Submitted:
14 November 2025
Posted:
17 November 2025
You are already at the latest version
Abstract
Keywords:
Introduction
History and Critique of the Existing Autonomic Schema
Origins
Critique of the Traditional Narrative of Autonomic Function
Inappropriate Extrapolation from Early Examples
The Effects of Mass Excitation Do Not Define the Regulatory Functions of a Nerve Supply
Sympathetic and Parasympathetic Activities Are Not Generically Counterbalanced
Not “Fight or Flight” – Not “Rest and Digest”
The Sympathetic Is Not Fundamentally a Fight-or-Flight System
The Parasympathetic System Should Not Be Described as a Rest-and-Digest System
Proposed Alternate Framework
Distinct Spheres of Regulatory Responsibility of the Sympathetic and Parasympathetic Divisions of the ANS
Functions Regulated via the Sympathetic Division
Functions Regulated via the Parasympathetic System
Proposed Rubric for Understanding Parasympathetic Functions
Parasympathetic Innervation of the Airways and Pulmonary Vasculature
Extending the Hypothesis to Interpret Relationships in Tissues with Dual Innervation
General Considerations
The Bladder
GI Tract
The Heart
The Eye
Application of the Hypothesis to Other Tissues
Anticipation and Dynamic Regulation
Challenges to Discerning the Significance and Nature of Autonomic Function
Possible Objections to the Proposed Pedagogy
Summary and Conclusions
- Inappropriate generalization from limited examples. While it is true that sympathetic activation during what Cannon called ‘emergency’ conditions inhibit digestive activity and mobilize metabolic resources and processes necessary to support intense skeletal muscular activity, sympathetic activity is also involved in diverse aspects of normal digestive activity and is continuously involved regulating processes such as the appropriate distribution of blood flow. It is an error to consider sympathetic activity and parasympathetic activity as either monolithic or consistently antagonistic. It is also an error to conclude that any example, no matter how vivid nor how commonplace, characterizes the essential nature of a system. Basing our view of autonomic function fundamentally on a dichotomy between states favorable and unfavorable to gastric motor and secretory activity cannot bear the burden of accurately organizing thinking about these systems.
- Conflation of effects of excitation with essential function. Introductory texts commonly provide tables or lists indicating, among other binaries, that the sympathetic system accelerates heart rate, and the parasympathetic system decelerates it. This is not the case. It is not a fiber population that produces the described effects, it is excitation of that fiber population that does so. Increased sympathetic drive to the pacemaker accelerates the heart, but decreased sympathetic drive to the pacemaker decelerates it. The reverse holds true for the parasympathetic supply. Tonically active nerve fibers may alter their activity in either direction, so we cannot say that a given nerve supply, even if consisting of only a single fiber type communicating with only a single receptor type, exists only to drive activity of target tissues in a single direction. For example, parasympathetic cardiac output regulates the cyclical modulation, both acceleration and deceleration, of heart rate that produces RSA. Similarly, the parasympathetic supply to the iris, and not the sympathetic, is responsible for the dynamic modulation of pupillary diameter, both increases and decreases, with sinusoidal variations in the light regime [66,278,279]. Neither the sympathetic nor the parasympathetic supplies are generically responsible for increasing or decreasing heart rate or pupillary diameter. Each can cause either effect depending on the circumstances, and the factors to which each respond are different. To understand the function of a nerve supply one must investigate the factors that elicit changes in its activity and for what purpose, not just how an increase in activity affects the target. The effect of excitation does not define the regulatory purpose of the respective pathways. To understand neural function, one must look not at the effects of mass activation but at how the respective systems are engaged in specific physiological contexts, and across a variety of such contexts.
- Conflation of the effects of intense, mass activation with essential function. The existence in any nerve trunk of diverse subpopulations of fibers with distinct targets, of various neurotransmitter receptor subtypes in target tissues, as well as the presence of multiple neuromodulatory co-transmitters, all contribute to the ability of a nerve supply to elicit a pattern of changes in target tissue function that is highly articulated both spatially and temporally. Indeed, articulated coordination of function is the very purpose of a nerve supply. To speak solely in terms of increases or decreases in the activity of targeted tissues simply because of limits in the resolution with which simple endpoints are measured is to overlook the essential regulatory functions of a given nerve supply. Further, the action of a system at its maximum intensity does not define its essential purpose and it is a logical error to assume that it does. The fact that sympathetic discharge is maximal when there is a physiological need to maximally raise cardiac output, increase energy availability (blood glucose, fatty acids, etc) and increase the rate of heat dissipation does not mean that the system exists fundamentally to respond to maximal demand, nor does the fact that impairment of the system has the greatest impact in situations of maximal demand imply this.
- The widespread emphasis on the role of the sympathetic division of the ANS with so-called fight-or-flight responses is among the most pernicious of the distortions of the traditional narrative. The sympathetic division provides the sole innervation of the kidney and the sympathetic supply to all parts of the nephron indicates a role for this system in the regulation of all the physiological functions of the kidneys. The same can be said of the sole sympathetic innervation of the great bulk of the systemic vasculature with respect to the distribution of blood flow [6], or the sole sympathetic innervation of adipose tissue [83,84,85,86,87,88,89]. Elegant experiments have directly demonstrated the reciprocal variation in the firing of premotor neurons that control adrenaline and noradrenaline release from the adrenal medulla in response to even slight changes in the normal range of blood glucose and blood pressure, respectively [71]. The sympathetic division is also involved in important aspects of normal digestive function, including regulation of associated cardiovascular changes associated, intestinal fluid fluxes, and feedback from the distal gut that influence gastric emptying and relaxation [13,82]. Postganglionic sympathetic fibers innervating the pineal gland - which arise from the superior cervical ganglion and are driven by inputs from the superchiasmatic nucleus of the hypothalamus - regulate pineal melatonin secretion and thus, the sleep-wake cycle [91,92]. Again, to insistently focus on the actions of elevated sympathetic activity under conditions of intense demand or its expectation is akin to teaching that the voice is fundamentally an emergency alerting system, that the limbs are stress limbs, or that the heart is an emergency hydraulic pump since each is maximally engaged under duress.
- The rubric of rest-and-digest to describe broadly parasympathetic regulatory responsibilities and a primary association of parasympathetic regulation with anabolic states is similarly problematic. The parasympathetic division certainly regulates a range of digestive activities, but as just noted, the sympathetic plays important roles in various aspects of digestion as well. Parasympathetic regulation of anabolic activity in the post-prandial state is not in question, but its role in other aspects of anabolism – for example the development of skeletal muscle mass or the regulation of adipose tissue mass and cellularity - is questionable at best. Cannon’s argument that the narrowing of the pupil in the presence of light functions to protect the retina and is thus an example of a generalized conservative or restorative role for the parasympathetic division is not as persuasive as is the view that parasympathetically-controlled variations in pupil diameter in response to light, and both lens curvature and pupil diameter in response to the nearness of the fixation point, are all aspects of parasympathetic participation in the visual task per se. These functions are just as important in intense emotional states as they are in the restful states, possibly moreso. Further, evidence that parasympathetic effects on cardiac function relate to dynamic aspects of cardiorespiratory coordination suggest that this innervation is likely to be relevant across the full range of physiological states. The rest-and-digest rubric does not seem to account for the functional significance of the innervation of specific vascular beds – pulmonary, genital, ocular choroid, cerebral and others – and such innervation is unlikely to be only or even primarily relevant to digestive or restful states or anabolism. The predominant parasympathetic innervation of the airways along with the parasympathetic innervation of the pulmonary vasculature is highly suggestive of a possible role in coordinating localized ventilation-perfusion matching throughout the respiratory tree, and if so, is likely again to be important across a range of physiological states, and perhaps of greatest importance during extreme exertion, where minimization of physiologic dead space may be critical to performance. Finally, Cannon himself discussed the role of parasympathetic activity in mediating engorgement of the genitals during sexual excitement. All these observations suggest that we should abandon the description of the parasympathetic system as primarily responsible for ‘rest-and-digest’ functions. The available evidence suggests that both divisions of the ANS cooperate in diverse physiological processes and states including those of digestion and rest, and that our concern ought to be focused on the nature of that cooperation rather than on a litany of questionable dichotomies.
The Proposed Alternative Narrative
- It argues against seeing the typically opposed effects of mass cholinergic vs. adrenergic stimulation or blockade as evidence of an essential oppositional relationship between the systems. It holds that respective divisions of the ANS use different final neurotransmitters to regulate different aspects of physiological regulation, and that the polarity of response to mass activation of each is not indicative of regulatory function per se.
