Submitted:
06 November 2025
Posted:
10 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Understanding Genomes
3. First and Second-Generation Sequencing: From Model Species to Reference Genomes
4. Third Generation Sequencing: High-Quality Reference Genomes to Pangenomes
5. Transcriptomics: A Tool for Identifying Function and Gene-Linked Variation
6. Phenomics
7. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gschwantner, T.; Schadauer, K.; Vidal, C.; Lanz, A.; Tomppo, E.; Di Cosmo, L.; Robert, N.; Duursma, D.E.; Gschwantner, M.L.; Schadauer, T.; et al. Common Tree Definitions for National Forest Inventories in Europe. Silva Fennica 2009, 43. [Google Scholar] [CrossRef]
- Spiegel-Roy, P. Domestication of Fruit Trees. In Developments in Agricultural and Managed Forest Ecology; BARIGOZZI, C., Ed.; Elsevier, 1986; Vol. 16, pp. 201–211 ISBN 0166-2287.
- McMullin, S.; Njogu, K.; Wekesa, B.; Gachuiri, A.; Ngethe, E.; Stadlmayr, B.; Jamnadass, R.; Kehlenbeck, K. Developing Fruit Tree Portfolios That Link Agriculture More Effectively with Nutrition and Health: A New Approach for Providing Year-Round Micronutrients to Smallholder Farmers. Food Secur 2019, 11, 1355–1372. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO THE STATE OF FOOD SECURITY AND NUTRITION IN THE WORLD; Rome, 2024.
- Liu, S.; Manson, J.E.; Lee, I.-M.; Cole, S.R.; Hennekens, C.H.; Willett, W.C.; Buring, J.E. Fruit and Vegetable Intake and Risk of Cardiovascular Disease: The Women’s Health Study. Am J Clin Nutr 2000, 72, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Cano-Marquina, A.; Tarín, J.J.; Cano, A. The Impact of Coffee on Health. Maturitas 2013, 75, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M.; Hu, F.B.; Liu, L. Nut Consumption and Risk of Type 2 Diabetes, Cardiovascular Disease, and All-Cause Mortality: A Systematic Review and Meta-Analysis. Am J Clin Nutr 2014, 100, 256–269. [Google Scholar] [CrossRef]
- Buil-Cosiales, P.; Martinez-Gonzalez, M.A.; Ruiz-Canela, M.; Díez-Espino, J.; García-Arellano, A.; Toledo, E. Consumption of Fruit or Fiber-Fruit Decreases the Risk of Cardiovascular Disease in a Mediterranean Young Cohort. Nutrients 2017, 9, 295. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Demurtas, J.; Celotto, S.; Caruso, M.G.; Maggi, S.; Bolzetta, F.; Firth, J.; Smith, L.; Schofield, P.; Koyanagi, A.; et al. Is Chocolate Consumption Associated with Health Outcomes? An Umbrella Review of Systematic Reviews and Meta-Analyses. Clinical Nutrition 2019, 38, 1101–1108. [Google Scholar] [CrossRef]
- Evenson, R.E.; Gollin, D. Assessing the Impact of the Green Revolution, 1960 to 2000. Science (1979) 2003, 300, 758–762. [Google Scholar] [CrossRef]
- Gómez, M.I.; Barrett, C.B.; Raney, T.; Pinstrup-Andersen, P.; Meerman, J.; Croppenstedt, A.; Carisma, B.; Thompson, B. Post-Green Revolution Food Systems and the Triple Burden of Malnutrition. Food Policy 2013, 42, 129–138. [Google Scholar] [CrossRef]
- UN General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development; https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf: United Nations, 2015.
- Chastre, C.; Duffield, A.; Kindness, H.; LeJeune, S.; Taylor, A. The Minimum Cost of a Healthy Diet: Findings from Piloting a New Methodology in Four Study Locations. London: Save the Children UK, 2007. [Google Scholar]
- Temple, N.J.; Steyn, N.P. The Cost of a Healthy Diet: A South African Perspective. Nutrition 2011, 27, 505–508. [Google Scholar] [CrossRef]
- Barosh, L.; Friel, S.; Engelhardt, K.; Chan, L. The Cost of a Healthy and Sustainable Diet – Who Can Afford It? Aust N Z J Public Health 2014, 38, 7–12. [Google Scholar] [CrossRef]
- Herforth, A.; Bai, Y.; Venkat, A.; Mahrt, K.; Ebel, A.; Masters, W.A. Cost and Affordability of Healthy Diets across and within Countries: Background Paper for The State of Food Security and Nutrition in the World 2020. FAO Agricultural Development Economics Technical Study No. 9; Food & Agriculture Org., 2020; Vol. 9; ISBN 925133725X.
- Fuglie, K.O.; Morgan, S.; Jelliffe, J. World Agricultural Production, Resource Use, and Productivity, 1961–2020. 2024.
- Roy, D.; Thorat, A. Success in High Value Horticultural Export Markets for the Small Farmers: The Case of Mahagrapes in India. World Dev 2008, 36, 1874–1890. [Google Scholar] [CrossRef]
- Nomura, H.; Fikadu, A.A.; Gebre, G.G.; Shah, P. Analysis of the Smallholder Horticulture Empowerment and Promotion (“SHEP”): Intervention on Income and Food Security in Ethiopia; JICA Ogata Sadako Research Institute for Peace and Development, 2024.
- Kennedy, G.; Lee, W.T.K.; Termote, C.; Charrondiere, R.; Yen, J.; Tung, A. Guidelines on Assessing Biodiverse Foods in Dietary Intake Surveys. 2017.
- Dawson, I.D.; Hendre, P.; Powell, W.; Sila, D.; McMullin, S.; Simons, T.; Revoredo-Giha, C.; Odeny, D.A.; Barnes, A.P.; Graudal, L. Supporting Human Nutrition in Africa through the Integration of New and Orphan Crops into Food Systems: Placing the Work of the African Orphan Crops Consortium in Context. 2018.
- Miller, A.J.; Gross, B.L. From Forest to Field: Perennial Fruit Crop Domestication. Am J Bot 2011, 98, 1389–1414. [Google Scholar] [CrossRef]
- Fuller, D.Q. Long and Attenuated: Comparative Trends in the Domestication of Tree Fruits. Veg Hist Archaeobot 2018, 27, 165–176. [Google Scholar] [CrossRef]
- Monselise, S.P.; Goldschmidt, E.E. Alternate Bearing in Fruit Trees. Hortic Rev (Am Soc Hortic Sci) 1982, 4, 128–173. [Google Scholar]
- Conner, P.J.; Worley, R.E. Alternate Bearing Intensity of Pecan Cultivars. HortScience 2000, 6, 1067–1069. [Google Scholar] [CrossRef]
- Yue, C.; Gallardo, R.K.; Luby, J.; Rihn, A.; McFerson, J.R.; McCracken, V.; Bedford, D.; Brown, S.; Evans, K.; Weebadde, C.; et al. An Investigation of U.S. Apple Producers’ Trait Prioritization—Evidence from Audience Surveys. HortScience horts 2013, 48, 1378–1384. [Google Scholar] [CrossRef]
- Yue, C.; Gallardo, R.K.; Luby, J.J.; Rihn, A.L.; McFerson, J.R.; McCracken, V.; Oraguzie, N.; Weebadde, C.; Sebolt, A.; Iezzoni, A. An Evaluation of US Tart and Sweet Cherry Producers Trait Prioritization: Evidence from Audience Surveys. HortScience 2014, 49, 931–937. [Google Scholar] [CrossRef]
- Naji, Z.; Sattam, R.; Alsalihi, M. The Effect of Pesticides on Public Health: A Review. South Asian Research Journal of Biology and Applied Biosciences 2024, 6, 43–55. [Google Scholar] [CrossRef]
- EU Joint Research Center New Genomic Techniques Can Help Cut Pesticides Use or Shield from Celiac Disease. The Joint Research Centre: EU Science Hub, 2023.
- UN FAO/WHO Report of the 17th FAO/WHO Joint Meeting on Pesticide Management; Rome, 2024.
