Submitted:
20 October 2025
Posted:
21 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Study Details
2.2. Food Consumption Data
2.3. Linking Food Consumption and Residue Concentration Data
2.4. Identifying Latent Consumers Subgroups
3. Results
3.1. Characteristics of Survey Participants
3.2. Analysis of Participants' Attitudes and Perceptions
3.2.1. Principal Components Underlying the Participants’ Attitudes
3.2.2. Latent Profile Analysis
3.2.3. Latent Profiles Descriptions
3.3. Estimation of Exposure and Risk Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Demographic variables | Frequency | Percentage | |
| Gender | Female | 763 | 57.9% |
| Male | 555 | 42.1% | |
| Age | 18 – 24 | 96 | 7.3% |
| 25 – 34 | 89 | 6.8% | |
| 35 – 44 | 194 | 14.7% | |
| 45 – 54 | 539 | 40.9% | |
| 55 – 64 | 338 | 25.6% | |
| ≥ 65 | 62 | 4.7% | |
| Educational background | Less than high school | 3 | 0.2% |
| High school – Technical education | 203 | 15.4% | |
| Bachelor’s degree | 478 | 36.3% | |
| Master's degree | 519 | 39.4% | |
| Doctoral degree | 115 | 8.7% | |
| Residential geographical area | Northern Greece | 472 | 35.8% |
| Central Greece | 421 | 31.9% | |
| Southern Greece | 425 | 32.2% | |
| Population of place of residence | Less than 10,000 inhabitants (rural) | 297 | 22.5% |
| More than 10,000 inhabitants (urban) | 1021 | 77.5% | |
| Underage children in the family | No | 760 | 57.7% |
| Yes | 558 | 42.3% | |
| Plenty of spare time | Νο | 571 | 43.3% |
| Yes | 747 | 56.7% | |
| Smoking habits | Νο | 1042 | 79.1% |
| Yes | 276 | 20.9% | |
| Vegetarian by choice | Νο | 1266 | 96.1% |
| Yes | 52 | 3.9% | |
| Physical activity habits | Never | 243 | 13.2% |
| Occasionally (< 1–2 times/month) | 1207 | 65.4% | |
| Often (3–4 times/month) | 396 | 21.4% | |
| Habitually (> 2 times/week) | |||
| Professional or amateur pesticide users | Νο | 919 | 69.7% |
| Yes | 399 | 30.3% | |
| Occupation | Civil servants | 729 | 55.3% |
| Private employees | 227 | 17.2% | |
| Self–employed | 142 | 10.8% | |
| Farmers | 25 | 1.9% | |
| Unemployed | 44 | 3.3% | |
| University students | 89 | 6.8% | |
| Retired | 62 | 4.7% | |
|
Original variables |
Principal components | Uniqueness (3) | ||||||||||
| SPS | PAG | POC | GES | FVC | CPD | PIC | ||||||
| Specialized sources | Professional & advocacy guidance | Potato consumption | General sources | Fruit/vegetable consumption | Certified products | Pesticide confidence | ||||||
| Official Websites | 0.825 | 0.332 | ||||||||||
| Public Agency Bulletins | 0.807 | 0.320 | ||||||||||
| Specialized Journals (Agriculture, Nutrition, etc.) | 0.784 | 0.385 | ||||||||||
| News Websites | 0.702 | 0.372 | ||||||||||
| Agronomists | 0.525 | 0.378 | ||||||||||
| Dietitian–Nutritionist | 0.771 | 0.426 | ||||||||||
| Consumer Organizations | 0.752 | 0.352 | ||||||||||
| Environmental–Ecological Organizations | 0.750 | 0.395 | ||||||||||
| Health Professionals | 0.696 | 0.393 | ||||||||||
| Moussaka Consumption | 0.867 | 0.238 | ||||||||||
| Potato Salad Consumption | 0.781 | 0.371 | ||||||||||
| Boiled Potato Consumption | 0.750 | 0.422 | ||||||||||
| Baked Potato Consumption | 0.708 | 0.475 | ||||||||||
| Television–Radio | 0.810 | 0.335 | ||||||||||
| Online Newspapers | 0.755 | 0.356 | ||||||||||