- It develops a description of sympathetic regulatory responsibilities by considering first tissues that only or predominantly receive a sympathetic innervation, including the kidney, adipose tissue, the bulk of the systemic vasculature, sweat glands, the piloerector muscles, and the adrenal medulla (the first two of which are typically overlooked). It associates sympathetic function generally with the continuous regulation of the internal milieu, as Cannon aptly pointed out [20], across all behavioral states and not just aggressive/defensive states.
- In contrast, it describes parasympathetic regulation broadly as concerned with secretory and smooth muscle activity involved in coordinating interactions and exchanges with the outside world—eating, breathing, speaking, voiding, looking, mating, moving, etc—often closely articulated with associated somatic motor activity. This view dovetails with the proximity of nuclei containing parasympathetic preganglionic neurons with those of somatic motor neurons, and of the much lower latencies of the responses of target tissues to cholinergic compared to adrenergic signaling. Both may be related to the demand for rapid, fine coordination of musculoskeletal activity with various parasympathetically-controlled smooth muscle and secretory activities. This approach to understanding parasympathetic regulatory responsibilities is then applied to the interpretation of the potential functional importance of parasympathetic nerve supplies whose significance remains a topic of controversy or ignorance, including those of the pulmonary circulation and airway smooth muscle, or the cerebral circulation, among others.
- It advocates an emphasis on the unique capacity of autonomic outflow to mediate anticipatory adjustments in smooth muscle and secretory activity and deprecates seeing this outflow as solely responsible for responding to changed circumstances after they occur.
References
- Cannon WB. Bodily changes in pain, hunger, fear and rage : An account of recent researches into the function of emotional excitement. New York: D. Appleton; 1915.
- State OO. Divisions of the autonomic nervous system. Anatomy & Physiology. Corvallis, OR: Oregon State University; 2017. p. Chapter 16.1.
- Teff KL. Visceral nerves: vagal and sympathetic innervation. JPEN J Parenter Enteral Nutr. 2008;32(5):569-71. [CrossRef] [PubMed]
- Scott-Solomon E, Hsu Y-C. Neurobiology, Stem Cell Biology, and Immunology: An Emerging Triad for Understanding Tissue Homeostasis and Repair. Annual Review of Cell and Developmental Biology. 2022;38(1):419-46. [CrossRef] [PubMed]
- Jänig W, McLachlan EM. Neurobiology of the autonomic nervous system. In: Mathias CJ, Bannister SR, editors. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System. 4th ed ed. Oxford: Oxford University Press; 1999. p. 0.
- Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev. 2010;90(2):513-57. [CrossRef] [PubMed]
- Blessing WW. Inadequate frameworks for understanding bodily homeostasis. Trends Neurosci. 1997;20(6):235-9. Epub 1997/06/01. [PubMed]
- Langley JN. The autonomic nervous system, Part 1. Cambridge, Eng.: W. Heffer; 1921. 2 leaves, 80 p. p.
- Jänig W. The integrative action of the autonomic nervous system : neurobiology of homeostasis. Cambridge, United Kingdom ; New York, NY: Cambridge University Press,; 2022.
- Gibbins I. Functional organization of autonomic neural pathways. Organogenesis. 2013;9(3):169-75. Epub 20130606. [CrossRef] [PubMed] [PubMed Central]
- Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286-94. Epub 20120306. [CrossRef] [PubMed]
- Jänig W, McLachlan EM. Neurobiology of the autonomic nervous system. In: Mathias CJ, Bannister SR, editors. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System: Oxford University Press; 2013. p. 0.
- Furness JB, Callaghan BP, Rivera LR, Cho H-J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. In: Lyte M, Cryan JF, editors. Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. New York, NY: Springer New York; 2014. p. 39-71.
- Langley JN. The autonomic nervous system. Brain. 1903;26(1):1-26.
- Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. American Journal of Physiology-Heart and Circulatory Physiology. 2002;282(1):H6-H20. [CrossRef]
- Gaskell WH. On the Structure, Distribution and Function of the Nerves which innervate the Visceral and Vascular Systems. J Physiol. 1886;7(1):1-80.9. [CrossRef] [PubMed] [PubMed Central]
- Winslow JB. Exposition anatomique de la structure du corps humain : suivie du discours de Nicolaus Steno sur l'anatomie du cerveau. Paris: G. Desprez et J. Desessartz; 1732.
- von Euler US. The presence of a sympathomimetic substance in extracts of mammalian heart. J Physiol. 1946;105:38-44. [PubMed]
- von Euler US. A Specific Sympathomimetic Ergone in Adrenergic Nerve Fibres (Sympathin) and its Relations to Adrenaline and Nor-Adrenaline. Acta Physiologica Scandinavica. 1946;12(1):73-97. [CrossRef]
- Cannon WB. The wisdom of the body. New York,: W.W. Norton & Company; 1932. xv p., 1 l., 19-312 p. p.
- Cannon WB, de la Paz D. Emotional stimulation of adrenal secretion. Am J Physiol. 1911;28(1):64-70. [CrossRef]
- Cannon WB. The emergency function of the adrenal medulla in pain and the major emotions. American Journal of Physiology. 1914;33(2):356-72.
- McDougall W. An introduction to social psychology. London,: Methuen & co.; 1908. 2 p. l., vii-xv, 355, 1 p. p.
- Cannon WB, Shohl AT, Wright WS. Emotional glycosuria. Am J Physiol. 1911;29(2):280-7. [CrossRef]
- Nervous or emotional glycosurias. Journal of the American Medical Association. 1914;LXIII(6):485-6. [CrossRef]
- Cannon WB, Nice LB. The effect of adrenal secretion on muscular fatigue. American Journal of Physiology-Legacy Content. 1913;32(1):44-60. [CrossRef]
- Cannon WB, Gray H. Factors affecting the coagulation time of the blood II. The hastening or retarding of coagulation by adrenalin injections. Am J Physiol. 1914;34(2):232-42. [CrossRef]
- Cannon WB, Mendenhall WL. Factors affecting the coagulation time of the blood IV. The hastening of coagulation in pain and emotional excitement. Am J Physiol. 1914;34(2):251-61. [CrossRef]
- Cannon WB, Mendenhall WL. Factors affecting the coagulation time of the blood III. The hastening of coagulation by stimulating the splanchnic nerves. Am J Physiol. 1914;34(2):243-50. [CrossRef]
- Cannon WB, Lieb CW. The receptive relaxation of the stomach. American Journal of Physiology-Legacy Content. 1911;29(2):267-73. [CrossRef]
- Cannon WB, Washburn AL. An explanation of hunger. American Journal of Physiology-Legacy Content. 1912;29(5):441-54. [CrossRef]
- Pavlov IP, Thompson WH. The work of the digestive glands : lectures. London: Charles Griffin & Company; 1902. xii, 196, 35, 1 p. p.
- Cannon WB, Newton HF, Bright EM, Menkin V, Moore RM. Some aspects of the physiology of animals surviving complete exclusion of sympathetic nerve impulses. Am J Physiol. 1929;89(1):84-107. [CrossRef]
- Cybulski N, Szymonowicz W. O funkcyi nadnercza. Gazeta Lekarska. 1895;12:299-308.