- Song, X.; Xi, S.; Zhang, J.; Ma, Q.; Zhou, Y.; Pei, D.; Xu, H.; Zhang, J. ‘Zhong Ning Sheng’: A New Distant Hybrid Cultivar of Walnut. HortScience 2019, 54, 2257–2259. [Google Scholar] [CrossRef]
- Mahmoud, L.M.; Dutt, M.; Vincent, C.I.; Grosser, J.W. Salinity-Induced Physiological Responses of Three Putative Salt Tolerant Citrus Rootstocks. Horticulturae 2020, 6, 90. [Google Scholar] [CrossRef]
- Autio, W.; Robinson, T.; Blatt, S.; Cochran, D.; Francescato, P.; Hoover, E.; Kushad, M.; Lang, G.; Lordan, J.; Miller, D. Budagovsky, Geneva, Pillnitz, and Malling Apple Rootstocks Affect ‘Honeycrisp’ Performance over Eight Years in the 2010 NC-140 ‘Honeycrisp’ Apple Rootstock Trial. J. Amer. Pomol. Soc 2020, 74, 182–195. [Google Scholar]
- Pang, H.; Yan, Q.; Zhao, S.; He, F.; Xu, J.; Qi, B.; Zhang, Y. Knockout of the S-Acyltransferase Gene, PbPAT14, Confers the Dwarf Yellowing Phenotype in First Generation Pear by ABA Accumulation. Int J Mol Sci 2019, 20, 6347. [Google Scholar] [CrossRef]
- Gonsalves, D. Transgenic Papaya: Development, Release, Impact and Challenges. Adv Virus Res 2006, 67, 317–354. [Google Scholar]
- Grosser, J.W.; Gmitter, F.G.; Louzada, E.S.; Chandler, J.L. Production of Somatic Hybrid and Autotetraploid Breeding Parents for Seedless Citrus Development. HortScience 1992, 27, 1125–1127. [Google Scholar] [CrossRef]
- Yadollahi, A.; Arzani, K.; Ebadi, A.; Wirthensohn, M.; Karimi, S. The Response of Different Almond Genotypes to Moderate and Severe Water Stress in Order to Screen for Drought Tolerance. Sci Hortic 2011, 129, 403–413. [Google Scholar] [CrossRef]
- Qin, S.; Xu, G.; He, J.; Li, L.; Ma, H.; Lyu, D. A Chromosome-Scale Genome Assembly of Malus Domestica, a Multi-Stress Resistant Apple Variety. Genomics 2023, 115, 110627. [Google Scholar] [CrossRef]
- Serra, S.; Sheick, R.; Roeder, S.; Musacchi, S. WA 38 Abscission and Fruit Development in an Open Pollination Scenario. In Proceedings of the XII International Symposium on Integrating Canopy, Rootstock and Environmental Physiology in Orchard Systems 1346; 2021; pp. 129–138. [Google Scholar]
- Sandefur, P.; Oraguzie, N.; Peace, C. A DNA Test for Routine Prediction in Breeding of Sweet Cherry Fruit Color, Pav-Rf-SSR. Molecular Breeding 2016, 36, 33. [Google Scholar] [CrossRef]
- Machida, Y.; Kajiura, I.; Sato, Y.; Kotobuki, K.; Kozono, T. Genetic Information on Flesh Firmness and the Characteristics of Selected Clones of Japanese Pear. Results of the Fifth Japanese Pear Breeding Programme. Bulletin of the Fruit Tree Research Station 1984, 11, 35–42. [Google Scholar]
- Souleyre, E.J.F.; Chagné, D.; Chen, X.; Tomes, S.; Turner, R.M.; Wang, M.Y.; Maddumage, R.; Hunt, M.B.; Winz, R.A.; Wiedow, C.; et al. The AAT1 Locus Is Critical for the Biosynthesis of Esters Contributing to “ripe Apple” Flavour in “Royal Gala” and “Granny Smith” Apples. Plant Journal 2014, 78, 903–915. [Google Scholar] [CrossRef]
- Yang, S.; Yu, J.; Yang, H.; Zhao, Z. Genetic Analysis and QTL Mapping of Aroma Volatile Compounds in the Apple Progeny ‘Fuji’ × ‘Cripps Pink. ’ Front Plant Sci 2023, 14. [Google Scholar] [CrossRef]
- Guellaoui, I.; Ben Amar, F.; Triki, M.A.; Ayadi, M.; Boubaker, M. Chemlali Mhassen: New Olive Cultivar Derived from Crossbreeding Program in Tunisia with High Oil Quality and Productivity. J. Sci. Agric 2021, 5, 32–35. [Google Scholar] [CrossRef]
- Carter, N. Petition for Determination of Nonregulated Status: ArcticTM Apple (Malus x Domestica) Events GD743 and GS784. United States Department of Agriculture—Animal and Plant Health Inspection Service, 2012. [Google Scholar]
- Revord, R.S.; Miller, G.; Meier, N.A.; Webber, J.B.; Romero-Severson, J.; Gold, M.A.; Lovell, S.T. A Roadmap for Participatory Chestnut Breeding for Nut Production in the Eastern United States. Front Plant Sci 2022, 12. [Google Scholar] [CrossRef]
- Mase, N.; Sawamura, Y.; Yamamoto, T.; Takada, N.; Nishio, S.; Saito, T.; Iketani, H. A Segmental Duplication Encompassing S-Haplotype Triggers Pollen-Part Self-Compatibility in Japanese Pear (Pyrus Pyrifolia). Molecular Breeding 2014, 33, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Nishio, S.; Shirasawa, K.; Nishimura, R.; Takeuchi, Y.; Imai, A.; Mase, N.; Takada, N. A Self-Compatible Pear Mutant Derived from γ-Irradiated Pollen Carries an 11-Mb Duplication in Chromosome 17. Front Plant Sci 2024, 15, 1360185. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.; Hunt, K.L. Pecan Production in the Northern United States. Horttechnology 2000, 2, 298–301. [Google Scholar] [CrossRef]
- da Silva Linge, C.; Ciacciulli, A.; Baccichet, I.; Chiozzotto, R.; Calastri, E.; Tagliabue, A.G.; Rossini, L.; Bassi, D.; Cirilli, M. A Novel Trait to Reduce the Mechanical Damage of Peach Fruits at Harvest: The First Genetic Dissection Study for Peduncle Length. Molecular Breeding 2025, 45, 29. [Google Scholar] [CrossRef]
- Barritt, B.H. The Necessity of Adopting New Apple Varieties to Meet Consumer Needs. Compact fruit tree 1999, 32, 38–43. [Google Scholar]
- Thompson, T.E.; Grauke, L.J.; Reid, W. “Lakota” Pecan. HortScience 2008, 43, 250–251. [Google Scholar] [CrossRef]
- Evans, K.M.; Barritt, B.H.; Konishi, B.S.; Brutcher, L.J.; Ross, C.F. ‘WA 38’ Apple. HortScience 2012, 47, 1177–1179. [Google Scholar] [CrossRef]
- Zhang, H.; Ko, I.; Eaker, A.; Haney, S.; Khuu, N.; Ryan, K.; Appleby, A.B.; Hoffmann, B.; Landis, H.; Pierro, K.A.; et al. A Haplotype-Resolved, Chromosome-Scale Genome for Malus Domestica Borkh. ‘WA 38.’ G3 Genes|Genomes|Genetics 2024, 14, jkae222. [Google Scholar] [CrossRef] [PubMed]
- Ru, S.; Main, D.; Evans, K.; Peace, C. Current Applications, Challenges, and Perspectives of Marker-Assisted Seedling Selection in Rosaceae Tree Fruit Breeding. Tree Genet Genomes 2015, 11, 1–12. [Google Scholar] [CrossRef]
- De Mori, G.; Cipriani, G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int J Mol Sci 2023, 24, 8984. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C.Y.; Mackill, D.J. Marker-Assisted Selection: An Approach for Precision Plant Breeding in the Twenty-First Century. Philosophical Transactions of the Royal Society B: Biological Sciences 2007, 363, 557–572. [Google Scholar] [CrossRef]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J. Genomic Selection for Crop Improvement. Crop Sci 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Wang, Y.; Mette, M.F.; Miedaner, T.; Gottwald, M.; Wilde, P.; Reif, J.C.; Zhao, Y. The Accuracy of Prediction of Genomic Selection in Elite Hybrid Rye Populations Surpasses the Accuracy of Marker-Assisted Selection and Is Equally Augmented by Multiple Field Evaluation Locations and Test Years. BMC Genomics 2014, 15, 1–12. [Google Scholar] [CrossRef]
- Cerrudo, D.; Cao, S.; Yuan, Y.; Martinez, C.; Suarez, E.A.; Babu, R.; Zhang, X.; Trachsel, S. Genomic Selection Outperforms Marker Assisted Selection for Grain Yield and Physiological Traits in a Maize Doubled Haploid Population across Water Treatments. Front Plant Sci 2018, 9, 366. [Google Scholar] [CrossRef]
- Degen, B.; Müller, N.A. A Simulation Study Comparing Advanced Marker-Assisted Selection with Genomic Selection in Tree Breeding Programs. G3 Genes|Genomes|Genetics 2023, 13, jkad164. [Google Scholar] [CrossRef]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef]
- Mathieson, I. The Omnigenic Model and Polygenic Prediction of Complex Traits. The American Journal of Human Genetics 2021, 108, 1558–1563. [Google Scholar] [CrossRef]
- Merrick, L.F.; Burke, A.B.; Chen, X.; Carter, A.H. Breeding With Major and Minor Genes: Genomic Selection for Quantitative Disease Resistance. Front Plant Sci 2021, 12. [Google Scholar] [CrossRef]
- Pilet-Nayel, M.L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.C.; Fournet, S.; Durel, C.E.; Delourme, R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Front Plant Sci 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Clair, D. Quantitative Disease Resistance and Quantitative Resistance Loci in Breeding. Annu Rev Phytopathol 2009, 48, 247–268. [Google Scholar] [CrossRef]
- Reid, M.; Buisson, D. Factors Influencing Adoption of New Apple and Pear Varieties in Europe and the UK. International Journal of Retail & Distribution Management 2001, 29, 315–327. [Google Scholar] [CrossRef]
- Ullah, A.; Khan, D.; Zheng, S.; Ali, U. Factors Influencing the Adoption of Improved Cultivars: A Case of Peach Farmers in Pakistan. Ciência Rural 2018, 48. [Google Scholar] [CrossRef]
- Gallardo, R.K.; Galinato, S.P. 2019 Cost Estimates of Establishing, Producing, and Packing Honeycrisp Apples in Washington; Washington State University Extension: Pullman, Washington, 2020. [Google Scholar]
- Geffroy, O.; Cheriet, F.; Chervin, C.; Hannin, H.; Olivier-Salvagnac, V.; Samson, A.; Vanden Heuvel, J. Opportunities and Challenges in the Adoption of New Grape Varieties by Producers: A Case Study from the Northeastern United. In Proceedings of the OIV 2024; International Viticulture and Enology Society, November 18 2024. [Google Scholar]
- Northwest Horticultural Council Pacific Northwest Pears Pear Fact Sheet Available online:. Available online: https://nwhort.org/industry-facts/pear-fact-sheet/ (accessed on 22 September 2025).
- Alan Bjerga Gala Outpaces Red Delicious to Become Most Popular Apple. The Seattle Times 2018.