| Newspapers–Magazines | 0.673 | 0.411 | ||||||||||
| Vegetable Consumption (Fresh/Processed) | 0.815 | 0.349 | ||||||||||
| Fruit Consumption (Fresh/Processed) | 0.805 | 0.362 | ||||||||||
| Adherence to Traditional Greek Cuisine | 0.691 | 0.498 | ||||||||||
| Consumption of Certified Products | 0.874 | 0.276 | ||||||||||
| Certified Origin Products Consumption | 0.857 | 0.280 | ||||||||||
| Organic Fruits and Vegetables Consumption | 0.529 | 0.501 | ||||||||||
| Proper Pesticide Application Ensures Consumer Safety | 0.854 | 0.283 | ||||||||||
| Pesticide Benefits Outweigh Risks | 0.847 | 0.289 | ||||||||||
| Sum of the squared loadings | 2.94 | 2.56 | 2.45 | 1.99 | 1.84 | 1.82 | 1.62 | |||||
| Scale reliability (McDonald's ω) | 0.82 | 0.78 | 0.79 | 0.79 | 0.70 | 0.70 | 0.66 | |||||
| Explained variance % | 12.24 | 10.65 | 10.19 | 8.27 | 7.66 | 7.59 | 6.73 | |||||
| Cumulative variance % | 12.24 | 22.89 | 33.08 | 41.35 | 49.01 | 56.6 | 63.33 | |||||
| Bartlett's Test of Sphericity | X2 = 9,971.9; df = 276; p < 0.001 | |||||||||||
| KMO Measure of Sampling Adequacy test | 0.765 | |||||||||||
| Pesticide | ADI | LOQ | Positive samples (% in brackets) |
Mean positive samples residues | Non detects (% in brackets) |
Mean non-detects residues (LOQ/2) | Average residue concentration |
| mg/kg bw/day | mg/kg | mg/kg | mg/kg | mg/kg | |||
| imidacloprid | 0.060* | 0.01 | 8 (3.5%) | 0.024 | 223 (96.5%) | 0.005 | 0.006 |
| flutolanil | 0.090* | 0.01 | 2 (0.9%) | 0.021 | 229 (99.1%) | 0.005 | 0.005 |
| propamocarb | 0.290* | 0.01 | 9 (3.9%) | 0.017 | 222 (96.1%) | 0.005 | 0.005 |
| dimethomorph | 0.050* | 0.01 | 4 (1.7%) | 0.016 | 227 (98.3%) | 0.005 | 0.005 |
| fenamiphos | 0.001* | 0.01 | 1 (0.4%) | 0.022 | 230 (99.6%) | 0.005 | 0.005 |
| fluaziphop-p | 0.010* | 0.01 | 3 (1.3%) | 0.078 | 228 (98.7%) | 0.005 | 0.006 |
| fluopicolide | 0.080* | 0.01 | 3 (1.3%) | 0.016 | 228 (98.7%) | 0.005 | 0.005 |
| fluopyram | 0.012* | 0.01 | 7 (3.0%) | 0.017 | 224 (97.0%) | 0.005 | 0.005 |
| fosthiazate | 0.004* | 0.01 | 6 (2.6%) | 0.050 | 225 (97.4%) | 0.005 | 0.006 |
| lambda-cyhalothrin | 0.003* | 0.01 | 2 (0.9%) | 0.017 | 229 (99.1%) | 0.005 | 0.005 |
| mancozeb | 0.023* | 0.01 | 3 (1.3%) | 0.114 | 228 (98.7%) | 0.005 | 0.006 |
| metalaxyl and metalaxyl-M | 0.080* | 0.01 | 6 (2.6%) | 0.015 | 225 (97.4%) | 0.005 | 0.005 |
| permethrin | 0.050** | 0.01 | 1 (0.4%) | 0.078 | 230 (99.6%) | 0.005 | 0.005 |
| Pesticide active substance | HELLANS 2024–2025 | HELLANS 2024–2025 - LPA1 | HELLANS 2024–2025 - LPA2 | ||||
| mean potato consumption | 99th percentile potato consumption | mean potato consumption | 99th percentile potato consumption | mean potato consumption | 99th percentile potato consumption | ||
| imidacloprid | mg/kg bw per day | 0.007 | 0.041 | 0.004 | 0.012 | 0.014 | 0.058 |
| % of ADI | 0.01% | 0.07% | 0.01% | 0.02% | 0.02% | 0.10% | |
| fosthiazate | mg/kg bw per day | 0.007 | 0.041 | 0.004 | 0.012 | 0.014 | 0.058 |
| % of ADI | 0.18% | 1.02% | 0.11% | 0.29% | 0.34% | 1.45% | |
| fluopyram | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.01% | 0.03% | 0.00% | 0.01% | 0.01% | 0.04% | |
| lambda cyhalothrin | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.24% | 1.36% | 0.15% | 0.38% | 0.46% | 1.94% | |