- Oliver G, Schäfer EA. The physiological effects of extracts of the suprarenal capsules. J Physiol. 1895;18(3):230-76. [CrossRef]
- Bayliss WM, Starling EH. The mechanism of pancreatic secretion. The Journal of Physiology. 1902;28(5):325-53. [CrossRef]
- Starling EH. The Croonian Lectures ON THE CHEMICAL CORRELATION OF THE FUNCTIONS OF THE BODY - Lecture IV. The Lancet. 1905;166(4278):579-83. [CrossRef]
- Barman SM, Yates BJ. Deciphering the Neural Control of Sympathetic Nerve Activity: Status Report and Directions for Future Research. Frontiers in Neuroscience. 2017;11. [CrossRef]
- Ramchandra R, Barrett CJ, Guild SJ, Malpas SC. Evidence of differential control of renal and lumbar sympathetic nerve activity in conscious rabbits. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R701-8. Epub 20051020. [CrossRef] [PubMed]
- Malpas S, Guild SJ, Evans R. Responsiveness of the renal vasculature: relating electrical stimulation to endogenous nerve activity is problematic. Am J Physiol Renal Physiol. 2003;284(3):F594-5; author reply 5-6. [CrossRef] [PubMed]
- Malpas S, McAllen R. Electrical stimulation of the renal nerve neither replicates its natural burst pattern nor proves the importance of that pattern for renal function. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):R355-6. [CrossRef] [PubMed]
- Malpas SC, Evans RG. Do different levels and patterns of sympathetic activation all provoke renal vasoconstriction? Journal of the Autonomic Nervous System. 1998;69(1):72-82. [CrossRef]
- McAllen RM, Malpas SC. Sympathetic burst activity: characteristics and significance. Clin Exp Pharmacol Physiol. 1997;24(11):791-9. [CrossRef] [PubMed]
- Janssen B, Burke S, Malpas S, Head G. How are beat to beat changes in sympathetic activity coupled to beat to beat changes in organ blood flow: data from conscious rabbits. Fundamental & Clinical Pharmacology. 1997;11(S1):109s-s. [CrossRef]
- Malpas SC, Ninomiya I. A new approach to analysis of synchronized sympathetic nerve activity. Am J Physiol. 1992;263(4 Pt 2):H1311-7. [CrossRef] [PubMed]
- DiBona GF. Physiology in perspective: The Wisdom of the Body. Neural control of the kidney. Am J Physiol Regul Integr Comp Physiol. 2005;289(3):R633-41. [CrossRef] [PubMed]
- Barman SM, Fadel PJ, Vongpatanasin W, Victor RG, Gebber GL. Basis for the cardiac-related rhythm in muscle sympathetic nerve activity of humans. Am J Physiol Heart Circ Physiol. 2003;284(2):H584-97. Epub 20021024. [CrossRef] [PubMed]
- Barman SM. What can we learn about neural control of the cardiovascular system by studying rhythms in sympathetic nerve activity? Int J Psychophysiol. 2016;103:69-78. Epub 20150211. [CrossRef] [PubMed] [PubMed Central]
- Barman SM. Sympathetic nerve activity has more character than you may think. J Physiol. 2009;587(Pt 20):4767-8. [CrossRef] [PubMed] [PubMed Central]
- Julien C, Malpas SC, Stauss HM. Sympathetic modulation of blood pressure variability. J Hypertens. 2001;19(10):1707-12. [CrossRef] [PubMed]
- Das M, Gebber GL, Barman SM, Lewis CD. Fractal properties of sympathetic nerve discharge. J Neurophysiol. 2003;89(2):833-40. [CrossRef] [PubMed]
- Thomas EA, Bertrand PP, Bornstein JC. Genesis and role of coordinated firing in a feedforward network: a model study of the enteric nervous system. Neuroscience. 1999;93(4):1525-37. [CrossRef] [PubMed]
- Furness JB. The Enteric Nervous System. Malden, MA: Blackwell Publishing, Inc.; 2006.
- Lewis CD, Gebber GL, Larsen PD, Barman SM. Long-term correlations in the spike trains of medullary sympathetic neurons. J Neurophysiol. 2001;85(4):1614-22. [CrossRef] [PubMed]
- Osanlouy M, Bandrowski A, de Bono B, Brooks D, Cassarà AM, Christie R, et al. The SPARC DRC: Building a Resource for the Autonomic Nervous System Community. Frontiers in Physiology. 2021;Volume 12 - 2021. [CrossRef]
- Levick JR. An introduction to cardiovascular physiology. 5th ed. London: Hodder Arnold; 2010. xii, 414 p. p.
- Malpas SC. What sets the long-term level of sympathetic nerve activity: is there a role for arterial baroreceptors? Am J Physiol Regul Integr Comp Physiol. 2004;286(1):R1-r12. [CrossRef] [PubMed]
- Malpas SC, Leonard BL. Neural regulation of renal blood flow: a re-examination. Clin Exp Pharmacol Physiol. 2000;27(12):956-64. [CrossRef] [PubMed]
- Schiller AM, Pellegrino PR, Zucker IH. Renal nerves dynamically regulate renal blood flow in conscious, healthy rabbits. Am J Physiol Regul Integr Comp Physiol. 2016;310(2):R156-66. Epub 20151104. [CrossRef] [PubMed] [PubMed Central]
- Guyenet PG. The sympathetic control of blood pressure. Nature Reviews Neuroscience. 2006;7(5):335-46. [CrossRef]
- Anrep GV, Pascual W, Rossler R. Respiratory Variations of the Heart Rate. I.--The Reflex Mechanism of the Respiratory Arrhythmia. Proceedings of the Royal Society of London Series B, Biological Sciences. 1936;119(813):191-217.
- Anrep GV, Pascual W, Rossler R. Respiratory Variations of the Heart Rate. II.--The Central Mechanism of the Respiratory Arrhythmia and the Inter-Relations between the Central and the Reflex Mechanisms. Proceedings of the Royal Society of London Series B, Biological Sciences. 1936;119(813):218-30.
- Katona PG, Poitras JW, Barnett GO, Terry BS. Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol. 1970;218(4):1030-7. [CrossRef] [PubMed]
- Kunze DL. Reflex discharge patterns of cardiac vagal efferent fibres. J Physiol. 1972;222(1):1-15. [CrossRef] [PubMed] [PubMed Central]
- Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(4):961-6. [CrossRef] [PubMed]
- McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015;5(1):439-73. Epub 2015/01/16. [CrossRef] [PubMed] [PubMed Central]
- Loewenfeld IE. Mechanisms of reflex dilatation of the pupil; historical review and experimental analysis. Doc Ophthalmol. 1958;12:185-448. [CrossRef] [PubMed]
- Mathôt S, van der Linden L, Grainger J, Vitu F. The Pupillary Light Response Reveals the Focus of Covert Visual Attention. PLOS ONE. 2013;8(10):e78168. [CrossRef]
- Mathôt S. Pupillometry: Psychology, Physiology, and Function. J Cogn. 2018;1(1):16. Epub 20180221. [CrossRef] [PubMed] [PubMed Central]
- Cryer PE. Glucose counterregulation in man. Diabetes. 1981;30(3):261-4. [CrossRef] [PubMed]
- Verberne AJ, Sartor DM. Rostroventrolateral medullary neurons modulate glucose homeostasis in the rat. Am J Physiol Endocrinol Metab. 2010;299(5):E802-7. Epub 2010/09/03. [CrossRef] [PubMed]
- Sartor DM, Verberne AJ. Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am J Physiol Regul Integr Comp Physiol. 2002;282(4):R1174-84. Epub 2002/03/15. [CrossRef] [PubMed]
- Granger DN, Holm L, Kvietys P. The Gastrointestinal Circulation: Physiology and Pathophysiology. Compr Physiol. 2015;5(3):1541-83. [CrossRef] [PubMed]
- Sartor DM, Shulkes A, Verberne AJ. An enteric signal regulates putative gastrointestinal presympathetic vasomotor neurons in rats. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):R625-33. Epub 2005/10/22. [CrossRef] [PubMed]
- Vatner SF, Franklin D, Van Citters RL. Mesenteric vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol. 1970;219(1):170-4. [CrossRef] [PubMed]
- Fronek K, Stahlgren LH. Systemic and regional hemodynamic changes during food intake and digestion in nonanesthetized dogs. Circ Res. 1968;23(6):687-92. [CrossRef] [PubMed]
- Joyner MJ, Charkoudian N, Wallin BG. Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension. 2010;56(1):10-6. Epub 20100524. [CrossRef] [PubMed] [PubMed Central]
- Charkoudian N, Joyner MJ, Johnson CP, Eisenach JH, Dietz NM, Wallin BG. Balance between cardiac output and sympathetic nerve activity in resting humans: role in arterial pressure regulation. The Journal of Physiology. 2005;568(1):315-21. [CrossRef]
- Norvell JE, Anderson JM. Assessment of possible parasympathetic innervation of the kidney. J Auton Nerv Syst. 1983;8(3):291-4. Epub 1983/07/01. [CrossRef] [PubMed]
- Maeda S, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M. Origin of efferent fibers of the renal plexus in the rat autonomic nervous system. J Vet Med Sci. 2014;76(5):763-5. Epub 20140116. [CrossRef] [PubMed] [PubMed Central]
- Kopp UC. Neural Control of Renal Function. Integrated Systems Physiology: from Molecule to Function to Disease. San Rafael (CA)2011.
- Kvietys PR. The Gastrointestinal Circulation. San Rafael (CA): Morgan & Claypool Life Sciences Copyright © 2010 by Morgan & Claypool Life Sciences.; 2010.
- Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Lond). 2010;34 Suppl 1(0 1):S36-42. [CrossRef] [PubMed] [PubMed Central]
- Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Molecular and Cellular Endocrinology. 2010;318(1):34-43. [CrossRef]
- Bartness TJ, Song CK. Thematic review series: adipocyte biology. Sympathetic and sensory innervation of white adipose tissue. J Lipid Res. 2007;48(8):1655-72. Epub 20070425. [CrossRef] [PubMed]
- Giordano A, Song CK, Bowers RR, Ehlen JC, Frontini A, Cinti S, et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2006;291(5):R1243-R55. [CrossRef] [PubMed]
- Berthoud H-R, Fox EA, Neuhuber WL. Rebuttal: controversial white adipose tissue innervation by the vagus nerve: seeing is believing. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2007;293(1):R553-R4. [CrossRef]
- Shi H, Song CK, Giordano A, Cinti S, Bartness TJ. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2005;288(4):R1028-R37. [CrossRef] [PubMed]
- Bowers RR, Festuccia WT, Song CK, Shi H, Migliorini RH, Bartness TJ. Sympathetic innervation of white adipose tissue and its regulation of fat cell number. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R1167-75. [CrossRef] [PubMed]
- Morrison SF, Blessing WW. Central Nervous System Regulation of Body Temperature. In: Llewellyn-Smith IJ, Verberne AJM, editors. Central Regulation of Autonomic Functions: Oxford University Press; 2011. p. 0.
- Larsen PJ. Tracing autonomic innervation of the rat pineal gland using viral transneuronal tracing. Microsc Res Tech. 1999;46(4-5):296-304. [CrossRef] [PubMed]
- Larsen PJ, Enquist LW, Card JP. Characterization of the multisynaptic neuronal control of the rat pineal gland using viral transneuronal tracing. Eur J Neurosci. 1998;10(1):128-45. [CrossRef] [PubMed]
- Schomerus C, Korf H. Mechanisms Regulating Melatonin Synthesis in the Mammalian Pineal Organ. Annals of the New York Academy of Sciences. 2005;1057(1):372-83. [CrossRef]
- Jensen KJ, Alpini G, Glaser S. Hepatic nervous system and neurobiology of the liver. Compr Physiol. 2013;3(2):655-65. [CrossRef] [PubMed] [PubMed Central]
- Sartor DM, Verberne AJ. The sympathoinhibitory effects of systemic cholecystokinin are dependent on neurons in the caudal ventrolateral medulla in the rat. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1390-8. Epub 2006/06/24. [CrossRef] [PubMed]
- Wolf S, Wolff HG. Human gastric function, an experimental study of a man and his stomach [by] Stewart Wolf ... and Harold G. Wolff ... with a foreword by Walter B. Cannon. London, New York etc.: Oxford University Press; 1947. xvi, 262 p. incl. illus., plates, diagrs. p.
- Wolf S, Andrus WD. The effect of vagotomy on gastric function as determined in a fistulous human subject. Proc Am Fed Clin Res. 1947;3:66. [PubMed]
- Wolf S. The stomach. New York,: Oxford University Press; 1965. 321 p. p.
- Kaneko H, Taché Y, Kusugami K. Importance of medullary thyrotropin-releasing hormone in brain-gut circuits regulating gastric integrity: preclinical studies. J Gastroenterol. 2002;37 Suppl 14:128-32. [CrossRef] [PubMed]
- Lumsden SC, Clarkson AN, Cakmak YO. Neuromodulation of the Pineal Gland via Electrical Stimulation of Its Sympathetic Innervation Pathway. Front Neurosci. 2020;14:264. Epub 20200402. [CrossRef] [PubMed] [PubMed Central]
- Moller M, Baeres FM. The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res. 2002;309(1):139-50. Epub 20020518. [CrossRef] [PubMed]
- Davson H. Accommodation. Physiology of the Eye. London: Macmillan Education UK; 1990. p. 767-82.
- Loewenfeld IE, Lowenstein O. The pupil : anatomy, physiology, and clinical applications. 1st ed. Ames Detroit: Iowa State University Press ; Wayne State University Press; 1993.
- Raczkowska M, Eckberg DL, Ebert TJ. Muscarinic cholinergic receptors modulate vagal cardiac responses in man. J Auton Nerv Syst. 1983;7(3-4):271-8. [CrossRef] [PubMed]
- Ahren B, Taborsky GJ, Jr. The mechanism of vagal nerve stimulation of glucagon and insulin secretion in the dog. Endocrinology. 1986;118(4):1551-7. [CrossRef] [PubMed]
- Taborsky GJ, Jr. The physiology of glucagon. J Diabetes Sci Technol. 2010;4(6):1338-44. Epub 20101101. [CrossRef] [PubMed] [PubMed Central]
- Ahren B, Taborsky GJ, Jr., Porte D, Jr. Neuropeptidergic versus cholinergic and adrenergic regulation of islet hormone secretion. Diabetologia. 1986;29(12):827-36. Epub 1986/12/01. [PubMed]
- Osborn JW, Tyshynsky R, Vulchanova L. Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annual Review of Physiology. 2021;83(1):429-50. [CrossRef] [PubMed]
- Guild SJ, Austin PC, Navakatikyan M, Ringwood JV, Malpas SC. Dynamic relationship between sympathetic nerve activity and renal blood flow: a frequency domain approach. Am J Physiol Regul Integr Comp Physiol. 2001;281(1):R206-12. [CrossRef] [PubMed]
- Netter FH. The Ciba Collection of Medical Illustrations, Vol. 1: Nervous System : a Compilation of Paintings on the Normal and Pathologic Anatomy, with a Supplement on the Hypothalamus. Summit, New Jersey: CIBA Pharmaceutical Company; 1977.
- Barajas L, Wang P. Demonstration of acetylcholinesterase in the adrenergic nerves of the renal glomerular arterioles. J Ultrastruct Res. 1975;53(2):244-53. [CrossRef] [PubMed]
- Barajas L, Wang P, De Santis S. Light and electron microscopic localization of acetylcholinesterase activity in the rat renal nerves. Am J Anat. 1976;147(2):219-34. [CrossRef] [PubMed]
- Guyton AC. Long-term arterial pressure control: an analysis from animal experiments and computer and graphic models. Am J Physiol. 1990;259(5 Pt 2):R865-77. [CrossRef] [PubMed]
- Barajas L, Powers K, Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984;247(1 Pt 2):F50-60. [CrossRef] [PubMed]
- Malpas SC, Head GA, Anderson WP. Renal responses to increases in renal sympathetic nerve activity induced by brainstem stimulation in rabbits. J Auton Nerv Syst. 1996;61(1):70-8. [CrossRef] [PubMed]
- Browning KN, Zheng Z, Kreulen DL, Travagli RA. Two populations of sympathetic neurons project selectively to mesenteric artery or vein. Am J Physiol. 1999;276(4):H1263-72. [CrossRef] [PubMed]
- Blaszkiewicz M, Willows JW, Johnson CP, Townsend KL. The Importance of Peripheral Nerves in Adipose Tissue for the Regulation of Energy Balance. Biology. 2019;8(1):10. PubMed PMID:. [CrossRef]
- Bandler R, Carrive P. Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat. Brain Res. 1988;439(1-2):95-106. [CrossRef] [PubMed]
- Bandler R, Carrive P, Zhang SP. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog Brain Res. 1991;87:269-305. [CrossRef] [PubMed]
- Carrive P, Bandler R. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res. 1991;541(2):206-15. [CrossRef] [PubMed]
- Carrive P, Bandler R. Control of extracranial and hindlimb blood flow by the midbrain periaqueductal grey of the cat. Exp Brain Res. 1991;84(3):599-606. [CrossRef] [PubMed]
- Carrive P, Bandler R, Dampney RA. Somatic and autonomic integration in the midbrain of the unanesthetized decerebrate cat: a distinctive pattern evoked by excitation of neurones in the subtentorial portion of the midbrain periaqueductal grey. Brain Res. 1989;483(2):251-8. [CrossRef] [PubMed]
- Ruffolo RR. [Alpha]-adrenoceptors : molecular biology, biochemistry, and pharmacology. Basel ; New York: Karger; 1991. xiii, 225 p. p.
- Ruffolo RR. [Beta]-adrenoceptors : molecular biology, biochemistry, and pharmacology. Basel ; New York: Karger; 1991. xii, 240 p. p.