- Zakari, S.; Manda, J.; Germaine, I.; Moussa, B.; Abdoulaye, T. Evaluating the Impact of Improved Crop Varieties in the Sahelian Farming Systems of Niger. J Agric Food Res 2023, 14, 100897. [Google Scholar] [CrossRef]
- Ho, S.-T.; Gonzalez Nieto, L.; Rickard, B.J.; Reig, G.; Lordan, J.; Lawrence, B.T.; Fazio, G.; Hoying, S.A.; Fargione, M.J.; Sazo, M.M.; et al. Effects of Cultivar, Planting Density and Rootstock on Long-Term Economic Performance of Apple Orchards in the Northeastern U.S. Sci Hortic 2024, 332, 113194. [Google Scholar] [CrossRef]
- Baldos, U.L.C.; Cisneros-Pineda, A.; Fuglie, K.O.; Hertel, T.W. Adoption of Improved Crop Varieties Limited Biodiversity Losses, Terrestrial Carbon Emissions, and Cropland Expansion in the Tropics. Proceedings of the National Academy of Sciences 2025, 122, e2404839122. [Google Scholar] [CrossRef]
- Coupel-Ledru, A.; Pallas, B.; Delalande, M.; Boudon, F.; Carrié, E.; Martinez, S.; Regnard, J.-L.; Costes, E. Multi-Scale High-Throughput Phenotyping of Apple Architectural and Functional Traits in Orchard Reveals Genotypic Variability under Contrasted Watering Regimes. Hortic Res 2019, 6, 52. [Google Scholar] [CrossRef]
- Mir, R.R.; Reynolds, M.; Pinto, F.; Khan, M.A.; Bhat, M.A. High-Throughput Phenotyping for Crop Improvement in the Genomics Era. Plant Science 2019, 282, 60–72. [Google Scholar] [CrossRef]
- Sun, C.; Hu, H.; Cheng, Y.; Yang, X.; Qiao, Q.; Wang, C.; Zhang, L.; Chen, D.; Zhao, S.; Dong, Z.; et al. Genomics-Assisted Breeding: The next-Generation Wheat Breeding Era. Plant Breeding 2023, 142, 259–268. [Google Scholar] [CrossRef]
- Bado, S.; Yamba, N.G.G.; Sesay, J. V.; Laimer, M.; Forster, B.P. Plant Mutation Breeding for the Improvement of Vegetatively Propagated Crops: Successes and Challenges. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2017, 12, 1–21. [Google Scholar] [CrossRef]
- Taheri, S.; Abdullah, T.; Jain, S.; Sahebi, M.; Azizi, P. TILLING, High-Resolution Melting (HRM), and next-Generation Sequencing (NGS) Techniques in Plant Mutation Breeding. Molecular Breeding 2017, 37. [Google Scholar] [CrossRef]
- Kosugi, S.; Terao, C. Comparative Evaluation of SNVs, Indels, and Structural Variations Detected with Short- and Long-Read Sequencing Data. Hum Genome Var 2024, 11, 18. [Google Scholar] [CrossRef]
- Guan, J.; Xu, Y.; Yu, Y.; Fu, J.; Ren, F.; Guo, J.; Zhao, J.; Jiang, Q.; Wei, J.; Xie, H. Genome Structure Variation Analyses of Peach Reveal Population Dynamics and a 1.67 Mb Causal Inversion for Fruit Shape. Genome Biol 2021, 22. [Google Scholar] [CrossRef]
- Ruigrok, M.; Xue, B.; Catanach, A.; Zhang, M.; Jesson, L.; Davy, M.; Wellenreuther, M. The Relative Power of Structural Genomic Variation versus SNPs in Explaining the Quantitative Trait Growth in the Marine Teleost Chrysophrys Auratus. Genes (Basel) 2022, 13. [Google Scholar] [CrossRef]
- Jia, H.; Wang, N. Targeted Genome Editing of Sweet Orange Using Cas9/SgRNA. PLoS One 2014, 9, e93806. [Google Scholar] [CrossRef]
- Tsanova, T.; Stefanova, L.; Topalova, L.; Atanasov, A.; Pantchev, I. DNA-Free Gene Editing in Plants: A Brief Overview. Biotechnology & Biotechnological Equipment 2021, 35, 131–138. [Google Scholar]
- Martín-Valmaseda, M.; Devin, S.R.; Ortuño-Hernández, G.; Pérez-Caselles, C.; Mahdavi, S.M.E.; Bujdoso, G.; Salazar, J.A.; Martínez-Gómez, P.; Alburquerque, N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int J Mol Sci 2023, 24, 16656. [Google Scholar] [CrossRef] [PubMed]
- Weiss, T.; Kamalu, M.; Shi, H.; Li, Z.; Amerasekera, J.; Zhong, Z.; Adler, B.A.; Song, M.M.; Vohra, K.; Wirnowski, G. Viral Delivery of an RNA-Guided Genome Editor for Transgene-Free Germline Editing in Arabidopsis. Nat Plants 2025, 1–10. [Google Scholar] [CrossRef]
- Vora, Z.; Pandya, J.; Sangh, C.; Vaikuntapu, P.R. The Evolving Landscape of Global Regulations on Genome-Edited Crops. J Plant Biochem Biotechnol 2023, 32, 831–845. [Google Scholar] [CrossRef]
- Duarte Sagawa, C.H.; Assis, R. de A.B.; Zaini, P.A. Chapter 8 - Regulatory Framework of CRISPR-Edited Crops in the United States. In Global Regulatory Outlook for CRISPRized Plants; Abd-Elsalam, K.A., Ahmad, A., Eds.; Academic Press, 2024; pp. 167–195 ISBN 978-0-443-18444-4.
- Erik Stokstad European Parliament Votes to Ease Regulation of Gene-Edited Crops. Science (1979) 2024.
- Penna, S.; Jain, S.M. Fruit Crop Improvement with Genome Editing, in Vitro and Transgenic Approaches. Horticulturae 2023, 9, 58. [Google Scholar] [CrossRef]
- Yuan, Z.; Li, B.; Zhao, Y. Advances in Developmental Biology in Tree Fruit and Nut Crops. Horticulturae 2025, 11, 327. [Google Scholar] [CrossRef]
- Bradnam, K.R.; Fass, J.N.; Alexandrov, A.; Baranay, P.; Bechner, M.; Birol, I.; Boisvert, S.; Chapman, J.A.; Chapuis, G.; Chikhi, R. Assemblathon 2: Evaluating de Novo Methods of Genome Assembly in Three Vertebrate Species. Gigascience 2013, 2, 2047–217X. [Google Scholar] [CrossRef]
- Thrash, A.; Hoffmann, F.; Perkins, A. Toward a More Holistic Method of Genome Assembly Assessment. BMC Bioinformatics 2020, 21, 249. [Google Scholar] [CrossRef]
- Wang, P.; Wang, F. A Proposed Metric Set for Evaluation of Genome Assembly Quality. Trends in Genetics 2023, 39, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Ekblom, R.; Wolf, J.B.W. A Field Guide to Whole-Genome Sequencing, Assembly and Annotation. Evol Appl 2014, 7, 1026–1042. [Google Scholar] [CrossRef]
- Wu, B.; Yu, Q.; Deng, Z.; Duan, Y.; Luo, F.; Gmitter Jr, F. A Chromosome-Level Phased Genome Enabling Allele-Level Studies in Sweet Orange: A Case Study on Citrus Huanglongbing Tolerance. Hortic Res 2023, 10, uhac247. [Google Scholar] [CrossRef]
- Leggett, R.M.; MacLean, D. Reference-Free SNP Detection: Dealing with the Data Deluge. BMC Genomics 2014, 15. [Google Scholar] [CrossRef]
- Uricaru, R.; Rizk, G.; Lacroix, V.; Quillery, E.; Plantard, O.; Chikhi, R.; Lemaitre, C.; Peterlongo, P. Reference-Free Detection of Isolated SNPs. Nucleic Acids Res 2015, 43, e11–e11. [Google Scholar] [CrossRef]
- Guo, L.; Gao, Z.; Qian, Q. Application of Resequencing to Rice Genomics, Functional Genomics and Evolutionary Analysis. Rice 2014, 7, 4. [Google Scholar] [CrossRef]
- Kumawat, S.; Raturi, G.; Dhiman, P.; Sudhakarn, S.; Rajora, N.; Thakral, V.; Yadav, H.; Padalkar, G.; Sharma, Y.; Rachappanavar, V. Opportunity and Challenges for Whole-genome Resequencing-based Genotyping in Plants. Genotyping by sequencing for crop improvement 2022, 38–51. [Google Scholar]
- Song, B.; Ning, W.; Wei, D.; Jiang, M.; Zhu, K.; Wang, X.; Edwards, D.; Odeny, D.A.; Cheng, S. Plant Genome Resequencing and Population Genomics: Current Status and Future Prospects. Mol Plant 2023, 16, 1252–1268. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.G.Z.; Dutilh, B.E.; Matthews, T.D.; Elkins, K.; Schmieder, R.; Dinsdale, E.A.; Edwards, R.A. Combining de Novo and Reference-Guided Assembly with Scaffold_builder. Source Code Biol Med 2013, 8, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hach, F.; Numanagic, I.; Sahinalp, S.C. DeeZ: Reference-Based Compression by Local Assembly. Nat Methods 2014, 11, 1082–1084. [Google Scholar] [CrossRef] [PubMed]
- Scheunert, A.; Dorfner, M.; Lingl, T.; Oberprieler, C. Can We Use It? On the Utility of de Novo and Reference-Based Assembly of Nanopore Data for Plant Plastome Sequencing. PLoS One 2020, 15, e0226234. [Google Scholar] [CrossRef]
- Degner, J.F.; Marioni, J.C.; Pai, A.A.; Pickrell, J.K.; Nkadori, E.; Gilad, Y.; Pritchard, J.K. Effect of Read-Mapping Biases on Detecting Allele-Specific Expression from RNA-Sequencing Data. Bioinformatics 2009, 25, 3207–3212. [Google Scholar] [CrossRef]
- Brandt, D.Y.C.; Aguiar, V.R.C.; Bitarello, B.D.; Nunes, K.; Goudet, J.; Meyer, D. Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes in the 1000 Genomes Project Phase I Data. G3 Genes|Genomes|Genetics 2015, 5, 931–941. [Google Scholar] [CrossRef]
- Chen, N.-C.; Solomon, B.; Mun, T.; Iyer, S.; Langmead, B. Reference Flow: Reducing Reference Bias Using Multiple Population Genomes. Genome Biol 2021, 22, 8. [Google Scholar] [CrossRef]
- The Arabidopsis Genome Initiative Analysis of the Genome Sequence of the Flowering Plant Arabidopsis Thaliana. Nature 2000, 408, 796–815. [CrossRef]
- Ming, R.; Hou, S.; Feng, Y.; Yu, Q.; Dionne-Laporte, A.; Saw, J.H.; Senin, P.; Wang, W.; Ly, B. V.; Lewis, K.L.T.; et al. The Draft Genome of the Transgenic Tropical Fruit Tree Papaya (Carica Papaya Linnaeus). Nature 2008, 452, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Wetterstrand, K. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP).
