly(3-hydroxybutyrate), C-phycocyanin, and phenolic compounds extracted from Spirulina sp. LEB 18 in latex paint formulations. Prog. Org. Coat. 135, 100–104. [CrossRef]
- Dec, R., Guza, M., Dzwolak, W., 2020. Reduction of a disulfide-constrained oligo-glutamate peptide triggers self-assembly of β2-type amyloid fibrils with the chiroptical properties determined by supramolecular chirality. Int. J. Biol. Macromol. 162, 866–872. [CrossRef]
- Demarco, M., Moraes, J.O. de, Ferrari, M.C., Neves, F. de F., Laurindo, J.B., Tribuzi, G., 2022. Production of Spirulina (Arthrospira platensis) powder by innovative and traditional drying techniques. J. Food Process Eng. 45. [CrossRef]
- Di Fazio, M., Fratello, C., Paglialunga, G., Mignardi, S., Vergelli, L., Frasca, F., Rigon, C., Ioele, M., Gioventù, E., Antonacci, A., Favero, G., Medeghini, L., 2024. The NYMPHA Algae Extract as a New Consolidant for the Restoration of Cultural Heritage: Studies and Considerations on Its Effectiveness on Painted Marble. Sustainability (Switzerland) 16. [CrossRef]
- Dobrinčić, A., Balbino, S., Zorić, Z., Pedisić, S., Kovačević, D.B., Garofulić, I.E., Dragović-Uzelac, V., 2020. Advanced technologies for the extraction of marine brown algal polysaccharides. Mar. Drugs 18. [CrossRef]
- Du, Y., Schuur, B., Kersten, S.R.A., Brilman, D.W.F., 2015. Opportunities for switchable solvents for lipid extraction from wet algal biomass: An energy evaluation. Algal Res. 11, 271–283. [CrossRef]
- Esquivel-Hernández, D.A., López, V.H., Rodríguez-Rodríguez, J., Alemán-Nava, G.S., Cuéllar-Bermúdez, S.P., Rostro-Alanis, M., Parra-Saldívar, R., 2016. Supercritical carbon dioxide and microwave-assisted extraction of functional lipophilic compounds from Arthrospira platensis. Int. J. Mol. Sci. 17. [CrossRef]
- Eyssautier-Chuine, S., Franco-Castillo, I., Misra, A., Hubert, J., Vaillant-Gaveau, N., Streb, C., Mitchell, S.G., 2023. Evaluating the durability and performance of polyoxometalate-ionic liquid coatings on calcareous stones: Preventing biocolonisation in outdoor environments. Sci. Total Environ. 884. [CrossRef]
- Fabris, M., Abbriano, R.M., Pernice, M., Sutherland, D.L., Commault, A.S., Hall, C.C., Labeeuw, L., McCauley, J.I., Kuzhiuparambil, U., Ray, P., Kahlke, T., Ralph, P.J., 2020. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Front. Plant Sci. 11. [CrossRef]
- Ferreira, R.M., Ribeiro, A.R., Patinha, C., Silva, A.M.S., Cardoso, S.M., Costa, R., 2019. Water Extraction Kinetics of Bioactive Compounds of Fucus vesiculosus. Molecules 24. [CrossRef]
- Figueroa, F.L., 2021. Mycosporine-Like Amino Acids from Marine Resource. Mar. Drugs 19. [CrossRef]
- Flórez-Fernández, N., Domínguez, H., Torres, M.D., 2019. A green approach for alginate extraction from Sargassum muticum brown seaweed using ultrasound-assisted technique. Int. J. Biol. Macromol. 124, 451–459. [CrossRef]
- Gauthier, M.R., Senhorinho, G.N.A., Scott, J.A., 2020. Microalgae under environmental stress as a source of antioxidants. Algal Res. 52. [CrossRef]
- Gieroba, B., Kalisz, G., Krysa, M., Khalavka, M., Przekora, A., 2023. Application of Vibrational Spectroscopic Techniques in the Study of the Natural Polysaccharides and Their Cross-Linking Process. Int. J. Mol. Sci. 24. [CrossRef]
- Gomez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A., 2009. Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371. [CrossRef]
- Gómez de Saravia, S.G., Rastelli, S.E., Blustein, G., Viera, M.R., 2018. Natural compounds as potential algaecides for waterborne paints. J. Coatings Technol. Res. 15, 1191–1200. [CrossRef]
- Ha, H.T., Cuong, D.X., Thuy, L.H., Thuan, P.T., Tuyen, D.T.T., Mo, V.T., Dong, D.H., 2022. Carrageenan of Red Algae Eucheuma gelatinae: Extraction, Antioxidant Activity, Rheology Characteristics, and Physicochemistry Characterization. Molecules 27. [CrossRef]
- Habib-ur-Rahman, M., Ahmad, A., Raza, A., Hasnain, M.U., Alharby, H.F., Alzahrani, Y.M., Bamagoos, A.A., Hakeem, K.R., Ahmad, S., Nasim, W., 2022. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Front. Plant Sci. 13, 925548.