| mancozeb | mg/kg bw per day | 0.007 | 0.041 | 0.004 | 0.012 | 0.014 | 0.058 |
| % of ADI | 0.03% | 0.18% | 0.02% | 0.05% | 0.06% | 0.25% | |
| metalaxyl & metalaxyl–M | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.01% | 0.04% | 0.00% | 0.01% | 0.01% | 0.06% | |
| fenamiphos | mg/kg bw per day | 0.007 | 0.041 | 0.004 | 0.012 | 0.014 | 0.058 |
| % of ADI | 0.91% | 5.08% | 0.56% | 1.44% | 1.72% | 7.27% | |
| propamocarb | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.00% | 0.01% | 0.00% | 0.00% | 0.00% | 0.02% | |
| flutolanil | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.01% | 0.04% | 0.00% | 0.01% | 0.01% | 0.05% | |
| dimethomorph | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.01% | 0.07% | 0.01% | 0.02% | 0.02% | 0.10% | |
| permethrin | mg/kg bw per day | 0.006 | 0.034 | 0.004 | 0.010 | 0.011 | 0.048 |
| % of ADI | 0.01% | 0.07% | 0.01% | 0.02% | 0.02% | 0.10% | |
| Hazard Index 1 | 0.014 | 0.080 | 0.009 | 0.023 | 0.027 | 0.114 |
References
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and Human Health. Critical Reviews in Food Science and Nutrition 2009, 49, 823–840. [CrossRef]
- Burgos, G.; Zum Felde, T.; Andre, C.; Kubow, S. The Potato and Its Contribution to the Human Diet and Health. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, 2020; pp. 37–74 ISBN 978-3-030-28682-8.
- FAO. New Light on a Hidden Treasure: International Year of the Potato 2008; an End-of-Year Review; FAO, Ed.; Food and Agriculture Organization of the United Nations: Rome, 2009; ISBN 978-92-5-106142-8.
- Devaux, A.; Goffart, J.-P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-Food Systems. Potato Res. 2021, 64, 681–720. [CrossRef]
- Devaux, A.; Goffart, J.-P.; Petsakos, A.; Kromann, P.; Gatto, M.; Okello, J.; Suarez, V.; Hareau, G. Global Food Security, Contributions from Sustainable Potato Agri-Food Systems. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer International Publishing: Cham, 2020; pp. 3–35 ISBN 978-3-030-28682-8.
- Zaheer, K.; Akhtar, M.H. Potato Production, Usage, and Nutrition—A Review. Critical Reviews in Food Science and Nutrition 2016, 56, 711–721. [CrossRef]
- Wandel, M.; Fagerli, R.; Kjærnes, U. Changes in Potato Consumption in Different Stages of Life in Norway. Appetite 2001, 36, 211–223. [CrossRef]
- Fernqvist, F.; Spendrup, S.; Ekelund, L. Changing Consumer Intake of Potato, a Focus Group Study. British Food Journal 2015, 117, 210–221. [CrossRef]
- Wood, K.; Carragher, J.; Davis, R. Australian Consumers’ Insights into Potatoes - Nutritional Knowledge, Perceptions and Beliefs. Appetite 2017, 114, 169–174. [CrossRef]
- Gustavsen, G.W. Sustainability and Potato Consumption. Potato Res. 2021, 64, 571–586. [CrossRef]
- Paschalidis, Ch.D.; Petropoulos, D.P.; Paschalidis, D.C.; Sotiropoulos, S.S.; Chamurliev, G.O.; Papakonstantinou, L.D. The Importance of Agricultural Land Used in the Production of Agricultural Products in Greece. Journal of Statistical and Econometric Methods 2021, 1–14. [CrossRef]
- Hellenic Ministry of Rural Development and Food. Statistical Data on Areas and Production of Plant Products. Available online: https://www.minagric.gr/statistikes-tekmiriosi/statistikes-diadikasies-dedomena/statistika-stoixeia-ektaseon-kai-paragogis-fytikon-proionton. Accessed on 04 Sep. 2025.