- Velasco, R.; Zharkikh, A.; Affourtit, J.; Dhingra, A.; Cestaro, A.; Kalyanaraman, A.; Fontana, P.; Bhatnagar, S.K.; Troggio, M.; Pruss, D.; et al. The Genome of the Domesticated Apple (Malus × Domestica Borkh.). Nat Genet 2010, 42, 833–839. [Google Scholar] [CrossRef]
- Ahmad, R.; Parfitt, D.E.; Fass, J.; Ogundiwin, E.; Dhingra, A.; Gradziel, T.M.; Lin, D.; Joshi, N.A.; Martinez-Garcia, P.J.; Crisosto, C.H. Whole Genome Sequencing of Peach (Prunus Persica L.) for SNP Identification and Selection. BMC Genomics 2011, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Denoeud, F.; Carretero-Paulet, L.; Dereeper, A.; Droc, G.; Guyot, R.; Pietrella, M.; Zheng, C.; Alberti, A.; Anthony, F.; Aprea, G. The Coffee Genome Provides Insight into the Convergent Evolution of Caffeine Biosynthesis. Science (1979) 2014, 345, 1181–1184. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, L.; Zhang, Z.; Zhang, R.; Wang, Z.; Huang, C.; Huang, R.; Luan, Y.; Fan, T.; Wang, J. The Genomes of Pecan and Chinese Hickory Provide Insights into Carya Evolution and Nut Nutrition. Gigascience 2019, 8, giz036. [Google Scholar] [CrossRef]
- Xing, Y.; Liu, Y.; Zhang, Q.; Nie, X.; Sun, Y.; Zhang, Z.; Li, H.; Fang, K.; Wang, G.; Huang, H. Hybrid de Novo Genome Assembly of Chinese Chestnut (Castanea Mollissima). Gigascience 2019, 8, giz112. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Yadav, I.S.; Jindal, M.; Sharma, P.K.; Dhillon, G.S.; Boora, R.S.; Arora, N.K.; Gill, M.I.S.; Chhuneja, P.; Mittal, A. Development of Genome-Wide Functional Markers Using Draft Genome Assembly of Guava (Psidium Guajava L.) Cv. Allahabad Safeda to Expedite Molecular Breeding. Front Plant Sci 2021, 12, 708332. [Google Scholar] [CrossRef]
- Chagné, D.; Crowhurst, R.N.; Pindo, M.; Thrimawithana, A.; Deng, C.; Ireland, H.; Fiers, M.; Dzierzon, H.; Cestaro, A.; Fontana, P. The Draft Genome Sequence of European Pear (Pyrus Communis L.‘Bartlett’). PLoS One 2014, 9, e92644. [Google Scholar] [CrossRef] [PubMed]
- Argout, X.; Salse, J.; Aury, J.-M.; Guiltinan, M.J.; Droc, G.; Gouzy, J.; Allegre, M.; Chaparro, C.; Legavre, T.; Maximova, S.N. The Genome of Theobroma Cacao. Nat Genet 2011, 43, 101–108. [Google Scholar] [CrossRef]
- Verde, I.; Abbott, A.G.; Scalabrin, S.; Jung, S.; Shu, S.; Marroni, F.; Zhebentyayeva, T.; Dettori, M.T.; Grimwood, J.; Cattonaro, F.; et al. The High-Quality Draft Genome of Peach (Prunus Persica) Identifies Unique Patterns of Genetic Diversity, Domestication and Genome Evolution. Nat Genet 2013, 45, 487–494. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, L.-L.; Ruan, X.; Chen, D.; Zhu, A.; Chen, C.; Bertrand, D.; Jiao, W.-B.; Hao, B.-H.; Lyon, M.P. The Draft Genome of Sweet Orange (Citrus Sinensis). Nat Genet 2013, 45, 59–66. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H. The Genome of the Pear (Pyrus Bretschneideri Rehd.). Genome Res 2013, 23, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Cruz, F.; Julca, I.; Gómez-Garrido, J.; Loska, D.; Marcet-Houben, M.; Cano, E.; Galán, B.; Frias, L.; Ribeca, P.; Derdak, S. Genome Sequence of the Olive Tree, Olea Europaea. Gigascience 2016, 5, s13742–016. [Google Scholar] [CrossRef]
- Nock, C.J.; Baten, A.; Barkla, B.J.; Furtado, A.; Henry, R.J.; King, G.J. Genome and Transcriptome Sequencing Characterises the Gene Space of Macadamia Integrifolia (Proteaceae). BMC Genomics 2016, 17. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, P.J.; Crepeau, M.W.; Puiu, D.; Gonzalez-Ibeas, D.; Whalen, J.; Stevens, K.A.; Paul, R.; Butterfield, T.S.; Britton, M.T.; Reagan, R.L. The Walnut (Juglans Regia) Genome Sequence Reveals Diversity in Genes Coding for the Biosynthesis of Non-structural Polyphenols. The plant journal 2016, 87, 507–532. [Google Scholar] [CrossRef]
- Mori, K.; Shirasawa, K.; Nogata, H.; Hirata, C.; Tashiro, K.; Habu, T.; Kim, S.; Himeno, S.; Kuhara, S.; Ikegami, H. Identification of RAN1 Orthologue Associated with Sex Determination through Whole Genome Sequencing Analysis in Fig (Ficus Carica L.). Sci Rep 2017, 7, 41124. [Google Scholar] [CrossRef]
- Teh, B.T.; Lim, K.; Yong, C.H.; Ng, C.C.Y.; Rao, S.R.; Rajasegaran, V.; Lim, W.K.; Ong, C.K.; Chan, K.; Cheng, V.K.Y. The Draft Genome of Tropical Fruit Durian (Durio Zibethinus). Nat Genet 2017, 49, 1633–1641. [Google Scholar] [CrossRef]
- Zeng, L.; Tu, X.-L.; Dai, H.; Han, F.-M.; Lu, B.-S.; Wang, M.-S.; Nanaei, H.A.; Tajabadipour, A.; Mansouri, M.; Li, X.-L. Whole Genomes and Transcriptomes Reveal Adaptation and Domestication of Pistachio. Genome Biol 2019, 20, 1–13. [Google Scholar] [CrossRef]
- Zhu, Q.; Xu, Y.; Yang, Y.; Guan, C.; Zhang, Q.; Huang, J.; Grierson, D.; Chen, K.; Gong, B.; Yin, X. The Persimmon (Diospyros Oleifera Cheng) Genome Provides New Insights into the Inheritance of Astringency and Ancestral Evolution. Hortic Res 2019, 6. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.K.; Liu, M.; Yssel, A.; Kariba, R.; Muthemba, S.; Jiang, S.; Song, B.; Hendre, P.S.; Muchugi, A.; Jamnadass, R. Draft Genomes of Two Artocarpus Plants, Jackfruit (A. Heterophyllus) and Breadfruit (A. Altilis). Genes (Basel) 2019, 11, 27. [Google Scholar] [CrossRef]
- Jiang, S.; An, H.; Xu, F.; Zhang, X. Chromosome-Level Genome Assembly and Annotation of the Loquat (Eriobotrya Japonica) Genome. Gigascience 2020, 9, giaa015. [Google Scholar] [CrossRef]
- Soyturk, A.; Sen, F.; Uncu, A.T.; Celik, I.; Uncu, A.O. De Novo Assembly and Characterization of the First Draft Genome of Quince (Cydonia Oblonga Mill.). Sci Rep 2021, 11, 3818. [Google Scholar] [CrossRef]
- Feng, C.; Feng, C.; Lin, X.; Liu, S.; Li, Y.; Kang, M. A Chromosome-Level Genome Assembly Provides Insights into Ascorbic Acid Accumulation and Fruit Softening in Guava (Psidium Guajava). Plant Biotechnol J 2021, 19, 717–730. [Google Scholar] [CrossRef]
- Li, Y.; Sun, P.; Lu, Z.; Chen, J.; Wang, Z.; Du, X.; Zheng, Z.; Wu, Y.; Hu, H.; Yang, J. The Corylus Mandshurica Genome Provides Insights into the Evolution of Betulaceae Genomes and Hazelnut Breeding. Hortic Res 2021, 8. [Google Scholar]
- Savadi, S.; Muralidhara, B.M.; Godwin, J.; Adiga, J.D.; Mohana, G.S.; Eradasappa, E.; Shamsudheen, M.; Karun, A. De Novo Assembly and Characterization of the Draft Genome of the Cashew (Anacardium Occidentale L.). Sci Rep 2022, 12. [Google Scholar] [CrossRef]
- Worley, K.C.; Richards, S.; Rogers, J. The Value of New Genome References. Exp Cell Res 2017, 358, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Chagné, D.; Crowhurst, R.N.; Troggio, M.; Davey, M.W.; Gilmore, B.; Lawley, C.; Vanderzande, S.; Hellens, R.P.; Kumar, S.; Cestaro, A. Genome-Wide SNP Detection, Validation, and Development of an 8K SNP Array for Apple. PLoS One 2012, 7, e31745. [Google Scholar] [CrossRef] [PubMed]
- Bianco, L.; Cestaro, A.; Sargent, D.J.; Banchi, E.; Derdak, S.; Di Guardo, M.; Salvi, S.; Jansen, J.; Viola, R.; Gut, I.; et al. Development and Validation of a 20K Single Nucleotide Polymorphism (SNP) Whole Genome Genotyping Array for Apple (Malus × Domestica Borkh). PLoS One 2014, 9, e110377. [Google Scholar] [CrossRef] [PubMed]
- Kunihisa, M.; Moriya, S.; Abe, K.; Okada, K.; Haji, T.; Hayashi, T.; Kawahara, Y.; Itoh, R.; Itoh, T.; Katayose, Y. Genomic Dissection of a ‘Fuji’ Apple Cultivar: Re-Sequencing, SNP Marker Development, Definition of Haplotypes, and QTL Detection. Breed Sci 2016, 66, 499–515. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, G.H.; Kwon, S. Il; Kim, J.H.; Kwon, Y.S.; Choi, C. Analysis of ‘Fuji’Apple Somatic Variants from next-Generation Sequencing. Genet. Mol. Res 2016, 15, 17–36. [Google Scholar] [CrossRef] [PubMed]
- De Franceschi, P.; Bianco, L.; Cestaro, A.; Dondini, L.; Velasco, R. Data Mining for Apple S-RNase Alleles in Resequencing Datasets. In Proceedings of the II International Workshop on Floral Biology and S-Incompatibility in Fruit Species 1231; 2016; pp. 135–152. [Google Scholar]
- Larsen, B.; Ørgaard, M.; Toldam-Andersen, T.B.; Pedersen, C. A High-Throughput Method for Genotyping S-RNase Alleles in Apple. Molecular Breeding 2016, 36, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kerschbamer, E. Identification of Selective Sweeps in Domesticated Apple (Malus × Domestica Borkh.), University of Padua: Padua, 2015.