- Jan, M., Kazik, P., 2017. Nannochloropsis: biology, biotechnological potential and challenges. Nova Science Publishers, Inc.
- January, G.G., Naidoo, R.K., Kirby-McCullough, B., Bauer, R., 2019. Assessing methodologies for fucoidan extraction from South African brown algae. Algal Res. 40. [CrossRef]
- Kampa, Ł., Sadowski, Ł., Królicka, A., 2022. The use of synthetic and natural fibers in epoxy coatings: A comparative mechanical and economic analysis. Int. J. Adhes. Adhes. 117. [CrossRef]
- Karimi, Z., 2022. Investigating the effect of substrate properties on attached algal cultivation.
- Kartik, A., Akhil, D., Lakshmi, D., Panchamoorthy Gopinath, K., Arun, J., Sivaramakrishnan, R., Pugazhendhi, A., 2021. A critical review on production of biopolymers from algae biomass and their applications. Bioresour. Technol. 329. [CrossRef]
- Kim, B., Youn Lee, S., Lakshmi Narasimhan, A., Kim, S., Oh, Y.K., 2022. Cell disruption and astaxanthin extraction from Haematococcus pluvialis: Recent advances. Bioresour. Technol. 343. [CrossRef]
- Kim, D., Kang, S.M., 2020. Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules 21, 5086–5092. [CrossRef]
- Kim, S.M., Jung, Y.J., Kwon, O.N., Cha, K.H., Um, B.H., Chung, D., Pan, C.H., 2012. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 166, 1843–1855. [CrossRef]
- Kumar, B.R., Mathimani, T., Sudhakar, M.P., Rajendran, K., Nizami, A.S., Brindhadevi, K., Pugazhendhi, A., 2021. A state of the art review on the cultivation of algae for energy and other valuable products: Application, challenges, and opportunities. Renew. Sustain. Energy Rev. 138. [CrossRef]
- Kumar, S., Krishnan, S., Samal, S.K., Mohanty, S., Nayak, S.K., 2018. Toughening of Petroleum Based (DGEBA) Epoxy Resins with Various Renewable Resources Based Flexible Chains for High Performance Applications: A Review. Ind. Eng. Chem. Res. 57, 2711–2726. [CrossRef]
- Lambert, S., Wagner, M., 2017. Environmental performance of bio-based and biodegradable plastics: the road ahead. Chem. Soc. Rev. 46, 6855–6871.
- Lam, T.P., Lee, T.M., Chen, C.Y., Chang, J.S., 2018. Strategies to control biological contaminants during microalgal cultivation in open ponds. Bioresour. Technol. 252, 180–187. [CrossRef]
- Li, X., Wang, X., Duan, C., Yi, S., Gao, Z., Xiao, C., Agathos, S.N., Wang, G., Li, J., 2020. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol. Adv. 43. [CrossRef]
- Liu, J.L., Wang, K., Xiahpu, Q.R., Liu, F.M., Zou, J., Kong, Y., 2019. China’s long-term low carbon transition pathway under the urbanization process. Adv. Clim. Change Res. 10, 240–249. [CrossRef]
- Lourenço-Lopes, C., Garcia-Oliveira, P., Carpena, M., Fraga-Corral, M., Jimenez-Lopez, C., Pereira, A.G., Prieto, M.A., Simal-Gandara, J., 2020. Scientific approaches on extraction, purification and stability for the commercialization of fucoxanthin recovered from brown algae. Foods 9. [CrossRef]
- Mari, A., Fafalis, C., Krokida, M., 2024. Evaluation of Edible Coatings from Components from Chlorella vulgaris and Comparison with Conventional Coatings. Coatings 14. [CrossRef]
- Markou, G., Eliopoulos, C., Argyri, A., Arapoglou, D., 2021. Production of arthrospira (Spirulina) platensis enriched in β-glucans through phosphorus limitation. Appl. Sci. (Switzerland) 11. [CrossRef]
- Martins, R., Sales, H., Pontes, R., Nunes, J., Gouveia, I., 2023. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants 12. [CrossRef]