- Liu, B.; Gu, W.; Yang, Y.; Lu, B.; Wang, F.; Zhang, B.; Bi, J. Promoting Potato as Staple Food Can Reduce the Carbon–Land–Water Impacts of Crops in China. Nat Food 2021, 2, 570–577. [CrossRef]
- Gao, Y.; Alyokhin, A.; Prager, S.M.; Reitz, S.; Huseth, A. Complexities in the Implementation and Maintenance of Integrated Pest Management in Potato. Annual Review of Entomology 2025, 70, 45–63. [CrossRef]
- Ziogas, B.N.; Markoglou, A.N.; Theodosiou, D.I.; Anagnostou, A.; Boutopoulou, S. A High Multi-Drug Resistance to Chemically Unrelated Oomycete Fungicides in Phytophthora Infestans. Eur J Plant Pathol 2006, 115, 283–292. [CrossRef]
- Cooke, L.R.; Schepers, H.T.A.M.; Hermansen, A.; Bain, R.A.; Bradshaw, N.J.; Ritchie, F.; Shaw, D.S.; Evenhuis, A.; Kessel, G.J.T.; Wander, J.G.N.; et al. Epidemiology and Integrated Control of Potato Late Blight in Europe. Potato Res. 2011, 54, 183–222. [CrossRef]
- Kroschel, J.; Schaub, B. Biology and Ecology of Potato Tuber Moths as Major Pests of Potato. In Insect Pests of Potato; Elsevier, 2013; pp. 165–192 ISBN 978-0-12-386895-4.
- Kocourek, F.; Dolezal, P.; Hausvater, E.; Horska, T.; Sopko, B.; Sedlak, P.; Sedlakova, V.; Stara, J. Six-Year Monitoring of Pesticide Resistance in the Colorado Potato Beetle (Leptinotarsa Decemlineata Say) during a Neonicotinoid Restriction Period. PLoS ONE 2024, 19, e0303238. [CrossRef]
- European Food Safety Authority (EFSA); Brancato, A.; Brocca, D.; De Lentdecker, C.; Erdos, Z.; Ferreira, L.; Greco, L.; Jarrah, S.; Kardassi, D.; Leuschner, R.; et al. Review of the Existing Maximum Residue Levels for Chlorpyrifos According to Article 12 of Regulation (EC) No 396/2005. EFS2 2017, 15. [CrossRef]
- European Food Safety Authority (EFSA) Statement on the Available Outcomes of the Human Health Assessment in the Context of the Pesticides Peer Review of the Active Substance Chlorpyrifos. EFS2 2019, 17. [CrossRef]
- Simoglou, K.B.; Roditakis, E. Consumers’ Benefit—Risk Perception on Pesticides and Food Safety—A Survey in Greece. Agriculture 2022, 12, 192. [CrossRef]
- Koch, S.; Epp, A.; Lohmann, M.; Böl, G.-F. Pesticide Residues in Food: Attitudes, Beliefs, and Misconceptions among Conventional and Organic Consumers. Journal of Food Protection 2017, 80, 2083–2089. [CrossRef]
- Nitzko, S.; Bahrs, E.; Spiller, A. Pesticide Residues in Food and Drinking Water from the Consumerʼs Perspective: The Relevance of Maximum Residue Levels and Product-Specific Differences. Sustainable Production and Consumption 2022, 30, 787–798. [CrossRef]
- Simoglou, K.B.; Skarpa, P.El.; Roditakis, E. Pesticides and Eroding Food Citizenship: Understanding Individuals’ Perspectives on the Greek Food System. Agrochemicals 2025, 4, 3. [CrossRef]
- Sandoval-Insausti, H.; Chiu, Y.-H.; Lee, D.H.; Wang, S.; Hart, J.E.; Mínguez-Alarcón, L.; Laden, F.; Ardisson Korat, A.V.; Birmann, B.; Heather Eliassen, A.; et al. Intake of Fruits and Vegetables by Pesticide Residue Status in Relation to Cancer Risk. Environment International 2021, 156, 106744. [CrossRef]
- Baudry, J.; Rebouillat, P.; Samieri, C.; Berlivet, J.; Kesse-Guyot, E. Dietary Pesticide Exposure and Non-Communicable Diseases and Mortality: A Systematic Review of Prospective Studies among Adults. Environ Health 2023, 22, 76. [CrossRef]