- Kumar, S.; Garrick, D.J.; Bink, M.C.A.M.; Whitworth, C.; Chagné, D.; Volz, R.K. Novel Genomic Approaches Unravel Genetic Architecture of Complex Traits in Apple. BMC Genomics 2013, 14, 1–13. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, W.; Xin, L.; Gao, Z.; Hou, Y.; Yu, X.; Zhang, Z.; Qu, S. Genomic Variants of Genes Associated with Three Horticultural Traits in Apple Revealed by Genome Re-Sequencing. Hortic Res 2014, 1, 14045. [Google Scholar] [CrossRef]
- Marx, V. Method of the Year: Long-Read Sequencing. Nat Methods 2023, 20, 6–11. [Google Scholar] [CrossRef]
- Jayakodi, M.; Shim, H.; Mascher, M. What Are We Learning from Plant Pangenomes? Annu Rev Plant Biol 2024, 76. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Genome Assembly in the Telomere-to-Telomere Era. Nat Rev Genet 2024, 25, 658–670. [Google Scholar] [CrossRef]
- Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B. Real-Time DNA Sequencing from Single Polymerase Molecules. Science (1979) 2009, 323, 133–138. [Google Scholar] [CrossRef]
- Travers, K.J.; Chin, C.-S.; Rank, D.R.; Eid, J.S.; Turner, S.W. A Flexible and Efficient Template Format for Circular Consensus Sequencing and SNP Detection. Nucleic Acids Res 2010, 38, e159–e159. [Google Scholar] [CrossRef] [PubMed]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.-C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate Circular Consensus Long-Read Sequencing Improves Variant Detection and Assembly of a Human Genome. Nat Biotechnol 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Continuous Base Identification for Single-Molecule Nanopore DNA Sequencing. Nat Nanotechnol 2009, 4, 265–270. [Google Scholar] [CrossRef]
- Xiao, T.; Zhou, W. The Third Generation Sequencing: The Advanced Approach to Genetic Diseases. Transl Pediatr 2020, 9, 163–173. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-Generation Sequencing Technologies: An Overview. Hum Immunol 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Korlach, J. Understanding Accuracy in SMRT Sequencing. Pacific Biosciences 2013, 2013, 1–9. [Google Scholar]
- Weirather, J.L.; de Cesare, M.; Wang, Y.; Piazza, P.; Sebastiano, V.; Wang, X.-J.; Buck, D.; Au, K.F. Comprehensive Comparison of Pacific Biosciences and Oxford Nanopore Technologies and Their Applications to Transcriptome Analysis. F1000Res 2017, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Klammer, A.A.; Robins, W.P.; Chin, C.-S.; Webster, D.; Paxinos, E.; Hsu, D.; Ashby, M.; Wang, S.; Peluso, P. A Hybrid Approach for the Automated Finishing of Bacterial Genomes. Nat Biotechnol 2012, 30, 701–707. [Google Scholar] [CrossRef]
- Koren, S.; Schatz, M.C.; Walenz, B.P.; Martin, J.; Howard, J.T.; Ganapathy, G.; Wang, Z.; Rasko, D.A.; McCombie, W.R.; Jarvis, E.D. Hybrid Error Correction and de Novo Assembly of Single-Molecule Sequencing Reads. Nat Biotechnol 2012, 30, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Espinosa, E.; Bautista, R.; Fernandez, I.; Larrosa, R.; Zapata, E.L.; Plata, O. Comparing Assembly Strategies for Third-Generation Sequencing Technologies across Different Genomes. Genomics 2023, 115, 110700. [Google Scholar] [CrossRef] [PubMed]
- Rautiainen, M.; Nurk, S.; Walenz, B.P.; Logsdon, G.A.; Porubsky, D.; Rhie, A.; Eichler, E.E.; Phillippy, A.M.; Koren, S. Telomere-to-Telomere Assembly of Diploid Chromosomes with Verkko. Nat Biotechnol 2023, 41, 1474–1482. [Google Scholar] [CrossRef]
- Belton, J.-M.; McCord, R.P.; Gibcus, J.H.; Naumova, N.; Zhan, Y.; Dekker, J. Hi–C: A Comprehensive Technique to Capture the Conformation of Genomes. Methods 2012, 58, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Forcato, M.; Ferrari, F. Hi-C Analysis: From Data Generation to Integration. Biophys Rev 2019, 11, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and Accurate Long-Read Assembly via Adaptive k-Mer Weighting and Repeat Separation. Genome Res 2017, 27, 722–736. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Ritchie, M.E.; Gouil, Q. Long-Read-Tools. Org: An Interactive Catalogue of Analysis Methods for Long-Read Sequencing Data. Gigascience 2021, 10, giab003. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and Challenges in Long-Read Sequencing Data Analysis. Genome Biol 2020, 21. [Google Scholar] [CrossRef]
- Koren, S.; Bao, Z.; Guarracino, A.; Ou, S.; Goodwin, S.; Jenike, K.M.; Lucas, J.; McNulty, B.; Park, J.; Rautiainen, M. Gapless Assembly of Complete Human and Plant Chromosomes Using Only Nanopore Sequencing. Genome Res 2024. [CrossRef]
- Li, X.; Kui, L.; Zhang, J.; Xie, Y.; Wang, L.; Yan, Y.; Wang, N.; Xu, J.; Li, C.; Wang, W.; et al. Improved Hybrid de Novo Genome Assembly of Domesticated Apple (Malus x Domestica). Gigascience 2016, 5, s13742–016. [Google Scholar] [CrossRef]
- Su, Y.; Yang, X.; Wang, Y.; Li, J.; Long, Q.; Cao, S.; Wang, X.; Liu, Z.; Huang, S.; Chen, Z.; et al. Phased Telomere-to-Telomere Reference Genome and Pangenome Reveal an Expansion of Resistance Genes during Apple Domestication. Plant Physiol 2024, 195, 2799–2814. [Google Scholar] [CrossRef]
- De Coster, W.; Van Broeckhoven, C. Newest Methods for Detecting Structural Variations. Trends Biotechnol 2019, 37, 973–982. [Google Scholar] [CrossRef]
- Tettelin, H.; Masignani, V.; Cieslewicz, M.J.; Donati, C.; Medini, D.; Ward, N.L.; Angiuoli, S. V; Crabtree, J.; Jones, A.L.; Durkin, A.S. Genome Analysis of Multiple Pathogenic Isolates of Streptococcus Agalactiae: Implications for the Microbial “Pan-Genome. ” Proceedings of the National Academy of Sciences 2005, 102, 13950–13955. [Google Scholar] [CrossRef] [PubMed]
- Vernikos, G.; Medini, D.; Riley, D.R.; Tettelin, H. Ten Years of Pan-Genome Analyses. Curr Opin Microbiol 2015, 23, 148–154. [Google Scholar] [CrossRef]
- Hu, H.; Wang, J.; Nie, S.; Zhao, J.; Batley, J.; Edwards, D. Plant Pangenomics, Current Practice and Future Direction. Agriculture Communications 2024, 2, 100039. [Google Scholar] [CrossRef]
- Huang, Y.; He, J.; Xu, Y.; Zheng, W.; Wang, S.; Chen, P.; Zeng, B.; Yang, S.; Jiang, X.; Liu, Z.; et al. Pangenome Analysis Provides Insight into the Evolution of the Orange Subfamily and a Key Gene for Citric Acid Accumulation in Citrus Fruits. Nat Genet 2023, 55, 1964–1975. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chu, C.; Zhang, T.; Sun, H.; Wang, S.; Liu, Z.; Wang, Z.; Li, H.; Li, Y.; Zhang, X. Pan-Genome Analysis Reveals the Evolution and Diversity of Malus. Nat Genet 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Andreace, F.; Lechat, P.; Dufresne, Y.; Chikhi, R. Comparing Methods for Constructing and Representing Human Pangenome Graphs. Genome Biol 2023, 24. [Google Scholar] [CrossRef]
- Li, H.; Feng, X.; Chu, C. The Design and Construction of Reference Pangenome Graphs with Minigraph. Genome Biol 2020, 21, 265. [Google Scholar] [CrossRef]
- Hickey, G.; Monlong, J.; Ebler, J.; Novak, A.M.; Eizenga, J.M.; Gao, Y.; Marschall, T.; Li, H.; Paten, B. Pangenome Graph Construction from Genome Alignments with Minigraph-Cactus. Nat Biotechnol 2024, 42, 663–673. [Google Scholar] [CrossRef]
- Garrison, E.; Guarracino, A.; Heumos, S.; Villani, F.; Bao, Z.; Tattini, L.; Hagmann, J.; Vorbrugg, S.; Marco-Sola, S.; Kubica, C.; et al. Building Pangenome Graphs. Nat Methods 2024, 21, 2008–2012. [Google Scholar] [CrossRef]
- Qin, P.; Lu, H.; Du, H.; Wang, H.; Chen, W.; Chen, Z.; He, Q.; Ou, S.; Zhang, H.; Li, X.; et al. Pan-Genome Analysis of 33 Genetically Diverse Rice Accessions Reveals Hidden Genomic Variations. Cell 2021, 184, 3542–3558.e16. [Google Scholar] [CrossRef] [PubMed]