- Maung, T.Z., Bishop, J.E., Holt, E., Turner, A.M., Pfrang, C., 2022. Indoor Air Pollution and the Health of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. Int. J. Environ. Res. Public Health 19. [CrossRef]
- Mazumder, A., Holdt, S.L., De Francisci, D., Alvarado-Morales, M., Mishra, H.N., Angelidaki, I., 2016. Extraction of alginate from Sargassum muticum: process optimization and study of its functional activities. J. Appl. Phycol. 28, 3625–3634. [CrossRef]
- Menaa, F., Wijesinghe, U., Thiripuranathar, G., Althobaiti, N.A., Albalawi, A.E., Khan, B.A., Menaa, B., 2021. Marine algae-derived bioactive compounds: A new wave of nanodrugs? Mar. Drugs 19. [CrossRef]
- Mendes, M., Cotas, J., Gutiérrez, I.B., Gonçalves, A.M.M., Critchley, A.T., Hinaloc, L.A.R., Roleda, M.Y., Pereira, L., 2024. Advanced Extraction Techniques and Physicochemical Properties of Carrageenan from a Novel Kappaphycus alvarezii Cultivar. Mar. Drugs 22. [CrossRef]
- Mouga, T., Fernandes, I.B., 2022. The Red Seaweed Giant Gelidium (Gelidium corneum) for New Bio-Based Materials in a Circular Economy Framework. Earth (Switzerland) 3, 788–813. [CrossRef]
- Natarajan, S., Lakshmi, D.S., Thiagarajan, V., Mrudula, P., Chandrasekaran, N., Mukherjee, A., 2018. Antifouling and anti-algal effects of chitosan nanocomposite (TiO2/Ag) and pristine (TiO2 and Ag) films on marine microalgae Dunaliella salina. J. Environ. Chem. Eng. 6, 6870–6880. [CrossRef]
- Noreen, A., Mahmood, S., Khalid, A., Takriff, S., Anjum, M., Riaz, L., Ditta, A., Mahmood, T., 2024. Synthesis and characterization of bio-based UV curable polyurethane coatings from algal biomass residue. Biomass Convers. Biorefinery 14, 11505–11521. [CrossRef]
- Nowicka-Krawczyk, P., Komar, M., Gutarowska, B., 2022. Towards understanding the link between the deterioration of building materials and the nature of aerophytic green algae. Sci. Total Environ. 802. [CrossRef]
- Pappou, S., Dardavila, M.M., Savvidou, M.G., Louli, V., Magoulas, K., Voutsas, E., 2022. Extraction of Bioactive Compounds from Ulva lactuca. Appl. Sci. (Switzerland) 12. [CrossRef]
- Patil, C.K., Jirimali, H.D., Paradeshi, J.S., Chaudhari, B.L., Alagi, P.K., Mahulikar, P.P., Hong, S.C., Gite, V.V., 2021. Chemical transformation of renewable algae oil to polyetheramide polyols for polyurethane coatings. Prog. Org. Coat. 151. [CrossRef]
- Patil, C.K., Jirimali, H.D., Paradeshi, J.S., Chaudhari, B.L., Gite, V.V., 2019. Functional antimicrobial and anticorrosive polyurethane composite coatings from algae oil and silver doped egg shell hydroxyapatite for sustainable development. Prog. Org. Coat. 128, 127–136. [CrossRef]
- Patil, G., Chethana, S., Madhusudhan, M.C., Raghavarao, K.S.M.S., 2008. Fractionation and purification of the phycobiliproteins from Spirulina platensis. Bioresour. Technol. 99, 7393–7396. [CrossRef]
- Pocha, C.K.R., Chia, W.Y., Chew, K.W., Munawaroh, H.S.H., Show, P.L., 2022. Current advances in recovery and biorefinery of fucoxanthin from Phaeodactylum tricornutum. Algal Res. 65. [CrossRef]
- Prathiksha, K., Priyadharshini, S.J.E., Jacob, J., Jayakumar, A.V., Rao, P.H., 2024. Microalgal pigments as natural hues in environmentally-sustainable and commercially-prospective biopaints. J. Appl. Phycol. 36, 191–204. [CrossRef]