- Vatner SF, Franklin D, Van Citters RL. Coronary and visceral vasoactivity associated with eating and digestion in the conscious dog. Am J Physiol. 1970;219(5):1380-5. [CrossRef] [PubMed]
- Ostrin LA, Glasser A. Autonomic drugs and the accommodative system in rhesus monkeys. Exp Eye Res. 2010;90(1):104-12. Epub 20090924. [CrossRef] [PubMed] [PubMed Central]
- Pedersen E. Regulation of bladder and colon--rectum in patients with spinal lesions. J Auton Nerv Syst. 1983;7(3-4):329-38. [CrossRef] [PubMed]
- Miolan JP, Roman C. The role of oesophageal and intestinal receptors in the control of gastric motility. J Auton Nerv Syst. 1984;10(3-4):235-41. [CrossRef] [PubMed]
- Bieger D. The brainstem esophagomotor network pattern generator: a rodent model. Dysphagia. 1993;8(3):203-8. [CrossRef] [PubMed]
- Rogers RC, Hermann GE, Travagli RA. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J Physiol. 1999;514 ( Pt 2)(Pt 2):369-83. [CrossRef] [PubMed] [PubMed Central]
- Krassioukov A, Elliott S. Neural Control and Physiology of Sexual Function: Effect of Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2017;23(1):1-10. [CrossRef] [PubMed] [PubMed Central]
- Nadel JA. Parasympathetic nervous control of airway smooth muscle. Ann N Y Acad Sci. 1974;221:99-102. [CrossRef] [PubMed]
- Richardson JB. Nerve supply to the lungs. Am Rev Respir Dis. 1979;119(5):785-802. [CrossRef] [PubMed]
- van der Velden VH, Hulsmann AR. Autonomic innervation of human airways: structure, function, and pathophysiology in asthma. Neuroimmunomodulation. 1999;6(3):145-59. Epub 1999/04/24. [CrossRef] [PubMed]
- Jordan D. Central nervous pathways and control of the airways. Respir Physiol. 2001;125(1-2):67-81. Epub 2001/03/10. [PubMed]
- Canning BJ. Reflex regulation of airway smooth muscle tone. J Appl Physiol (1985). 2006;101(3):971-85. Epub 20060525. [CrossRef] [PubMed]
- Canning BJ, Woo A, Mazzone SB. Neuronal modulation of airway and vascular tone and their influence on nonspecific airways responsiveness in asthma. J Allergy (Cairo). 2012;2012:108149. Epub 2012/11/15. [CrossRef] [PubMed] [PubMed Central]
- Mazzone SB, Canning BJ. Evidence for differential reflex regulation of cholinergic and noncholinergic parasympathetic nerves innervating the airways. Am J Respir Crit Care Med. 2002;165(8):1076-83. Epub 2002/04/17. [CrossRef] [PubMed]
- Hahn HL, Graf PD, Nadel JA. Effect of vagal tone on airway diameters and on lung volume in anesthetized dogs. J Appl Physiol. 1976;41(4):581-9. [CrossRef] [PubMed]
- Karczewski W, Widdicombe JG. The effect of vagotomy, vagal cooling and efferent vagal stimulation on breathing and lung mechanics of rabbits. J Physiol. 1969;201(2):259-70. [CrossRef] [PubMed] [PubMed Central]
- Doidge JM, Satchell DG. Adrenergic and non-adrenergic inhibitory nerves in mammalian airways. J Auton Nerv Syst. 1982;5(2):83-99. [CrossRef] [PubMed]
- Coburn RF. Peripheral airway ganglia. Annu Rev Physiol. 1987;49:573-82. [CrossRef] [PubMed]
- Barnes PJ, Nadel JA, Skoogh BE, Roberts JM. Characterization of beta adrenoceptor subtypes in canine airway smooth muscle by radioligand binding and physiological responses. Journal of Pharmacology and Experimental Therapeutics. 1983;225(2):456-61.
- Carstairs JR, Nimmo AJ, Barnes PJ. Autoradiographic visualization of beta-adrenoceptor subtypes in human lung. Am Rev Respir Dis. 1985;132(3):541-7. [CrossRef] [PubMed]
- Barnes PJ. Beta-adrenoceptors on smooth muscle, nerves and inflammatory cells. Life Sci. 1993;52(26):2101-9. [CrossRef] [PubMed]
- Otis AB. A perspective of respiratory mechanics. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(5):1183-7. [CrossRef] [PubMed]
- Gabella G. Anatomy of airways smooth muscle. In: Raeburn D, Giembycz MA, editors. Airways Smooth Muscle: Structure, Innervation and Neurotransmission. Basel: Birkhäuser Verlag; 1994. p. 1-28.
- Belmonte KE. Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):297-304; discussion 11-2. [CrossRef] [PubMed]
- Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol. 2012;2(1):675-709. Epub 2012/01/01. [CrossRef] [PubMed] [PubMed Central]
- Barnes PJ, Liu SF. Regulation of pulmonary vascular tone. Pharmacol Rev. 1995;47(1):87-131. [PubMed]
- Kummer W. Pulmonary vascular innervation and its role in responses to hypoxia: size matters! Proc Am Thorac Soc. 2011;8(6):471-6. Epub 2011/11/05. [CrossRef] [PubMed]
- Amenta F, Cavallotti C, Ferrante F, Tonelli F. Cholinergic innervation of the human pulmonary circulation. Acta Anat (Basel). 1983;117(1):58-64. [CrossRef] [PubMed]
- Barnes PJ. Neural control of human airways in health and disease. Am Rev Respir Dis. 1986;134(6):1289-314. [CrossRef] [PubMed]
- Allen KM, Wharton J, Polak JM, Haworth SG. A study of nerves containing peptides in the pulmonary vasculature of healthy infants and children and of those with pulmonary hypertension. Br Heart J. 1989;62(5):353-60. [CrossRef] [PubMed] [PubMed Central]
- Partanen M, Laitinen A, Hervonen A, Toivanen M, Laitinen LA. Catecholamine- and acetylcholinesterase-containing nerves in human lower respiratory tract. Histochemistry. 1982;76(2):175-88. [CrossRef] [PubMed]
- Petersson J, Glenny RW. Gas exchange and ventilation–perfusion relationships in the lung. European Respiratory Journal. 2014;44(4):1023-41. [CrossRef]
- Slobod D, Damia A, Leali M, Spinelli E, Mauri T. Pathophysiology and clinical meaning of ventilation-perfusion mismatch in the acute respiratory distress syndrome. Biology. 2023;12(1):67. PubMed PMID:. [CrossRef]
- Mazzone SB, Undem BJ. Vagal Afferent Innervation of the Airways in Health and Disease. Physiol Rev. 2016;96(3):975-1024. [CrossRef] [PubMed] [PubMed Central]
- Hesser CM, Lind F. Role of airway resistance in the control of ventilation during exercise. Acta Physiol Scand. 1984;120(4):557-65. [CrossRef] [PubMed]
- Betts JG, Wise J, Young KA, Desaix P, Johnson E, Johnson JE, et al. Anatomy and physiology: OpenStax College; 2017.
- Koizumi K, Kollai M. Multiple modes of operation of cardiac autonomic control: development of the ideas from Cannon and Brooks to the present. J Auton Nerv Syst. 1992;41(1-2):19-29. [CrossRef] [PubMed]
- Kollai M, Koizumi K. Cardiac vagal and sympathetic nerve responses to baroreceptor stimulation in the dog. Pflugers Arch. 1989;413(4):365-71. [CrossRef] [PubMed]
- Koizumi K, Terui N, Kollai M. Effect of cardiac vagal and sympathetic nerve activity on heart rate in rhythmic fluctuations. J Auton Nerv Syst. 1985;12(2-3):251-9. [CrossRef] [PubMed]
- Koizumi K, Terui N, Kollai M. Neural control of the heart: significance of double innervation re-examined. J Auton Nerv Syst. 1983;7(3-4):279-94. [CrossRef] [PubMed]
- Koizumi K, Terui N, Kollai M, Brooks CM. Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc Natl Acad Sci U S A. 1982;79(6):2116-20. [CrossRef] [PubMed] [PubMed Central]
- Koizumi K, Kollai M. Control of reciprocal and non-reciprocal action of vagal and sympathetic efferents: study of centrally induced reactions. J Auton Nerv Syst. 1981;3(2-4):483-501. [CrossRef] [PubMed]
- Kollai M, Koizumi K. Cardiovascular reflexes and interrelationships between sympathetic and parasympathetic activity. J Auton Nerv Syst. 1981;4(2):135-48. [CrossRef] [PubMed]
- Kollai M, Koizumi K. The mechanisms of differential control in the sympathetic system studied by hypothalamic stimulation. J Auton Nerv Syst. 1980;2(4):377-89. [CrossRef] [PubMed]
- Kollai M, Koizumi K. Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart. J Auton Nerv Syst. 1979;1(1):33-52. [CrossRef] [PubMed]
- Kollai M, Koizumi K, Yamashita H, Brooks CM. Study of cardiac sympathetic and vagal efferent activity during reflex responses produced by stretch of the atria. Brain Res. 1978;150(3):519-32. [CrossRef] [PubMed]
- Saper CB, Stornetta RL. Chapter 23 - Central Autonomic System. In: Paxinos G, editor. The Rat Nervous System (Fourth Edition). San Diego: Academic Press; 2015. p. 629-73.