- Cavalier, H.; Trasande, L.; Porta, M. Exposures to Pesticides and Risk of Cancer: Evaluation of Recent Epidemiological Evidence in Humans and Paths Forward. Intl Journal of Cancer 2023, 152, 879–912. [CrossRef]
- Rebouillat, P.; Vidal, R.; Cravedi, J.-P.; Taupier-Letage, B.; Debrauwer, L.; Gamet-Payrastre, L.; Touvier, M.; Deschasaux-Tanguy, M.; Latino-Martel, P.; Hercberg, S.; et al. Prospective Association between Dietary Pesticide Exposure Profiles and Postmenopausal Breast-Cancer Risk in the NutriNet-Santé Cohort. International Journal of Epidemiology 2021, 50, 1184–1198. [CrossRef]
- Rebouillat, P.; Vidal, R.; Cravedi, J.-P.; Taupier-Letage, B.; Debrauwer, L.; Gamet-Payrastre, L.; Guillou, H.; Touvier, M.; Fezeu, L.K.; Hercberg, S.; et al. Prospective Association between Dietary Pesticide Exposure Profiles and Type 2 Diabetes Risk in the NutriNet-Santé Cohort. Environ Health 2022, 21, 57. [CrossRef]
- Reiss, R.; Johnston, J.; Tucker, K.; DeSesso, J.M.; Keen, C.L. Estimation of Cancer Risks and Benefits Associated with a Potential Increased Consumption of Fruits and Vegetables. Food and Chemical Toxicology 2012, 50, 4421–4427. [CrossRef]
- Valcke, M.; Bourgault, M.-H.; Rochette, L.; Normandin, L.; Samuel, O.; Belleville, D.; Blanchet, C.; Phaneuf, D. Human Health Risk Assessment on the Consumption of Fruits and Vegetables Containing Residual Pesticides: A Cancer and Non-Cancer Risk/Benefit Perspective. Environment International 2017, 108, 63–74. [CrossRef]
- Chiu, Y.-H.; Sandoval-Insausti, H.; Ley, S.H.; Bhupathiraju, S.N.; Hauser, R.; Rimm, E.B.; Manson, J.E.; Sun, Q.; Chavarro, J.E. Association between Intake of Fruits and Vegetables by Pesticide Residue Status and Coronary Heart Disease Risk. Environment International 2019, 132, 105113. [CrossRef]
- Chiu, Y.H.; Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Petrozza, J.C.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Fruit and Vegetable Intake and Their Pesticide Residues in Relation to Semen Quality among Men from a Fertility Clinic. Human Reproduction 2015, 30, 1342–1351. [CrossRef]
- Chiu, Y.-H.; Williams, P.L.; Gillman, M.W.; Gaskins, A.J.; Mínguez-Alarcón, L.; Souter, I.; Toth, T.L.; Ford, J.B.; Hauser, R.; Chavarro, J.E.; et al. Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology. JAMA Intern Med 2018, 178, 17. [CrossRef]
- Sandoval-Insausti, H.; Chiu, Y.-H.; Wang, Y.-X.; Hart, J.E.; Bhupathiraju, S.N.; Mínguez-Alarcón, L.; Ding, M.; Willett, W.C.; Laden, F.; Chavarro, J.E. Intake of Fruits and Vegetables According to Pesticide Residue Status in Relation to All-Cause and Disease-Specific Mortality: Results from Three Prospective Cohort Studies. Environment International 2022, 159, 107024. [CrossRef]
- European Food Safety Authority (EFSA); Craig, P.S.; Dujardin, B.; Hart, A.; Hernández-Jerez, A.F.; Hougaard Bennekou, S.; Kneuer, C.; Ossendorp, B.; Pedersen, R.; Wolterink, G.; et al. Cumulative Dietary Risk Characterisation of Pesticides That Have Acute Effects on the Nervous System. EFS2 2020, 18. [CrossRef]