- Qiu, Y., Jiang, H., Fu, L., Ci, F., Mao, X., 2021. Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem. 349. [CrossRef]
- Reyes, F.A., Mendiola, J.A., Ibañez, E., Del Valle, J.M., 2014. Astaxanthin extraction from Haematococcus pluvialis using CO2-expanded ethanol. J. Supercrit. Fluids 92, 75–83. [CrossRef]
- Rodrigues, R.D.P., de Castro, F.C., Santiago-Aguiar, R.S. de, Rocha, M.V.P., 2018. Ultrasound-assisted extraction of phycobiliproteins from Spirulina (Arthrospira) platensis using protic ionic liquids as solvent. Algal Res. 31, 454–462. [CrossRef]
- Sahu, S., Sharma, S., Kaur, A., Singh, G., Khatri, M., Arya, S.K., 2024. Algal carbohydrate polymers: Catalytic innovations for sustainable development. Carbohydr. Polym. 327. [CrossRef]
- Saji, S., Hebden, A., Goswami, P., Du, C., 2022. A Brief Review on the Development of Alginate Extraction Process and Its Sustainability. Sustainability (Switzerland) 14. [CrossRef]
- Saluri, M., Kaldmäe, M., Tuvikene, R., 2019. Extraction and quantification of phycobiliproteins from the red alga Furcellaria lumbricalis. Algal Res. 37, 115–123. [CrossRef]
- Sarwer, A., Hamed, S.M., Osman, A.I., Jamil, F., Al-Muhtaseb, A.H., Alhajeri, N.S., Rooney, D.W., 2022. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett. 20, 2797–2851. [CrossRef]
- Shin, W., Hong, J.S., Kim, D.Y., Kim, S.Y., Hyun, K., Park, J.D., Ahn, K.H., 2024. Effect of cellulose nanocrystals on the emulsion stability and rheological properties of microalgal Pickering emulsions. Algal Res. 83. [CrossRef]
- Sirmerova, M., Prochazkova, G., Siristova, L., Kolska, Z., Branyik, T., 2013. Adhesion of Chlorella vulgaris to solid surfaces, as mediated by physicochemical interactions. J. Appl. Phycol. 25, 1687–1695. [CrossRef]
- Sosa-Hernández, J.E., Romero-Castillo, K.D., Parra-Arroyo, L., Aguilar-Aguila-Isaías, M.A., García-Reyes, I.E., Ahmed, I., Parra-Saldivar, R., Bilal, M., Iqbal, H.M.N., 2019. Mexican microalgae biodiversity and state-of-the-art extraction strategies to meet sustainable circular economy challenges: High-value compounds and their applied perspectives. Mar. Drugs 17. [CrossRef]
- Sousa, V., Pereira, R.N., Vicente, A.A., Dias, O., Geada, P., 2023. Microalgae biomass as an alternative source of biocompounds: New insights and future perspectives of extraction methodologies. Food Res. Int. 173. [CrossRef]
- Tang, J., Liu, B., Gao, L., Wang, W., Liu, T., Su, G., 2021. Impacts of surface wettability and roughness of styrene-acrylic resin films on adhesion behavior of microalgae Chlorella sp. Colloids Surf. B Biointerfaces 199. [CrossRef]
- Thanh, T.T.T., Quach, T.M.T., Nguyen, T.N., Vu Luong, D., Bui, M.L., Tran, T.T. Van, 2016. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca. Int. J. Biol. Macromol. 93, 695–702. [CrossRef]
- Thevarajah, B., Nishshanka, G.K.S.H., Premaratne, M., Nimarshana, P.H.V., Nagarajan, D., Chang, J.S., Ariyadasa, T.U., 2022. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem. Eng. J. 185. [CrossRef]
- Tong, C.Y., Chua, M.X., Tan, W.H., Derek, C.J.C., 2023. Microalgal extract as bio-coating to enhance biofilm growth of marine microalgae on microporous membranes. Chemosphere 315, 137712. [CrossRef]
- Vega, J., Schneider, G., Moreira, B.R., Herrera, C., Bonomi-Barufi, J., Figueroa, F.L., 2021. Mycosporine-like amino acids from red macroalgae: UV-photoprotectors with potential cosmeceutical applications. Appl. Sci. 11, 5112.