- de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5(1):327-96. [CrossRef] [PubMed] [PubMed Central]
- Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9(6):453-66. [CrossRef] [PubMed] [PubMed Central]
- Tack J, Demedts I, Meulemans A, Schuurkes J, Janssens J. Role of nitric oxide in the gastric accommodation reflex and in meal induced satiety in humans. Gut. 2002;51(2):219-24. Epub 2002/07/16. [PubMed]
- Paterson CA, Anvari M, Tougas G, Huizinga JD. Nitrergic and cholinergic vagal pathways involved in the regulation of canine proximal gastric tone: an in vivo study. Neurogastroenterol Motil. 2000;12(4):301-6. Epub 2000/07/08. doi: nmo209 [pii]. [PubMed]
- Hermann GE, Travagli RA, Rogers RC. Esophageal-gastric relaxation reflex in rat: dual control of peripheral nitrergic and cholinergic transmission. Am J Physiol Regul Integr Comp Physiol. 2006;290(6):R1570-6. Epub 2006/01/28. doi: 00717.2005 [pii]10.1152/ajpregu.00717.2005. [PubMed]
- Powley TL. Vagal circuitry mediating cephalic-phase responses to food. Appetite. 2000;34(2):184-8. Epub 2000/04/04. [CrossRef] [PubMed]
- Okano-Matsumoto S, McRoberts JA, Tache Y, Adelson DW. Electrophysiological evidence for distinct vagal pathways mediating CCK-evoked motor effects in the proximal versus distal stomach. J Physiol. 2011;589(Pt 2):371-93. Epub 20101115. [CrossRef] [PubMed] [PubMed Central]
- Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterology & Motility. 2019;31(4):e13546. [CrossRef]
- Ramkumar D, Schulze KS. The pylorus. Neurogastroenterology & Motility. 2005;17(s1):22-30. [CrossRef]
- Zalecki M. Localization and neurochemical characteristics of the extrinsic sympathetic neurons projecting to the pylorus in the domestic pig. Journal of Chemical Neuroanatomy. 2012;43(1):1-13. [CrossRef]
- Zhang T, Perkins MH, Chang H, Han W, de Araujo IE. An inter-organ neural circuit for appetite suppression. Cell. 2022;185(14):2478-94.e28. [CrossRef]
- Harper AA, Kidd C, Scratcherd T. Vago-vagal reflex effects on gastric and pancreatic secretion and gastrointestinal motility. J Physiol. 1959;148:417-36. Epub 1959/10/01. [PubMed]
- Raybould HE, Zittel TT, Holzer HH, Lloyd KC, Meyer JH. Gastroduodenal sensory mechanisms and CCK in inhibition of gastric emptying in response to a meal. Dig Dis Sci. 1994;39(12 Suppl):41S-3S. Epub 1994/12/01. [PubMed]
- Raybould HE, Lloyd KC. Integration of postprandial function in the proximal gastrointestinal tract. Role of CCK and sensory pathways. Ann N Y Acad Sci. 1994;713:143-56. Epub 1994/03/23. [PubMed]
- Van Citters GW, Lin HC. Ileal brake: neuropeptidergic control of intestinal transit. Curr Gastroenterol Rep. 2006;8(5):367-73. [CrossRef] [PubMed]
- Bojo L, Cassuto J, Nellgard P. Pain-induced inhibition of gastric motility is mediated by adrenergic and vagal non-adrenergic reflexes in the rat. Acta Physiol Scand. 1992;146(3):377-83. [CrossRef] [PubMed]
- Nakade Y, Tsuchida D, Fukuda H, Iwa M, Pappas TN, Takahashi T. Restraint stress delays solid gastric emptying via a central CRF and peripheral sympathetic neuron in rats. Am J Physiol Regul Integr Comp Physiol. 2005;288(2):R427-32. Epub 20040930. [CrossRef] [PubMed]
- Tache Y, Yang H, Miampamba M, Martinez V, Yuan PQ. Role of brainstem TRH/TRH-R1 receptors in the vagal gastric cholinergic response to various stimuli including sham-feeding. Auton Neurosci. 2006;125(1-2):42-52. Epub 20060306. [CrossRef] [PubMed] [PubMed Central]
- Powley TL. Vagal input to the enteric nervous system. Gut. 2000;47 Suppl 4:iv30-2; discussion iv6. Epub 2000/11/15. [PubMed]
- Walter GC, Phillips RJ, McAdams JL, Powley TL. Individual sympathetic postganglionic neurons coinnervate myenteric ganglia and smooth muscle layers in the gastrointestinal tract of the rat. Journal of Comparative Neurology. 2016;524(13):2577-603. [CrossRef]
- Berthoud HR, Powley TL. Interaction between parasympathetic and sympathetic nerves in prevertebral ganglia: morphological evidence for vagal efferent innervation of ganglion cells in the rat. Microsc Res Tech. 1996;35(1):80-6. Epub 1996/09/01. [CrossRef] [PubMed]
- Anderson RL, Jobling P, Matthew SE, Gibbins IL. Development of convergent synaptic inputs to subpopulations of autonomic neurons. Journal of Comparative Neurology. 2002;447(3):218-33. [CrossRef]
- Betts JG, Wise J, Young KA, Desaix P, Johnson E, Johnson JE, et al. Divisions of the Autonomic Nervous System. 2020.
- Kollai M, Koizumi K. Reciprocal effects of the steroid anesthetic (Althesin) on autonomic nerves innervating the heart. J Auton Nerv Syst. 1981;4(1):93-100. [CrossRef] [PubMed]
- Kollai M, Mizsei G. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol. 1990;424:329-42. [CrossRef] [PubMed] [PubMed Central]
- Grossman P, Kollai M. Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within- and between-individual relations. Psychophysiology. 1993;30(5):486-95. [CrossRef] [PubMed]
- Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39(5):801-5. [CrossRef] [PubMed]
- Levy MN. Cardiac sympathetic-parasympathetic interactions. Fed Proc. 1984;43(11):2598-602. [PubMed]
- Sunagawa K, Kawada T, Nakahara T. Dynamic nonlinear vago-sympathetic interaction in regulating heart rate. Heart Vessels. 1998;13(4):157-74. [CrossRef] [PubMed]
- Iriuchijima J, Kumada M. Activity of Single Vagal Fibers Efferent to the Heart. Jpn J Physiol. 1964;14:479-87. [CrossRef] [PubMed]
- Iriuchijima J, Kumada M. On the cardioinhibitory reflex originating from the superior laryngeal nerve. Jpn J Physiol. 1968;18(4):453-61. [CrossRef] [PubMed]
- Guz A, Innes JA, Murphy K. Respiratory modulation of left ventricular stroke volume in man measured using pulsed Doppler ultrasound. J Physiol. 1987;393:499-512. [CrossRef] [PubMed] [PubMed Central]
- Hoffman JI, Guz A, Charlier AA, Wilcken DE. Stroke volume in conscious dogs; effect of respiration, posture, and vascular occlusion. J Appl Physiol. 1965;20(5):865-77. [CrossRef] [PubMed]
- Rowell LB. Human cardiovascular control. New York: Oxford University Press; 1993. xv, 500 p. p.
- Taylor JA, Eckberg DL. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans. Circulation. 1996;93(8):1527-32. [CrossRef] [PubMed]
- Loewy AD, Spyer KM. Central regulation of autonomic functions. New York: Oxford University Press; 1990. xii, 390 p. p.
- Spyer KM. Central nervous integration of cardiovascular control. J Exp Biol. 1982;100:109-28. [CrossRef] [PubMed]
- Blessing WW. The lower brainstem and bodily homeostasis. New York: Oxford University Press; 1997. xiv, 575 p.
- Ciriello J, Caverson MM, Polosa C, Society for Neuroscience. Meeting. The Central neural organization of cardiovascular control. Amsterdam ; New York New York, NY, USA: Elsevier ; Sole distributors for the USA and Canada, Elsevier Science Pub. Co.; 1989. xviii, 334 p. p.