- European Food Safety Authority (EFSA); Craig, P.S.; Dujardin, B.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Kneuer, C.; Ossendorp, B.; Pedersen, R.; Wolterink, G.; et al. Cumulative Dietary Risk Characterisation of Pesticides That Have Chronic Effects on the Thyroid. EFS2 2020, 18. [CrossRef]
- European Food Safety Authority (EFSA); Dujardin, B. Comparison of Cumulative Dietary Exposure to Pesticide Residues for the Reference Periods 2014–2016 and 2016–2018. EFS2 2021, 19. [CrossRef]
- European Food Safety Authority (EFSA); Anastassiadou, M.; Choi, J.; Coja, T.; Dujardin, B.; Hart, A.; Hernandez-Jerrez, A.F.; Jarrah, S.; Lostia, A.; Machera, K.; et al. Cumulative Dietary Risk Assessment of Chronic Acetylcholinesterase Inhibition by Residues of Pesticides. EFS2 2021, 19. [CrossRef]
- European Food Safety Authority (EFSA); Anagnostopoulos, C.; Anastassiadou, M.; Castoldi, A.F.; Cavelier, A.; Coja, T.; Crivellente, F.; Dujardin, B.; Hart, A.; Hooghe, W.; et al. Retrospective Cumulative Dietary Risk Assessment of Craniofacial Alterations by Residues of Pesticides. EFS2 2022, 20. [CrossRef]
- Ministry of Rural Development and Food, 2025. Greek results from the monitoring of pesticide residues in food (version 9) [Data set]. Zenodo 2025. [CrossRef]
- Trichopoulou, A.; Orfanos, P.; Valanou, E.; Martimianaki, G.; Peppa, E.; Androulidaki, A.; Anifantis, E.; Katsoulis, M.; Kritikou, M.; Pantzarlis, M.; et al. The EFSA-funded Collection of Dietary and Related Data in the General Population Aged 10-74 Years in Greece. EFS3 2018, 15. [CrossRef]
- USDA. Food and Nutrient Database for Dietary Studies Documentation and Databases. Available online: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fndds-download-databases/. Accessed on 15 April 2024.
- Thompson, F.E.; Subar, A.F. Dietary Assessment Methodology. In Nutrition in the Prevention and Treatment of Disease; Elsevier, 2017; pp. 5–48 ISBN 978-0-12-802928-2.
- Vilone, G.; Comiskey, D.; Heraud, F.; O’Mahony, C. Statistical Method to Assess Usual Dietary Intakes in the European Population. Food Additives & Contaminants: Part A 2014, 31, 1639–1651. [CrossRef]
- European Food Safety Authority (EFSA); Brancato, A.; Brocca, D.; Ferreira, L.; Greco, L.; Jarrah, S.; Leuschner, R.; Medina, P.; Miron, I.; Nougadere, A.; et al. Use of EFSA Pesticide Residue Intake Model (EFSA PRIMo Revision 3). EFS2 2018, 16. [CrossRef]
- European Commission, 2025. EU Pesticide Database. Accessed on 14 Aug. 2025. Available at: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en.
- Ritzoulis, C. Moussaka as an introduction to food chemistry, pp. 45-51. In: The Kitchen as Laboratory: Reflections on the Science of Food and Cooking; Vega, C., Ubbink, J., Linden, E. van der, Steingarten, J., Eds.; Arts and traditions of the table: perspectives on culinary history; Columbia University Press: New York Chichester, 2013; ISBN 978-0-231-15345-4.
- Quijano, L.; Yusà, V.; Font, G.; Pardo, O. Chronic Cumulative Risk Assessment of the Exposure to Organophosphorus, Carbamate and Pyrethroid and Pyrethrin Pesticides through Fruit and Vegetables Consumption in the Region of Valencia (Spain). Food and Chemical Toxicology 2016, 89, 39–46. [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis; Eighth edition.; Cengage: Andover, Hampshire, 2019; ISBN 978-1-4737-5654-0.