- Verma, J., Nigam, S., Sinha, S., Bhattacharya, A., 2018. Development of polyurethane based anti-scratch and anti-algal coating formulation with silica-titania core-shell nanoparticles. Vacuum 153, 24–34. [CrossRef]
- Wahlström, N., Harrysson, H., Undeland, I., Edlund, U., 2018. A Strategy for the Sequential Recovery of Biomacromolecules from Red Macroalgae Porphyra umbilicalis Kützing. Ind. Eng. Chem. Res. 57, 42–53. [CrossRef]
- Wang, N., Pei, H., Xiang, W., Li, T., Lin, S., Wu, J., Chen, Z., Wu, H., Li, C., Wu, H., 2023. Rapid Screening of Microalgae as Potential Sources of Natural Antioxidants. Foods 12. [CrossRef]
- Wang, N., Phelan, P.E., Harris, C., Langevin, J., Nelson, B., Sawyer, K., 2018. Past visions, current trends, and future context: A review of building energy, carbon, and sustainability. Renew. Sustain. Energy Rev. 82, 976–993. [CrossRef]
- Wei, H., Xia, J., Zhou, W., Zhou, L., Hussain, G., Li, Q., Ostrikov, K., 2020. Adhesion and cohesion of epoxy-based industrial composite coatings. Compos. Part B Eng. 193. [CrossRef]
- Wilson, M.H., Shea, A., Groppo, J., Crofcheck, C., Quiroz, D., Quinn, J.C., Crocker, M., 2021. Algae-Based Beneficial Re-use of Carbon Emissions Using a Novel Photobioreactor: a Techno-Economic and Life Cycle Analysis. Bioenergy Res. 14, 292–302. [CrossRef]
- Wong, G.K.Y., Chiu, A.T., 2011. Gene therapy, gene targeting and induced pluripotent stem cells: Applications in monogenic disease treatment. Biotechnol. Adv. 29, 1–10. [CrossRef]
- Xiao, R., Zheng, Y., 2016. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 34, 1225–1244. [CrossRef]
- Xu, Z., Wang, H., Cheng, P., Chang, T., Chen, P., Zhou, C., Ruan, R., 2020. Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery – A review. Sci. Total Environ. 746. [CrossRef]
- Zhao, H., Zhang, H., Chen, X., McDonald, A., Li, H., 2020. Effect of Chlorella vulgaris Biofilm Adhesion on Electrochemical Behaviors of Wire Arc-Sprayed Aluminum Coatings. J. Therm. Spray Technol. 29, 1991–2000. [CrossRef]
- Zhu, J., Wakisaka, M., Omura, T., Yang, Z., Yin, Y., Fang, W., 2024. Advances in industrial harvesting techniques for edible microalgae: Recent insights into sustainable, efficient methods and future directions. J. Clean. Prod. 436, 140626. [CrossRef]
- Zuber, M., Zia, K.M., Noreen, A., Bukhari, S.A., Aslam, N., Sultan, N., Jabeen, M., Shi, B., 2017. Algae-Based Polyolefins. Algae Based Polym. Blends, Compos. Chem. Biotechnol. Mater. Sci., 499–529. [CrossRef]
| Chemical Component | Algae Species | Extraction Method | Cultivation System | Yield (% Dry Weight) | Function in Coating | Performance Metrics | Reference |
| β-Glucans | Arthrospira platensis | Enzymatic hydrolysis using Megazyme kits | Closed photobioreactors; semi-continuous mode | 20–34% | Enhances structural integrity and mechanical stability | Improved durability, antifouling properties | (Markou et al., 2021) |
| Carbohydrates | Nannochloropsis spp. | Acid hydrolysis followed by HPLC analysis | Batch systems; mixotrophic and photoautotrophic | 14–21% β-glucans | Acts as a biopolymer for hydrophobicity and adhesion | Increased resistance to degradation | (Jan & Kazik, 2017a) |
| Polysaccharides | Chlorella vulgaris | Biochemical extraction (e.g., precipitation methods) | Aquaculture systems with stress adaptation | ~88% carbohydrates | Forms biopolymeric layers for barrier protection | High antioxidant and UV resistance | (Abdelhamid et al., 2020) |
| Lipids (Accessory) | Nannochloropsis spp. | Organic solvent extraction (chloroform-methanol) | Photoautotrophic with controlled salinity | ~40% | Imparts water resistance and flexibility | Improved water repellency | (Jan & Kazik, 2017b) |
| Pigments (e.g., Chlorophylls, Carotenoids) | Chlorella vulgaris | Solvent-based extraction | Freshwater aquaculture | ~5% | UV protection and color stability | High UV absorbance, durability | (Abdelhamid et al., 2020) |
| Alginate | Sargassum muticum | Ultrasound-assisted extraction | Open pond | 13.6%–25.6% | Film-former, structural integrity, biopolymer matrix | High thermo-rheological stability | (Flórez-Fernández et al., 2019) |