- Smith JC, Abdala AP, Borgmann A, Rybak IA, Paton JF. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 2013;36(3):152-62. Epub 20121217. [CrossRef] [PubMed] [PubMed Central]
- Kollai M, Koizumi K. Patterns of single unit activity in sympathetic postganglionic nerves. J Auton Nerv Syst. 1980;1(3):305-12. [CrossRef] [PubMed]
- Jewett DL. Activity of Single Efferent Fibres in the Cervical Vagus Nerve of the Dog, with Special Reference to Possible Cardio-Inhibitory Fibres. J Physiol. 1964;175:321-57. [CrossRef] [PubMed] [PubMed Central]
- Levy MN, Zieske H. Autonomic control of cardiac pacemaker activity and atrioventricular transmission. Journal of Applied Physiology. 1969;27(4):465-70. [CrossRef] [PubMed]
- Warner HR, Russell R. Effect of combined sympathetic and vagal stimulation on heart rate in the dog. Circulation Research. 1969;24(4):567-73. doi: doi:10.1161/01.RES.24.4.567.
- Warner HR, Cox A. A mathematical model of heart rate control by sympathetic and vagus efferent information. Journal of Applied Physiology. 1962;17(2):349-55. [CrossRef] [PubMed]
- Ng GA, Brack KE, Coote JH. Effects of direct sympathetic and vagus nerve stimulation on the physiology of the whole heart--a novel model of isolated Langendorff perfused rabbit heart with intact dual autonomic innervation. Exp Physiol. 2001;86(3):319-29. [CrossRef] [PubMed]
- Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol (1985). 1993;75(5):2310-7. [CrossRef] [PubMed]
- Franklin DL, Van Citters RL, Rushmer RF. Balance between right and left ventricular output. Circ Res. 1962;10:17-26. [CrossRef] [PubMed]
- Brown GL, Eccles JC. The action of a single vagal volley on the rhythm of the heart beat. J Physiol. 1934;82(2):211-41. [CrossRef] [PubMed] [PubMed Central]
- Hill-Smith I, Purves RD. Synaptic delay in the heart: an ionophoretic study. J Physiol. 1978;279:31-54. [CrossRef] [PubMed] [PubMed Central]
- Stankovski T, Cooke WH, Rudas L, Stefanovska A, Eckberg DL. Time-frequency methods and voluntary ramped-frequency breathing: a powerful combination for exploration of human neurophysiological mechanisms. J Appl Physiol (1985). 2013;115(12):1806-21. Epub 20131010. [CrossRef] [PubMed] [PubMed Central]
- Eckberg DL. The human respiratory gate. J Physiol. 2003;548(Pt 2):339-52. Epub 20030307. [CrossRef] [PubMed] [PubMed Central]
- Guyenet PG. Cardiorespiratory Integration. In: Llewellyn-Smith IJ, Verberne AJM, editors. Central Regulation of Autonomic Functions: Oxford University Press; 2011. p. 0.
- Janig W, Habler HJ. Specificity in the organization of the autonomic nervous system: a basis for precise neural regulation of homeostatic and protective body functions. Prog Brain Res. 2000;122:351-67. Epub 2000/03/29. [CrossRef] [PubMed]
- Janig W, McLachlan EM. Specialized functional pathways are the building blocks of the autonomic nervous system. J Auton Nerv Syst. 1992;41(1-2):3-13. Epub 1992/11/01. [CrossRef] [PubMed]
- Katayama K, Dominelli PB, Foster GE, Kipp S, Leahy MG, Ishida K, et al. Respiratory modulation of sympathetic vasomotor outflow during graded leg cycling. Journal of Applied Physiology. 2021;131(2):858-67. [CrossRef] [PubMed]
- Toska K, Eriksen M. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol. 1993;472:501-12. [CrossRef] [PubMed] [PubMed Central]
- Paton JFR, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: Vago-sympathetic interactions revisited. Brain Research Reviews. 2005;49(3):555-65. [CrossRef]
- Frasch MG. Heart Rate Variability Code: Does It Exist and Can We Hack It? Bioengineering (Basel). 2023;10(7). Epub 20230710. [CrossRef] [PubMed] [PubMed Central]
- Frasch MG, Giussani DA. Heart during acidosis: Etiology and early detection of cardiac dysfunction. EClinicalMedicine. 2021;37:100994. Epub 20210713. [CrossRef] [PubMed] [PubMed Central]
- Frasch MG. Fetal heart rate variability: An ocean of meanings beyond ups and downs. BJOG. 2023. Epub 20230206. [CrossRef] [PubMed]
- Loewenfeld IE, Lowenstein O. The pupil : anatomy, physiology, and clinical applications. Boston: Butterworth-Heinemann; 1999.
- Davson H. Physiology of the eye. 5th ed. New York: Pergamon Press; 1990. xii, 830 p. p.
- Davson H. The Pupil. Physiology of the Eye. London: Macmillan Education UK; 1990. p. 754-66.
- De Groot SG, Gebhard JW. Pupil size as determined by adapting luminance. J Opt Soc Am. 1952;42(7):492-5. [CrossRef] [PubMed]
- Lowenstein O, Loewenfeld IE. Role of sympathetic and parasympathetic systems in reflex dilation of the pupil; pupillographic studies. Arch Neurol Psychiatry. 1950;64(3):313-40. [CrossRef] [PubMed]
- Clarke RJ, Zhang H, Gamlin PD. Characteristics of the pupillary light reflex in the alert rhesus monkey. J Neurophysiol. 2003;89(6):3179-89. Epub 20030115. [CrossRef] [PubMed]
- Lowenstein O, Loewenfeld IE. Mutual role of sympathetic and parasympathetic in shaping of the pupillary reflex to light; pupillographic studies. Arch Neurol Psychiatry. 1950;64(3):341-77. [CrossRef] [PubMed]
- Ury B, Gellhorn E. Role of the sympathetic system in reflex dilatation of pupil. Journal of Neurophysiology. 1939;2(4):268-75. [CrossRef]
- Anderson HK. Reflex pupil-dilatation by way of the cervical sympathetic nerve. J Physiol. 1903;30(1):15-24. [CrossRef] [PubMed] [PubMed Central]
- Heller PH, Perry F, Jewett DL, Levine JD. Autonomic components of the human pupillary light reflex. Invest Ophthalmol Vis Sci. 1990;31(1):156-62. [PubMed]
- Mathôt S, van der Linden L, Grainger J, Vitu F. The pupillary light response reflects eye-movement preparation. J Exp Psychol Hum Percept Perform. 2015;41(1):28-35. [CrossRef] [PubMed]
- Passatore M. Physiological characterization of efferent cervical sympathetic fibers influenced by changes of illumination. Experimental Neurology. 1976;53(1):71-81. [CrossRef]
- Passatore M, Pettorossi VE, Casoni RP. Sympathetic preganglionic pupillodilator fibres in the light reflex. Experientia. 1977;33(2):218-9. [CrossRef] [PubMed]
- Passatore M, Pettorossi VE. Efferent fibers in the cervical sympathetic nerve influenced by light. Exp Neurol. 1976;52(1):66-82. [CrossRef] [PubMed]
- Okada H, Nakano O, Okamoto K, Nakayama K, Nisida I. The central path of the light reflex via the sympathetic nerve in the cat. Jpn J Physiol. 1960;10:646-58. [CrossRef] [PubMed]
- Nisida I, Okada H, Nakano O. The activity of the ciliospinal centers and their inhibition in pupillary light reflex. Jpn J Physiol. 1960;10:73-84. [CrossRef] [PubMed]
- Yoshitomi T, Ito Y. Double reciprocal innervations in dog iris sphincter and dilator muscles. Invest Ophthalmol Vis Sci. 1986;27(1):83-91. [PubMed]
- Karplus JP, Kreidl A. Über die Bahn des Pupillarreflexes. Pfluegers Arch Ges Physiol. 1912;149:115-55.