- Miga, K.H.; Wang, T. The Need for a Human Pangenome Reference Sequence. Annu Rev Genomics Hum Genet 2021, 22, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Groza, C.; Schwendinger-Schreck, C.; Cheung, W.A.; Farrow, E.G.; Thiffault, I.; Lake, J.; Rizzo, W.B.; Evrony, G.; Curran, T.; Bourque, G.; et al. Pangenome Graphs Improve the Analysis of Structural Variants in Rare Genetic Diseases. Nat Commun 2024, 15. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Z.; Bao, Z.; Li, H.; Lyu, Y.; Zan, Y.; Wu, Y.; Cheng, L.; Fang, Y.; Wu, K.; et al. Graph Pangenome Captures Missing Heritability and Empowers Tomato Breeding. Nature 2022, 606, 527–534. [Google Scholar] [CrossRef]
- Du, Z.Z.; He, J.B.; Jiao, W.B. A Comprehensive Benchmark of Graph-Based Genetic Variant Genotyping Algorithms on Plant Genomes for Creating an Accurate Ensemble Pipeline. Genome Biol 2024, 25. [Google Scholar] [CrossRef]
- Chapman, M.A.; He, Y.; Zhou, M. Beyond a Reference Genome: Pangenomes and Population Genomics of Underutilized and Orphan Crops for Future Food and Nutrition Security. New Phytologist 2022, 234, 1583–1597. [Google Scholar] [CrossRef]
- Petereit, J.; Bayer, P.E.; Thomas, W.J.W.; Tay Fernandez, C.G.; Amas, J.; Zhang, Y.; Batley, J.; Edwards, D. Pangenomics and Crop Genome Adaptation in a Changing Climate. Plants 2022, 11, 1949. [Google Scholar] [CrossRef]
- MacNish, T.R.; Danilevicz, M.F.; Bayer, P.E.; Bestry, M.S.; Edwards, D. Application of Machine Learning and Genomics for Orphan Crop Improvement. Nat Commun 2025, 16, 982. [Google Scholar] [CrossRef]
- Tay Fernandez, C.G.; Nestor, B.J.; Danilevicz, M.F.; Marsh, J.I.; Petereit, J.; Bayer, P.E.; Batley, J.; Edwards, D. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes. Int J Mol Sci 2022, 23, 2276. [Google Scholar] [CrossRef]
- Chen, S.; Wang, P.; Kong, W.; Chai, K.; Zhang, S.; Yu, J.; Wang, Y.; Jiang, M.; Lei, W.; Chen, X. Gene Mining and Genomics-Assisted Breeding Empowered by the Pangenome of Tea Plant Camellia Sinensis. Nat Plants 2023, 9, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Sato, Y. Usage of Wild Oryza Germplasms for Breeding in Pan-Genomics Era. Breed Sci 2025, 75, 51–60. [Google Scholar] [CrossRef]
- Chen, G.; Shi, T.; Shi, L. Characterizing and Annotating the Genome Using RNA-Seq Data. Sci China Life Sci 2017, 60, 116–125. [Google Scholar] [CrossRef]
- Kukurba, K.R.; Montgomery, S.B. RNA Sequencing and Analysis. Cold Spring Harb Protoc 2015, 2015, pdb–top084970. [Google Scholar] [CrossRef]
- Jaramillo Oquendo, C.; Wai, H.A.; Rich, W.I.; Bunyan, D.J.; Thomas, N.S.; Hunt, D.; Lord, J.; Douglas, A.G.L.; Baralle, D. Identification of Diagnostic Candidates in Mendelian Disorders Using an RNA Sequencing-Centric Approach. Genome Med 2024, 16, 110. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, K.; Wang, W.; Yin, T.; Dong, W.; Xu, C. A High-Throughput SNP Discovery Strategy for RNA-Seq Data. BMC Genomics 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Williamson-Benavides, B.A.; Sharpe, R.M.; Nelson, G.; Bodah, E.T.; Porter, L.D.; Dhingra, A. Identification of Fusarium Solani f. Sp. Pisi (Fsp) Responsive Genes in Pisum Sativum. Front Genet 2020, 11, 950. [Google Scholar] [CrossRef]
- Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science (1979) 1995, 270, 467–470. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real Time Quantitative PCR. Genome Res 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.P.M.; Weber, K.L.; Carr, K.; Wilkerson, C.; Ohlrogge, J.B. Sampling the Arabidopsis Transcriptome with Massively Parallel Pyrosequencing. Plant Physiol 2007, 144, 32–42. [Google Scholar] [CrossRef]
- Délano-Frier, J.P.; Avilés-Arnaut, H.; Casarrubias-Castillo, K.; Casique-Arroyo, G.; Castrillón-Arbeláez, P.A.; Herrera-Estrella, L.; Massange-Sánchez, J.; Martínez-Gallardo, N.A.; Parra-Cota, F.I.; Vargas-Ortiz, E.; et al. Transcriptomic Analysis of Grain Amaranth (Amaranthus Hypochondriacus) Using 454 Pyrosequencing: Comparison with A. Tuberculatus, Expression Profiling in Stems and in Response to Biotic and Abiotic Stress. BMC Genomics 2011, 12. [Google Scholar] [CrossRef]
- Bazakos, C.; Manioudaki, M.E.; Sarropoulou, E.; Spano, T.; Kalaitzis, P. 454 Pyrosequencing of Olive (Olea Europaea L.) Transcriptome in Response to Salinity. PLoS One 2015, 10, e0143000. [Google Scholar] [CrossRef]
- Schliesky, S.; Gowik, U.; Weber, A.P.M.; Bräutigam, A. RNA-Seq Assembly - Are We There Yet? Front Plant Sci 2012, 3. [Google Scholar] [CrossRef]
- Raghavan, V.; Kraft, L.; Mesny, F.; Rigerte, L. A Simple Guide to de Novo Transcriptome Assembly and Annotation. Brief Bioinform 2022, 23, bbab563. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Li, W.; Zheng, P.; Xu, T.; Chen, L.; Liu, D.; Hussain, S.; Teng, Y. Transcriptomic Analysis of ‘Suli’ Pear (Pyrus Pyrifolia White Pear Group) Buds during the Dormancy by RNA-Seq. BMC Genomics 2012, 13, 1–18. [Google Scholar] [CrossRef]
- Karimi, M.; Ghazanfari, F.; Fadaei, A.; Ahmadi, L.; Shiran, B.; Rabei, M.; Fallahi, H. The Small-RNA Profiles of Almond (Prunus Dulcis Mill.) Reproductive Tissues in Response to Cold Stress. PLoS One 2016, 11, e0156519. [Google Scholar] [CrossRef] [PubMed]
- Orcheski, B.; Brown, S. High-Throughput Sequencing Reveals That Pale Green Lethal Disorder in Apple (Malus) Stimulates Stress Responses and Affects Senescence. Tree Genet Genomes 2017, 13, 9. [Google Scholar] [CrossRef]
- Bielsa, B.; Hewitt, S.; Reyes-Chin-Wo, S.; Dhingra, A.; Rubio-Cabetas, M.J. Identification of Water Use Efficiency Related Genes in ‘Garnem’ Almond-Peach Rootstock Using Time-Course Transcriptome Analysis. PLoS One 2018, 13, e0205493. [Google Scholar] [CrossRef]
- Ye, J.; Wang, G.; Tan, J.; Zheng, J.; Zhang, X.; Xu, F.; Cheng, S.; Chen, Z.; Zhang, W.; Liao, Y. Identification of Candidate Genes Involved in Anthocyanin Accumulation Using Illmuina-Based RNA-Seq in Peach Skin. Sci Hortic 2019, 250, 184–198. [Google Scholar] [CrossRef]
- Hewitt, S.L.; Hendrickson, C.A.; Dhingra, A. Evidence for the Involvement of Vernalization-Related Genes in the Regulation of Cold-Induced Ripening in ‘D’Anjou’ and ‘Bartlett’ Pear Fruit. Sci Rep 2020, 10. [Google Scholar] [CrossRef]
- Hewitt, S.; Kilian, B.; Koepke, T.; Abarca, J.; Whiting, M.; Dhingra, A. Transcriptome Analysis Reveals Potential Mechanisms for Ethylene-Inducible Pedicel–Fruit Abscission Zone Activation in Non-Climacteric Sweet Cherry (Prunus Avium l.). Horticulturae 2021, 7. [Google Scholar] [CrossRef]
- Wang, G.; Gao, X.; Wang, X.; Liu, P.; Guan, S.L.; Qi, K.; Zhang, S.; Gu, C. Transcriptome Analysis Reveals Gene Associated with Fruit Size during Fruit Development in Pear. Sci Hortic 2022, 305, 111367. [Google Scholar] [CrossRef]
- Oikonomopoulos, S.; Wang, Y.C.; Djambazian, H.; Badescu, D.; Ragoussis, J. Benchmarking of the Oxford Nanopore MinION Sequencing for Quantitative and Qualitative Assessment of CDNA Populations. Sci Rep 2016, 6, 31602. [Google Scholar] [CrossRef]
- Workman, R.E.; Tang, A.D.; Tang, P.S.; Jain, M.; Tyson, J.R.; Razaghi, R.; Zuzarte, P.C.; Gilpatrick, T.; Payne, A.; Quick, J. Nanopore Native RNA Sequencing of a Human Poly (A) Transcriptome. Nat Methods 2019, 16, 1297–1305. [Google Scholar] [CrossRef]
- Pardo-Palacios, F.J.; Wang, D.; Reese, F.; Diekhans, M.; Carbonell-Sala, S.; Williams, B.; Loveland, J.E.; De María, M.; Adams, M.S.; Balderrama-Gutierrez, G.; et al. Systematic Assessment of Long-Read RNA-Seq Methods for Transcript Identification and Quantification. Nat Methods 2024, 21, 1349–1363. [Google Scholar] [CrossRef]
- Athanasopoulou, K.; Boti, M.A.; Adamopoulos, P.G.; Skourou, P.C.; Scorilas, A. Third-Generation Sequencing: The Spearhead towards the Radical Transformation of Modern Genomics. Life 2021, 12, 30. [Google Scholar] [CrossRef]