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social Behavioral, and Health Sciences; Wiley series in probability and statistics; Wiley: Hoboken, N.J, 2010; ISBN 978-0-470-22839-5.
- Moore, E.W.G.; Quartiroli, A. Representing Subpopulations with Latent Profile Analysis: A Non-Technical Introduction Using Exercisers’ Goal Orientation Adoption Profiles. J Behav Med 2025. [CrossRef]
- The jamovi project. jamovi (Version 2.7) [Computer Software]. Available at: https://www.jamovi.org.
- Rosenberg, J.; Beymer, P.; Anderson, D.; Van Lissa, C. j.; Schmidt, J. tidyLPA: An R Package to Easily Carry Out Latent Profile Analysis (LPA) Using Open-Source or Commercial Software. JOSS 2018, 3, 978. [CrossRef]
- Endo, T.; Watanabe, T.; Yamamoto, A. Confidence Interval Estimation by Bootstrap Method for Uncertainty Quantification Using Random Sampling Method. Journal of Nuclear Science and Technology 2015, 52, 993–999. [CrossRef]
- ELSTAT (Hellenic Statistics Authority). Results of 2021 population and housing census. Available online: https://www.statistics.gr/en/2021-census-res-pop-results. Accessed on 28-08-2025.
- Schenke, K.; Ruzek, E.; Lam, A.C.; Karabenick, S.A.; Eccles, J.S. Heterogeneity of Student Perceptions of the Classroom Climate: A Latent Profile Approach. Learning Environ Res 2017, 20, 289–306. [CrossRef]
- Vermunt, J.K., Magidson, J. Latent Class Cluster Analysis, pp. 89-106. In: Applied Latent Class Analysis; Hagenaars, J.A., McCutcheon, A.L., Eds.; 1st ed.; Cambridge University Press, 2002; ISBN 978-0-521-59451-6.
- Gad Alla, S.A.; Loutfy, N.M.; Shendy, A.H.; Ahmed, M.T. Hazard Index, a Tool for a Long Term Risk Assessment of Pesticide Residues in Some Commodities, a Pilot Study. Regulatory Toxicology and Pharmacology 2015, 73, 985–991. [CrossRef]
- Slovic, P.; Malmfors, T.; Krewski, D.; Mertz, C.K.; Neil, N.; Bartlett, S. Intuitive Toxicology. II. Expert and Lay Judgments of Chemical Risks in Canada. Risk Analysis 1995, 15, 661–675. [CrossRef]
- European Food Safety Authority. Food Safety in the EU.; Publications Office: LU, 2019; EFSA. https://data.europa.eu/doi/10.2805/661752.
- Jaskiewicz, K.; Taylor, O.; Senior, B.; Maestre, M. Communication of Food-related Health Risks and Benefits – a Systematic Review (2018-2022). EFS3 2023, 20. [CrossRef]
- Baba, F.V.; Esfandiari, Z. Theoretical and Practical Aspects of Risk Communication in Food Safety: A Review Study. Heliyon 2023, 9, e18141. [CrossRef]
- European Food Safety Authority (EFSA); Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Marchese, E.; Medina Pastor, P. The 2023 European Union Report on Pesticide Residues in Food. EFS2 2025, 23. [CrossRef]
- Jensen, B.H.; Petersen, A.; Nielsen, E.; Christensen, T.; Poulsen, M.E.; Andersen, J.H. Cumulative Dietary Exposure of the Population of Denmark to Pesticides. Food and Chemical Toxicology 2015, 83, 300–307. [CrossRef]
- Witczak, A.; Pohoryło, A.; Abdel-Gawad, H.; Cybulski, J. Residues of Some Organophosphorus Pesticides on and in Fruits and Vegetables Available in Poland, an Assessment Based on the European Union Regulations and Health Assessment for Human Populations. Phosphorus, Sulfur, and Silicon and the Related Elements 2018, 193, 711–720. [CrossRef]