| Phycobiliproteins | Spirulina platensis | Ultrasound-assisted with PILs | Photobioreactor/Open pond | 0.68%–0.80% (wet wt.) | UV resistance, pigment for aesthetic coatings | Fluorescence stability at pH 6.0 | (Rodrigues et al., 2018) |
| R-Phycoerythrin | Furcellaria lumbricalis | Enzymatic treatment + HPLC | Open marine systems | 0.13%–0.43% | UV shielding, light energy absorption | Fluorescence efficiency, thermal stability | (Saluri et al., 2019) |
| C-Phycocyanin | Spirulina platensis | Ultrasonication | Photobioreactor/Open pond | 0.75% | Antioxidant, UV-protection additive | Strong absorption at 615 nm | (Rodrigues et al., 2018) (Saluri et al., 2019) |
| Extracellular Polymeric Substances (EPS) | Sargassum species | Enzyme-assisted extraction | Open pond | ~10%-15% | Corrosion resistance, adhesion enhancer | Mechanical stability in marine environments | (Flórez-Fernández et al., 2019) |
| Fucoidan | Sargassum muticum | Ultrasound-assisted extraction | Open pond | ~15% (short extraction times) | Antimicrobial, antifouling layer in coatings | Antifouling efficacy under saline exposure | (Flórez-Fernández et al., 2019) |
| Alginate | Sargassum muticum | Acid pre-treatment, alkali extraction, ethanol precipitation | Wild harvest (seaweed) | 13.57% | Film formation, thickening | High viscosity, gel strength | (Mazumder et al., 2016) |
| Alginate | Macrocystis pyrifera | Ethanol, HCl, CaCl2 routes | Wild harvest (seaweed) | 25%-34% (depending on route) | Structural integrity, binder | Molecular weight, M/G ratio | (Gomez et al., 2009) |
| C-Phycocyanin, APC | Spirulina platensis | Aqueous Two-Phase Extraction (ATPE) | Photobioreactor (microalgae) | C-PC: 78.58%, APC: 51.73% | UV-blocking, pigmentation | Purity: C-PC (4.02), APC (1.5) | ((Patil et al., 2008)) |
| Kappa-carrageenan | Kappaphycus alvarezii | Ultrasound-Assisted (UAE) | Land-based Hatchery | 76.7% | Film-forming, stabilizer, binder | Viscosity: 658.7 cP | (Mendes et al., 2024) |
| Kappa-carrageenan | Kappaphycus alvarezii | Conventional Alkali | Open Sea Farming | ~44.5% | Gel-forming, mechanical support | Gel Strength: 926–4946 dyne/cm² | (Mendes et al., 2024) |
| Beta-carrageenan | Eucheuma gelatinae | Maceration-Stirred | Sea-based Farming | 42.68% | Antioxidant, UV protection, binder | Antioxidant Activity: 71.95 mg/g | (Ha et al., 2022) |
| Sulfated Polysaccharides | Kappaphycus alvarezii | Supercritical Fluid (SFE) | Controlled Hatchery | ~70% | UV protection, anti-corrosion | High sulfate content, low pH | (Mendes et al., 2024) |
| Carrageenan Blend | Eucheuma spp. | Enzymatic-assisted | Seaweed Aquaculture | Not Reported | Adhesion enhancer, film thickness control | Gel Strength: 487.5 g/cm² | (Ha et al., 2022) |
| Fucoxanthin | Phaeodactylum tricornutum | Ultrasound-Assisted Extraction (UAE) | Tubular Photobioreactor | 1.0–2.5% | UV protection, antioxidant properties, structural stability | Superior UV resistance; enhanced antioxidant activity | (Pocha et al., 2022) |
| Fucoxanthin | Padina tetrastromatica | UAE | Open Pond | 0.075% | UV resistance and oxidative stability | Improved light absorption; anti-oxidative effects | (Lourenço-Lopes et al., 2020) |
| Extracellular Polymeric Substances (EPS) | Phaeodactylum tricornutum | Ethanol-based extraction | Flat-Panel Photobioreactor | Not specified | Improved adhesion strength; corrosion resistance | Increased substrate binding; reduced metal oxidation | (Kim et al., 2012) |
| Biopolymers (e.g., alginate) | Laminaria japonica | Microwave-Assisted Extraction (MAE) | Photobioreactor or Open Pond | 2.67% | Hydrophobicity and barrier properties | Enhanced water resistance; reduced permeability | (Lourenço-Lopes et al., 2020) |
| Lipids | Phaeodactylum tricornutum | Solvent-Based Extraction (Ethanol) | Tubular Photobioreactor | 18% | Hydrophobic coating layers to enhance anti-corrosion | Improved water resistance; reduced moisture absorption | (Pocha et al., 2022) |