- Gilmartin B. A review of the role of sympathetic innervation of the ciliary muscle in ocular accommodation. Ophthalmic Physiol Opt. 1986;6(1):23-37. [PubMed]
- Tornqvist G. The relative importance of the parasympathetic and sympathetic nervous systems for accommodation in monkeys. Invest Ophthalmol. 1967;6(6):612-7. [PubMed]
- Mays LE, Gamlin PD. Neuronal circuitry controlling the near response. Curr Opin Neurobiol. 1995;5(6):763-8. [CrossRef] [PubMed]
- May PJ, Billig I, Gamlin PD, Quinet J. Central mesencephalic reticular formation control of the near response: lens accommodation circuits. J Neurophysiol. 2019;121(5):1692-703. Epub 20190306. [CrossRef] [PubMed] [PubMed Central]
- Ahren B. Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia. 2000;43(4):393-410. [CrossRef] [PubMed]
- Bloom SR, Vaughan NJ, Russell RC. Vagal control of glucagon release in man. Lancet. 1974;2(7880):546-9. [CrossRef] [PubMed]
- Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev. 2001;22(5):565-604. [CrossRef] [PubMed]
- Neuhuber W, Schrödl F. Autonomic control of the eye and the iris. Autonomic Neuroscience. 2011;165(1):67-79. [CrossRef]
- Jin K, Imada T, Hisamura R, Ito M, Toriumi H, Tanaka KF, et al. Identification of Lacrimal Gland Postganglionic Innervation and Its Regulation of Tear Secretion. Am J Pathol. 2020;190(5):1068-79. Epub 20200219. [CrossRef] [PubMed]
- Morris JL, Kondo M, Gibbins IL. Selective innervation of different target tissues in guinea-pig cranial exocrine glands by sub-populations of parasympathetic and sympathetic neurons. J Auton Nerv Syst. 1997;66(1-2):75-86. Epub 1997/10/23. [PubMed]
- Makhmutova M, Caicedo A. Optical Imaging of Pancreatic Innervation. Frontiers in Endocrinology. 2021;Volume 12 - 2021. [CrossRef]
- Holmgren S, Olsson C. Autonomic control of glands and secretion: a comparative view. Auton Neurosci. 2011;165(1):102-12. Epub 20101204. [CrossRef] [PubMed]
- Azadzoi KM, Siroky MB. Neurologic Factors in Female Sexual Function and Dysfunction. Korean J Urol. 2010;51(7):443-9.
- Toesca A, Stolfi VM, Cocchia D. Immunohistochemical study of the corpora cavernosa of the human clitoris. J Anat. 1996;188 ( Pt 3)(Pt 3):513-20. [PubMed] [PubMed Central]
- Giuliano F, Rampin O. Neural control of erection. Physiol Behav. 2004;83(2):189-201. [CrossRef] [PubMed]
- Claassen J, Thijssen DHJ, Panerai RB, Faraci FM. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiol Rev. 2021;101(4):1487-559. Epub 20210326. [CrossRef] [PubMed] [PubMed Central]
- Goadsby PJ. Chapter 16 - Autonomic nervous system control of the cerebral circulation. In: Buijs RM, Swaab DF, editors. Handbook of Clinical Neurology. 117: Elsevier; 2013. p. 193-201.
- Hamner JW, Tan CO, Tzeng Y-C, Taylor JA. Cholinergic control of the cerebral vasculature in humans. The Journal of Physiology. 2012;590(24):6343-52. [CrossRef]
- Cannon WB. Organization for physiological homeostasis. Physiological Reviews. 1929;9(3):399-431. [CrossRef]
- Sterling P, Eyer J. Allostasis: A new paradigm to explain arousal pathology. In: Fisher S, Reason J, editors. Handbook of life stress, cognition and health. New York: John Wiley & Sons; 1988. p. 629-49.
- Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH. Central Neural Control of Respiration and Circulation During Exercise. Comprehensive Physiology2011. p. 333-80.
- Zuntz N, Geppert J. Uber die Natur der normalen Atemreize und den Ort ihrer Wirkung. Arch Ges Physiol. 1886;38:337-8.
- Johansson JE. Uber die Einwirkung der Musdeltatigkeit auf die Atmun und die Herztatigkeit. Skand Arch Physiol. 1893;5:20-66.
- Hess WR, Brügger M. The Subcortical Center of the Affective Defense Reaction. In: Akert K, editor. Biological Order and Brain Organization: Selected Works of WRHess. Berlin, Heidelberg: Springer Berlin Heidelberg; 1981. p. 183-202.
- Fredericq L. De l’influence de la respiration sur la circulation. Première partie : Les oscillations respiratoires de la pression artérielle chez le chien. Arch Biol Paris. 1882;3:55-100.
- Heymans C. Über die Physiologie und Pharmakologie des Herz-Vagus-Zentrums. Ergebnisse der Physiologie. 1929;28(1):244-311. [CrossRef]
- Marson L. Autonomic Regulation of Sexual Function. In: Llewellyn-Smith IJ, Verberne AJM, editors. Central Regulation of Autonomic Functions: Oxford University Press; 2011. p. 0.
- Takagi M, Abe H, Toda H, Usui T. Accommodative and pupillary responses to sinusoidal target depth movement. Ophthalmic Physiol Opt. 1993;13(3):253-7. [CrossRef] [PubMed]
- Clarke RJ, Ikeda H. Luminance detectors in the olivary pretectal nucleus and their relationship to the pupillary light reflex in the rat. II. Studies using sinusoidal light. Exp Brain Res. 1985;59(1):83-90. [CrossRef] [PubMed]
| Rank | Medication | Number of prescriptions (2020) | Number of patients (2020) | Class | |
| 6 | Metoprolol | 66,413,692 | 15,007,908 | beta adrenergic antagonist | |
| 7 | Albuterol | 61,948,347 | 17,902,020 | beta2 adrenergic agonist | |
| 21 | Trazodone | 26,210,731 | 5,294,364 | 5-HT-2A receptor, H1 receptor, and alpha-1-adrenergic receptor antagonist | |
| 24 | Tamsulosin | 24,692,402 | 5,856,108 | selective alpha1A-adrenergic receptor antagonist | |
| 26 | Carvedilol | 23,159,628 | 4,948,170 | beta1, beta2, alpha1 adrenergic blocker | |
| 53 | Atenolol | 12,860,512 | 3,143,500 | beta1 selective beta blocker | |
| 75 | Clonidine | 9,867,546 | 1,956,023 | alpha2 adrenergic agonist | |
| 84 | Tizanidine | 8,705,644 | 2,269,444 | alpha2 adrenergic agonist | |
| 115 | Fluticasone; Vilanterol | 5,678,546 | 1,087,587 | glucocorticoid agonist; long lasting beta2 agonist |
|
| 143 | Timolol | 4,295,412 | 949,166 | beta2 adrenergic antagonist | |
| 150 | Albuterol; Ipratropium | 3,967,936 | 902,034 | beta2 adrenergic agonist; acetylcholine antagonist |
|
| 160 | Mirabegron | 3,570,676 | 838,764 | beta3 adrenergic agonist | |
| 175 | Brimonidine | 3,271,308 | 860,260 | alpha2 adrenergic agonist | |
| 181 | Phentermine | 3,071,041 | 824,329 | indirect sympathomimetic | |
| 190 | Prazosin | 2,675,264 | 460,446 | alpha1 adrenergic inverse agonist | |
| 195 | Dorzolamide; Timolol | 2,482,440 | 604,169 | carboanhydrase II inhibitor; beta adrenergic antagonist |
|
| 209 | Doxazosin | 2,303,044 | 559,689 | alpha1 adrenergic antagonist | |
| 210 | Labetalol | 2,301,338 | 586,272 | alpha and beta adrenergic antagonist | |
| 211 | Terazosin | 2,285,079 | 612,834 | alpha1 adrenergic antagonist | |
| 224 | Fluticasone; Umeclidinium; Vilanterol | 2,125,887 | 463,445 | glucocorticoid agonist; muscarinic antagonist; beta1 agonist |
|
| 239 | Nebivolol | 1,889,275 | 492,665 | b1 selective adrenergic antagonist | |
| 251 | Epinephrine | 1,730,366 | 1,221,585 | adrenergic agonist | |
| 254 | Umeclidinium; Vilanterol | 1,668,008 | 380,037 | muscarinic antagonist; adrenergic agonist |
|
| 256 | Brimonidine; Timolol | 1,661,947 | 344,927 | alpha2 adrenergic antagonist; beta2 adrenergic antagonist |
|
| 267 | Bisoprolol | 1,467,218 | 351,588 | beta1 adrenergic antagonist | |
| 288 | Formoterol; Mometasone | 1,218,644 | 277,290 | beta2 adrenergic agonist | |
| 290 | Bisoprolol; Hydrochlorothiazide | 1,205,616 | 299,975 | beta1 adrenergic antagonist; thiazide diuretic |
|
| 300 | Guanfacine | 1,082,830 | 271,573 | alpha2a adrenergic agonist | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