- Song, Z.; Yang, Q.; Dong, B.; Wang, S.; Xue, J.; Liu, N.; Zhou, X.; Li, N.; Dandekar, A.M.; Cheng, L.; et al. Nanopore RNA Direct Sequencing Identifies That M6A Modification Is Essential for Sorbitol-Controlled Resistance to Alternaria Alternata in Apple. Dev Cell 2025, 60, 1439–1453.e5. [Google Scholar] [CrossRef]
- Hu, X.-L.; You, C.; Zhu, K.; Li, X.; Gong, J.; Ma, H.; Sun, X. Nanopore Long-Read RNAseq Reveals Transcriptional Variations in Citrus Species. Front Plant Sci 2023, 13, 1077797. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA Sequencing: The Teenage Years. Nat Rev Genet 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Hirsch, C.N.; Foerster, J.M.; Johnson, J.M.; Sekhon, R.S.; Muttoni, G.; Vaillancourt, B.; Peñagaricano, F.; Lindquist, E.; Pedraza, M.A.; Barry, K. Insights into the Maize Pan-Genome and Pan-Transcriptome. Plant Cell 2014, 26, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, R.; Li, J.; Li, X.; Song, B.; Edwards, D.; Wu, J. Pan-Transcriptome Analysis Provides Insights into Resistance and Fruit Quality Breeding of Pear (Pyrus Pyrifolia). J Integr Agric 2025, 24, 1813–1830. [Google Scholar] [CrossRef]
- Watt, M.; Fiorani, F.; Usadel, B.; Rascher, U.; Muller, O.; Schurr, U. Phenotyping: New Windows into the Plant for Breeders. Annu Rev Plant Biol 2020, 71, 689–712. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Li, H.; Zheng, H.; Zhang, J.; Olsen, M.S.; Varshney, R.K.; Prasanna, B.M.; Qian, Q. Smart Breeding Driven by Big Data, Artificial Intelligence, and Integrated Genomic-Enviromic Prediction. Mol Plant 2022, 15, 1664–1695. [Google Scholar] [CrossRef]
- Furbank, R.T.; Tester, M. Phenomics - Technologies to Relieve the Phenotyping Bottleneck. Trends Plant Sci 2011, 16, 635–644. [Google Scholar] [CrossRef]
- Jones, H.G. Application of Thermal Imaging and Infrared Sensing in Plant Physiology and Ecophysiology. In Advances in botanical research; Elsevier, 2004; Vol. 41, pp. 107–163 ISBN 0065-2296.
- Chaerle, L.; Leinonen, I.; Jones, H.G.; Van Der Straeten, D. Monitoring and Screening Plant Populations with Combined Thermal and Chlorophyll Fluorescence Imaging. J Exp Bot 2007, 58, 773–784. [Google Scholar] [CrossRef]
- Liew, O.W.; Chong, P.C.J.; Li, B.; Asundi, A.K. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health. Sensors 2008, 8, 3205–3239. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Serraj, R.; Loveys, B.R.; Xiong, L.; Wheaton, A.; Price, A.H. Thermal Infrared Imaging of Crop Canopies for the Remote Diagnosis and Quantification of Plant Responses to Water Stress in the Field. Functional Plant Biology 2009, 36, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Ibaraki, Y.; Murakami, J. Distribution of Chlorophyll Fluorescence Parameter Fv/Fm within Individual Plants under Various Stress Conditions. 2007. [Google Scholar]
- Hütt, C.; Bolten, A.; Hüging, H.; Bareth, G. UAV LiDAR Metrics for Monitoring Crop Height, Biomass and Nitrogen Uptake: A Case Study on a Winter Wheat Field Trial. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 2023, 91, 65–76. [Google Scholar] [CrossRef]
- Cristescu, S.M.; Mandon, J.; Arslanov, D.; De Pessemier, J.; Hermans, C.; Harren, F.J.M. Current Methods for Detecting Ethylene in Plants. Ann Bot 2013, 111, 347–360. [Google Scholar] [CrossRef]
- Busch, F.A.; Ainsworth, E.A.; Amtmann, A.; Cavanagh, A.P.; Driever, S.M.; Ferguson, J.N.; Kromdijk, J.; Lawson, T.; Leakey, A.D.B.; Matthews, J.S.A. A Guide to Photosynthetic Gas Exchange Measurements: Fundamental Principles, Best Practice and Potential Pitfalls. Plant Cell Environ 2024, 47, 3344–3364. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, J.; Wu, D.; Guan, Z.; Ding, B.; Chen, F. Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping. Plant Phenomics 2023, 5, 0051. [Google Scholar] [CrossRef]
- Metzner, R.; Eggert, A.; van Dusschoten, D.; Pflugfelder, D.; Gerth, S.; Schurr, U.; Uhlmann, N.; Jahnke, S. Direct Comparison of MRI and X-Ray CT Technologies for 3D Imaging of Root Systems in Soil: Potential and Challenges for Root Trait Quantification. Plant Methods 2015, 11, 1–11. [Google Scholar] [CrossRef]
- Van Dusschoten, D.; Metzner, R.; Kochs, J.; Postma, J.A.; Pflugfelder, D.; Bühler, J.; Schurr, U.; Jahnke, S. Quantitative 3D Analysis of Plant Roots Growing in Soil Using Magnetic Resonance Imaging. Plant Physiol 2016, 170, 1176–1188. [Google Scholar] [CrossRef]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P. Unmanned Aerial Platform-Based Multi-Spectral Imaging for Field Phenotyping of Maize. Plant Methods 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Madec, S.; Baret, F.; De Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front Plant Sci 2017, 8, 2002. [Google Scholar] [CrossRef]
- D’Odorico, P.; Besik, A.; Wong, C.Y.S.; Isabel, N.; Ensminger, I. High-Throughput Drone-Based Remote Sensing Reliably Tracks Phenology in Thousands of Conifer Seedlings. New Phytologist 2020, 226, 1667–1681. [Google Scholar] [CrossRef]
- DeBruin, J.; Aref, T.; Tirado Tolosa, S.; Hensley, R.; Underwood, H.; McGuire, M.; Soman, C.; Nystrom, G.; Parkinson, E.; Li, C.; et al. Breaking the Field Phenotyping Bottleneck in Maize with Autonomous Robots. Commun Biol 2025, 8, 467. [Google Scholar] [CrossRef] [PubMed]
- Basu, P.S.; Srivastava, M.; Singh, P.; Porwal, P.; Kant, R.; Singh, J. High-Precision Phenotyping Under Controlled Versus Natural Environments. In Phenomics in Crop Plants: Trends, Options and Limitations; Kumar, J., Pratap, A., Kumar, S., Eds.; Springer India: New Delhi, 2015; ISBN 978-81-322-2226-2. [Google Scholar]
- Langstroff, A.; Heuermann, M.C.; Stahl, A.; Junker, A. Opportunities and Limits of Controlled-Environment Plant Phenotyping for Climate Response Traits. Theoretical and Applied Genetics 2022, 135, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Czedik-Eysenberg, A.; Seitner, S.; Güldener, U.; Koemeda, S.; Jez, J.; Colombini, M.; Djamei, A. The ‘PhenoBox’, a Flexible, Automated, Open-Source Plant Phenotyping Solution. New Phytologist 2018, 219, 808–823. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Abdel-Haleem, H.; Luo, Z.; Szczepanek, A. Open-Source Electronics for Plant Phenotyping and Irrigation in Controlled Environment. Smart Agricultural Technology 2023, 3, 100093. [Google Scholar] [CrossRef]
- Hassan, M.A.; Chang, C.Y.-Y. PhenoGazer: A High-Throughput Phenotyping System to Track Plant Stress Responses Using Hyperspectral Reflectance, Nighttime Chlorophyll Fluorescence and RGB Imaging in Controlled Environments. Plant Phenomics 2025, 7, 100047. [Google Scholar] [CrossRef]
- Montoliu, A.; López-Climent, M.F.; Arbona, V.; Pérez-Clemente, R.M.; Gómez-Cadenas, A. A Novel in Vitro Tissue Culture Approach to Study Salt Stress Responses in Citrus. Plant Growth Regul 2009, 59, 179–187. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Pérez-Tornero, O. In Vitro Plant Evaluation Trial: Reliability Test of Salinity Assays in Citrus Plants. Plants 2020, 9, 1–8. [Google Scholar] [CrossRef]
- Hammerschlag, F.A.; Ognjanov, V. Somaclonal Variation in Peach: Screening for Resistance to Xanthomonas Campestris Pv. In Pruni and Pseudomonas Syringae Pv. Syringae. In Proceedings of the I International Symposium on In Vitro Culture and Horticultural Breeding 280; 1989; pp. 403–408. [Google Scholar]
- Ochatt, S.J.; Power, J.B. Selection for Salt and Drought Tolerance in Protoplast- and Explant-Derived Tissue Cultures of Colt Cherry (Prunus Avium × Pseudocerasus). Tree Physiol 1989, 5, 259–266. [Google Scholar] [CrossRef]
- da Câmara Machado, M.L.; da Câmara Machado, A.; Hanzer, V.; Weiss, H.; Regner, F.; Steinkellner, H.; Mattanovich, D.; Plail, R.; Knapp, E.; Kalthoff, B.; et al. Regeneration of Transgenic Plants of Prunus Armeniaca Containing the Coat Protein Gene of Plum Pox Virus. Plant Cell Rep 1992, 11, 25–29. [Google Scholar] [CrossRef]