| p | df | Welch's t statistic |
Principal components |
|---|---|---|---|
| < 0.001 | 790.920 | – 6.421 | PIC: Pesticide confidence attitude |
| < 0.001 | 726.342 | 4.873 | CPD: Certified products consumption |
| < 0.001 | 554.772 | 16.660 | FVC: Fruit/vegetable consumption |
| < 0.001 | 728.354 | 3.839 | GES: General sources of information |
| < 0.001 | 427.739 | – 7.242 | POC: Potato consumption habit |
| 0.186 | 687.589 | 1.325 | PAG: Professional & advocacy guidance |
| 0.866 | 746.951 | 0.168 | SPS: Specialized sources of information |
| Background variables | Class 1 (N = 915) | Class 2 (N = 403) | Chi–Squared Test | |
|---|---|---|---|---|
| “Concerned consumers” | “Confident consumers” | |||
| Gender | Male | 36.4% (–6.3) (1) | 55.1% (6.3) | Χ2 = 40.1; df = 1; |
| Female | 63.6% (6.3) | 44.9% (– 6.3) | p < 0.001 | |
| Age | 18 - 44 | 27.1% (– 2.0) | 32.5% (2.0) | Χ2 = 4.0; df = 1; |
| ≥ 45 | 72.9% (2.0) | 67.5% (– 2.0) | p = 0.046 | |
| Education | Secondary education | 13.1 % (– 3.8) | 21.3% (3.8) | Χ2 = 14.4; df = 1; |
| Higher education | 86.9 % (3.8) | 78.7 % (– 3.8) | p < 0.001 | |
| Foodborne illnesses outweigh pesticide risks | Not in favour | 78.1% (3.3) | 69.7% (– 3.3) | Χ2 = 10.7; df = 1; |
| In favour | 21.9% (– 3.3) | 30.3% (3.3) | p < 0.001 | |
| Profession | Civil servants | 59.3% (4.4) | 46.2 % (– 4.4) | X2 = 26.9; df = 6; |
| Farmers | 1.6% (– 1.0) | 2.5 % (1.0) | p < 0.001 | |
| Private employees | 14.6% (– 3.7) | 23.1 % (3.7) | ||
| Retired | 4.3% (– 1.1) | 5.7% (1.1) | ||
| Self-employed | 10.8% (0.1) | 10.7 % (0.1) | ||
| Unemployed | 3.5% (0.4) | 3.0 % (– 0.4) | ||
| University students | 5.5% (– 2.1) | 8.9% (2.1) | ||
| Pesticide residues concern | No | 2.4% (– 11.8) | 21.8% (11.8) | Χ2 = 138.1; df = 1; |
| Yes | 97.6% (11.8) | 78.2% (– 11.8) | p < 0.001 | |
| Family income | 0 - 10,000 € | 7.4% (– 3.3) | 13.2% (3.3) | Χ2 = 17.3; df = 2; |
| 10,001 - 20,000 € | 36.3% (– 1.6) | 40.9% (1.6) | p < 0.001 | |
| > 20,001 € | 56.3% (3.5) | 45.9% (– 3.5) | ||
| Avoidance of perceived contaminated food | No | 25.5% (– 7.4) | 46.2% (7.4) | Χ2 = 55.2; df = 1; |
| Yes | 74.5% (7.4) | 53.8% (– 7.4) | p < 0.001 | |
| Physical activity | No | 38.0% (– 4.2) | 50.4% (4.2) | Χ2 = 17.5; df = 1; |
| Yes | 62.0 % (4.2) | 49.6 % (– 4.2) | p = 0.001 | |
| Sample groups | N | Mean body weight (kg) | Mean consumption (g/bw/day) | SD | IQR | Percentiles | |||
|---|---|---|---|---|---|---|---|---|---|
| 50th | 95th | 99th | |||||||
| HELLANS (2024-2025) | Adults - overall study sample | 1318 | 78.7 | 1.216 | 1.321 | 1.162 | 0.856 | 3.159 | 6.779 |
| HELLANS (2024-2025) - LPA1 | Adults – latent profile subgroup No1 | 915 | 77.9 | 0.741 | 0.469 | 0.706 | 0.650 | 1.648 | 1.921 |
| HELLANS (2024-2025) - LPA2 | Adults – latent profile subgroup No2 | 403 | 80.6 | 2.296 | 1.879 | 1.501 | 1.997 | 5.587 | 9.689 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).