| Pigments (e.g., carotenoids) | Chaetoceros calcitrans | Soxhlet Extraction | Raceway Pond | Not specified | UV protection and color stability | Reduced pigment degradation under UV exposure | (Pocha et al., 2022) |
| Bioplastics | Isochrysis galbana | Solvent-Based Extraction (Methanol) | Closed Photobioreactor | Not specified | Flexibility, durability, eco-friendly alternative to resins | Increased mechanical flexibility; lower environmental footprint | (Lourenço-Lopes et al., 2020) |
| Polysaccharides | Sargassum duplicatum | Enzyme-Assisted Extraction (EAE) | Open Pond | 0.657% | Enhanced mechanical strength and biocompatibility | Increased tensile strength; compatibility with sustainable materials | (Lourenço-Lopes et al., 2020) |
| Ulvans (Sulfated Polysaccharides) | Ulva lactuca | Aqueous ethanol (70:30 v/v) | Phototrophic (raceway ponds) | 15–65 | Enhances film elasticity and adhesion | Improved mechanical stability, water resistance | (Pappou et al., 2022) |
| Astaxanthin | Haematococcus pluvialis | Supercritical CO₂ with ethanol | Closed photobioreactors (PBRs) | ~5 | Provides UV resistance and antioxidant properties | Increased UV stability; reduced oxidative degradation | (Reyes et al., 2014) |
| Carotenoids (e.g., Lutein) | Haematococcus pluvialis | Pressurized liquid extraction | Two-phase: PBRs + stress phase | 2–3 | Adds color and photoprotective properties | UV absorption; enhanced durability | (Li et al., 2020) |
| Polyphenols | Ulva lactuca | Ethanol-water mixture (70:30) | Raceway ponds | 10–15 | Antioxidant and antimicrobial functions | Reduction in fouling and microbial growth | (Pappou et al., 2022) |
| Extracellular Polymeric Substances (EPS) | Various microalgae | Wet biomass extraction (DME) | Heterotrophic systems | Not specified | Improves film-forming ability | Increased cohesion and surface coverage | (Li et al., 2020) |
| Polysaccharides (General) | Ulva spp. | Thermal aqueous extraction | Open raceway ponds | 49.9 | Enhances viscosity and structural integrity | Improved coating thickness and adhesion | (Pappou et al., 2022) |
| Ulvan (Sulfated Polysaccharides) | Ulva lactuca | Hot water extraction, alcohol precipitation | Open systems (coastal waters) | 15% | Film-forming, UV resistance, antifouling | Enhanced mechanical stability, moderate adhesion strength | (Thanh et al., 2016) |
| Polysaccharides | Ulva fasciata | Hot-water reflux, ethanol precipitation | Coastal harvesting | 43.66% | Structural reinforcement, corrosion resistance | High antioxidant activity (DPPH scavenging ~85%) | (Barakat et al., 2022) |
| Carotenoids | Ulva lactuca | Ethanol/water extraction (70:30 v/v) | Cultivated in non-arable lands | 10–15% | UV protection, antioxidant properties | Improved durability, enhanced UV-blocking capacity | (Pappou et al., 2022) |
| Phenolics | Ulva lactuca | Ethanol/water extraction (70:30 v/v), solvent screening | Cultivated in non-arable lands | Not specified | Antimicrobial properties, oxidative stability | High antioxidant potential, moderate antibacterial activity | (Pappou et al., 2022) |
| Lipids | Ulva lactuca | Chloroform/methanol extraction | Open systems (coastal waters) | 3.5% | Hydrophobic coatings, moisture resistance | Moderate improvement in hydrophobicity | (Pappou et al., 2022) |
| Ash/Minerals | Ulva lactuca | Direct incineration for mineral ash calculation | Open systems (coastal waters) | 27.7% | Structural enhancement, catalytic surface functionality | Improved corrosion resistance, mechanical support | (Pappou et al., 2022) |
| Mycosporine-like Amino Acids (MAAs) | Porphyra columbina | Water or mild ethanol solutions | IMTA system with fishpond effluents | ~10.4 | UV protection, antioxidant | UV absorbance at 330 nm; photostability | (Bedoux et al., 2020) |
| Pigments (e.g., chlorophyll, carotenoids) | Palmaria palmata | Sequential water and methanol | Bioreactor or open pond | ~6.93 (seasonal) | Enhanced color stability, UV protection | UV absorption (310-365 nm); antioxidant activity | (Figueroa, 2021) |
| Biopolymers (e.g., alginate, EPS) | Gracilaria tenuistipitata | Mild ethanol extraction | Mesocosm or open tank | 1.5–4.3 | Mechanical stability, adhesion improvement | Increased adhesion strength; tensile stability | (Bedoux et al., 2020) |