- Norelli, J.L.; Brandl, M.T. Survival and Growth of Erwinia Amylovora on Apple Leaves. In Proceedings of the X International Workshop on Fire Blight 704; 2004; pp. 127–130. [Google Scholar]
- Yao, J.-L.; Cohen, D.; Atkinson, R.; Richardson, K.; Morris, B. Regeneration of Transgenic Plants from the Commercial Apple Cultivar Royal Gala. Plant Cell Rep 1995, 14, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Ghadirzadeh-Khorzoghi, E.; Jahanbakhshian-Davaran, Z.; Seyedi, S.M. Direct Somatic Embryogenesis of Drought Resistance Pistachio (Pistacia Vera L.) and Expression Analysis of Somatic Embryogenesis-Related Genes. South African Journal of Botany 2019, 121, 558–567. [Google Scholar] [CrossRef]
| Trait | Goal | Example | Reference |
| Precocity | Developing trees that bear fruit in fewer years, and developing rootstocks that encourage early fruit bearing | Hybridization between Juglans regia and Juglans hindsii resulted in a highly precocious walnut cultivar that enters full nut production within 6 years | [31] |
| Salinity Stress Tolerance | Developing trees that can grow on saline soil without loss of yield | Citrus rootstocks, which showed enhanced production of proline and phenolic compounds, were capable of surviving on 100mM NaCl soil | [32] |
| Rootstock Vigor Control | Developing rootstocks that limit the vegetative growth of grafted scions | Vigor-controlling Malus domestica rootstocks allow for planting densities over 4000 trees/ha | [33] |
| Dwarfing | Developing trees with a shorter stature to improve tree manageability and decrease unnecessary vegetative growth | Pyrus bretschneideri with a knockout mutation of PAT14 displayed dwarfism with shorter, thinner stems and elevated abscisic acid levels | [34] |
| Disease and Pest Resistance | Developing trees that require fewer pesticide applications, naturally resist existing and emerging diseases | Carica papaya expressing transgenic Papaya Ring Spot Virus (PRSV) coat proteins is resistant to PRSV, allowing for the recovery of the Hawaii papaya industry | [35] |
| Parthenocarpy | Developing trees that can produce fruit of consistent yield and quality, even in the absence of pollination; also valuable to produce seedless fruits | Tetraploid Citrus lines for the breeding of seedless triploid orange cultivars have been achieved via protoplast fusion | [36] |
| Heat and Drought Tolerance | Developing trees that can maintain yield through exceptionally high temperatures and maintain yield through exceptionally dry periods in rainfed systems | Screening for drought tolerance is essential in Prunus dulcis; bitter cultivars show superior qualities as drought-tolerant rootstocks | [37] |
| Cold Hardiness | Developing trees that can handle exceptionally low temperatures, and developing trees that do not break dormancy prematurely | Whole genome sequencing of the new cold-hardy Malus domestica cv. ‘Hanfu’ showed alterations in oligosaccharide metabolism and galactinol synthesis, which may contribute to resilience | [38] |
| Self-Thinning/Decreased Fruit Set | Developing trees that will drop immature fruit in excess of their ability to develop properly | Malus domestica cv. ‘WA 38’ is self-thinning, with most fruitlets abscising following a profuse bloom | [39] |
| Regular Bearing | Developing trees, which produce a consistent quantity of fruit year to year | Most recommended Carya illinoinensis cultivars have lower than average alternate bearing indices; selection of new cultivars based on alternate bearing index is recommended | [25] |
| Fruit Color | Developing trees that reliably produce fruit with colors that appeal to consumer expectations | Prunus avium coloration is essential for the marketability of new cultivars; in response, a PCR-based assay has been developed, which can predict fruit coloration | [40] |
| Fruit Texture | Developing trees that bear fruit with an enjoyable eating texture, soft in some fruit and crisp in others | In the breeding of Pyrus pyrifolia, flesh firmness under 23 newtons was used as a selection criterion for new cultivars | [41] |
| Fruit Flavor | Developing fruit which have an appealing balance of sugars, acids, and secondary metabolites which contribute to aroma and other elements of taste | In Malus domestica, genes responsible for volatile compounds that produce apple aroma have been identified in multiple cultivars, aiding the development of new aroma profiles | [42,43] |
| Healthful Compounds | Developing trees with fruit that produce metabolites known to have positive effects on human health, such as unsaturated fats, antioxidants, vitamins, and minerals | Self-pollination of the Tunisian Olea europea cultivar ‘Chemlali Sfax’ resulted in a cultivar with a greater proportion of unsaturated fats relative to saturated fats | [44] |
| Fruit Storage | Developing trees with fruit that can be stored long-term, processed, and transported long distances without loss in quality | Reduction of fruit browning in Malus domestica through the silencing of Polyphenol Oxidase via transgenic RNA silencing | [45] |
| Fruit Size | Developing trees that produce large fruits and nuts | A decentralized program for the breeding of Castanea in the United States makes nuts over 10 grams an objective for new selections | [46] |
| Self-Compatibility | Developing trees that can pollinate/fertilize themselves, reducing the risk of poor fruit set | Self-compatible Pyrus pyrifolia resulting from a gamma irradiation-induced 17Mb duplication including S-RNAse genes | [47,48] |
| Early Ripening | Developing trees which ripen early in the season to expand potential growing range and decreasing the risk of crop damage | Selection of early ripening Carya illinoinensis cultivars increases commercial viability in cooler growing regions, expanding the range of pecan cultivation | [49] |
| Mechanical Harvestability | Developing trees that are more suitable for automated harvesting mechanisms | Candidate genes with functional annotations including cell expansion and hormone response were found to be associated with peduncle length in Prunus persica, with greater length being associated with lower mechanical damage during harvest | [50] |
| Family | Genus | Species | Year | Sequencing Platform | Reference |
| Caricaceae | Carica | papaya | 2008 | Sanger | [111] |
| Rosaceae | Malus | domestica | 2010 | Illumina, 454 | [113] |
| Malvaceae | Theobroma | cacao | 2011 | Illumina, 454 | [120] |
| Rosaceae | Prunus | persica | 2013 | Sanger, Illumina | [121] |
| Rutaceae | Citrus | sinensis | 2013 | Illumina | [122] |
| Rosaceae | Pyrus | bretschneideri | 2013 | Illumina | [123] |
| Rubiaceae | Coffea | canephora | 2014 | Sanger, 454 | [115] |
| Oleaceae | Olea | europaea | 2016 | Illumina | [124] |
| Proteaeceae | Macadamia | integrifolia | 2016 | Illumina | [125] |
| Juglandaceae | Juglans | regia | 2016 | Illumina | [126] |
| Moraceae | Ficus | carica | 2017 | Illumina | [127] |
| Malvaceae | Durio | zibethinus | 2017 | Illumina, PacBio | [128] |
| Juglandaceae | Carya | illinoinensis | 2019 | Illumina, PacBio | [116] |
| Anacardiaceae | Pistacia | vera | 2019 | Illumina, PacBio | [129] |
| Ebenaceae | Diospyros | oleifera | 2019 | Illumina, PacBio | [130] |
| Fagaceae | Castanea | mollissima | 2019 | Illumina, 454 | [117] |
| Moraceae | Artocarpus | heterophyllus | 2019 | Illumina | [131] |
| Rosaceae | Eriobotrya | japonica | 2020 | Illumina, Nanopore | [132] |
| Rosaceae | Cydonia | oblonga | 2021 | Illumina | [133] |
| Myrtaceae | Psidium | guajava | 2021 | Illumina | [134] |
| Betulaceae | Corylus | mandshurica | 2021 | Illumina, Nanopore | [135] |
| Anacardiaceae | Anacardium | occidentale | 2022 | Illumina, Nanopore | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