| Shinorine (a specific MAA) | Chondrus crispus | HPLC with distilled water | Indoor controlled light systems | ~3.0 (gametophytes) | UV resistance, surface protection | UV absorbance at 330 nm; durability under UV-B exposure | (Bedoux et al., 2020) |
| Porphyran (sulfated polysaccharide) | Porphyra umbilicalis | Hydroethanolic extraction | Outdoor cultivation under solar exposure | ~11 | Water resistance, biopolymer matrix stabilization | Reduced water permeability; increased coating durability | (Figueroa, 2021) |
| Asterina-330 (a specific MAA) | Gracilaria cornea | Aqueous methanol extraction | Semi-controlled IMTA system | ~12.8 | Photoprotective enhancement, durability | UV absorbance peak at 330 nm; oxidative stability under UV stress | (Bedoux et al., 2020) |
| Fucoxanthin (carotenoid) | Grateloupia lanceola | Sequential extraction (ethanol, acetone) | Indoor tank cultivation under variable light | 3.5–4.4 | UV-blocking properties, color enhancement | High antioxidant activity; photostability | (Bedoux et al., 2020) |
| Fucoidan | Fucus vesiculosus | Hot water extraction | Natural cultivation in marine habitats | 2.5%–7% | Enhances UV resistance, provides antifouling properties | UV stability, antifouling effectiveness | (Ferreira et al., 2019) |
| Phlorotannins | Fucus vesiculosus | Hot water extraction, mild acid extraction | Natural coastal collection | Up to 12% | Antioxidant, improves coating stability and durability | Longevity, antioxidant activity | (Cabral et al., 2021) |
| Laminarins | Ecklonia maxima, Laminaria pallida | Acid extraction | Coastal and aquaculture systems | 8%–10% | Strengthens structural integrity of coatings | Mechanical stability, anti-corrosion | (January et al., 2019) |
| Sulfated Polysaccharides | Splachnidium rugosum | Salt extraction | Offshore cultivation | ~5% | Improves adhesion and water resistance | Adhesion strength, water barrier properties | (January et al., 2019) |
| Fucoxanthin | Fucus vesiculosus | Supercritical fluid extraction | Coastal algae farms | ~0.5% | Provides UV protection and pigmentation | UV absorbance, color stability | (Ferreira et al., 2019) |
| Biopolymers | Laminaria pallida | Microwave-assisted extraction | Marine cultivation systems | ~15% | Enhances biofilm formation and reduces surface fouling | Biofilm stability, antifouling performance | (Cabral et al., 2021) |
| Porphyran | Porphyra umbilicalis | Sequential alkaline-acidic extraction | Indoor tank, controlled conditions |
~20% |
Improves film formation, antioxidant properties | UV resistance, antioxidant activity | (Wahlström et al., 2018) |
| Carrageenan | Porphyra umbilicalis | Alkaline extraction (90°C, 4h, pH 9.5) | Indoor tank, controlled conditions | ~20% | Cross-linking agent, gel formation | Mechanical stability, structural reinforcement | (Wahlström et al., 2018) |
| Pectin | Porphyra umbilicalis | Acidic extraction (90°C, 4h, pH 2) | Indoor tank, controlled conditions | ~15% | Binding properties, thermal stability | Heat resistance, adhesive strength | (Wahlström et al., 2018) |
| Cellulose | Porphyra umbilicalis | Alkaline and HCl treatment | Indoor tank, controlled conditions | ~10% | Reinforcement additive in polymer matrices | Enhanced tensile strength | (Wahlström et al., 2018) |
| Sulfated Polysaccharides | Porphyra haitanensis | Hot water and alcohol precipitation | Not mentioned | ~40% | Antioxidant, anti-fouling properties | Oxidative stability, surface properties | (Qiu et al., 2021) |
| EPS (Extracellular Polymeric Substances) | Porphyra species | Enzymatic extraction | Not mentioned | Not specified | Biofilm formation, enhances adhesion | Adhesion strength, mechanical durability | (Qiu et al., 2021) |
| Proteins | Porphyra umbilicalis | Cold alkaline extraction | Indoor tank, controlled conditions | ~15% | Supplementary mechanical strength | Increased elasticity and durability | (Wahlström et al., 2018) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
