Submitted:
27 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. The Extended Alena Tensor
2.1. Transforming Curved Path Into Geodesic For Dust
2.2. Rotational Energy
2.2.1. Noether Tensor And Quantum Interpretation
2.2.2. General Relativity Interpretation
3. Results
3.1. The Halo Effect
3.2. Quantum Vortices And Elementary Particles
- - vortex phase field (action phase). Its gradient represents the generalized four-momentum flow associated with the vortex structure.
- - amplitude of the complex condensate . It determines the vortex core profile and sets the symmetry-breaking scale.
- - vorticity tensor of the underlying medium. In this Lagrangian it is treated as an independent antisymmetric field capturing local rotational structure analogous to the Hubbard-Stratonovich transformation [36].
- - spin generator in the fermionic representation .
- - plays the role of the a dimensionless state-dependent stiffness function, encoding the effective elastic response of the vortex condensate, where it is assumed for calculation simplicity
- g - dimensionless spin-vorticity coupling constant, determining the strength of the interaction between fermionic spin and the vortex background.
- Phase (Noether) charge originating from the global shift symmetry. It corresponds to the conserved circulation associated with the phase field.
- Topological vortex number defined for static configurations with nontrivial winding of the phase around the vortex core. This integer counts the number of windings.
- Spin-vorticity flux charge where the vorticity tensor satisfies the algebraic field equation . This charge reflects the conserved flow associated with the spin-vorticity coupling term .
- Hopf (linking) charge defined when the dual vorticity vector is normalized to a unit field , with denoting the pullback of the area form on . This integer-valued invariant characterizes the knotting and linking of vorticity lines.
- a fixed, parameter-free spin-rotation coupling in vacuum, reproducing the Mashhoon-type precession without additional degrees of freedom,
- a possible environment-dependent modification of spin-dependent interactions,
4. Discussion and Conclusions
4.1. Discussion And Conclusions Regarding GR And Cosmology
4.2. Discussion And Conclusions Regarding Quantum Issues
5. Statements
Appendix A. Results of Fitting the Constant χ




References
- Abdalla, E.; Marins, A. The dark sector cosmology. International Journal of Modern Physics D 2020, 29, 2030014. [Google Scholar] [CrossRef]
- Marra, V.; Rosenfeld, R.; Sturani, R. Observing the dark sector. Universe 2019, 5, 137. [Google Scholar] [CrossRef]
- Billard, J.; et al. Direct detection of dark matter - APPEC committee report. Reports on Progress in Physics 2022, 85, 056201. [Google Scholar] [CrossRef]
- Akerib, D.S.; et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. D 2020, 101, 052002. [Google Scholar] [CrossRef]
- Nitta, T.; et al. Search for a Dark-Matter-Induced Cosmic Axion Background with ADMX. Phys. Rev. Lett. 2023, 131, 101002. [Google Scholar] [CrossRef]
- Eckert, D.; et al. Constraints on dark matter self-interaction from the internal density profiles of X-COP galaxy clusters. Astronomy & Astrophysics 2022, 666, A41. [Google Scholar] [CrossRef]
- Capolupo, A.; Pisacane, G.; Quaranta, A.; Romeo, F. Probing mirror neutrons and dark matter through cold neutron interferometry. Physics of the Dark Universe 2024, 46, 101688. [Google Scholar] [CrossRef]
- Aprile, E.; et al. First Search for Light Dark Matter in the Neutrino Fog with XENONnT. Phys. Rev. Lett. 2025, 134, 111802. [Google Scholar] [CrossRef]
- Agnese, R.; et al. First Dark Matter Constraints from a SuperCDMS Single-Charge Sensitive Detector. Phys. Rev. Lett. 2018, 121, 051301. [Google Scholar] [CrossRef] [PubMed]
- Kamionkowski, M.; Riess, A.G. The Hubble Tension and Early Dark Energy. Annual Review of Nuclear and Particle Science 2023, 73, 153–180. [Google Scholar] [CrossRef]
- Collaboration, P. Planck 2018 results. VI. Cosmological parameters. Astronomy & Astrophysics 2020, 641, A6. [Google Scholar] [CrossRef]
- Skordis, C.; Złośnik, T. New Relativistic Theory for Modified Newtonian Dynamics. Physical Review Letters 2021, 127, 161302. [Google Scholar] [CrossRef]
- Nash, G. Modified general relativity and dark matter. International Journal of Modern Physics D 2023, 32, 2350031. [Google Scholar] [CrossRef]
- Andreev, Y.; Collaboration), O.N. Search for Light Dark Matter with NA64 at CERN. Physical Review Letters 2023, 131, 161801. [Google Scholar] [CrossRef]
- Ishak, M. Testing general relativity in cosmology. Living Reviews in Relativity 2019, 22, 1. [Google Scholar] [CrossRef] [PubMed]
- Anchordoqui, L.A.; Antoniadis, I.; Lüst, D.; Castillo, K.P. Through the looking glass into the dark dimension: Searching for bulk black hole dark matter with microlensing of X-ray pulsars. Physics of the Dark Universe 2024, 46, 101681. [Google Scholar] [CrossRef]
- Brouwer, M.; et al. First test of Verlinde’s theory of emergent gravity using weak gravitational lensing measurements. Monthly Notices of the Royal Astronomical Society 2017, 466, 2547–2559. [Google Scholar] [CrossRef]
- Aprile, E.; et al. First Dark Matter Search Results from the XENON1T Experiment. Phys. Rev. Lett. 2017, 119, 181301. [Google Scholar] [CrossRef]
- Khoury, J. Dark Matter Superfluidity. SciPost Physics Lecture Notes 2022, 42. [Google Scholar] [CrossRef]
- Goddy, J.; et al. A comparison of the baryonic Tully-Fisher relation in MaNGA and SPARC. Monthly Notices of the Royal Astronomical Society 2023, 520, 3895–3912. [Google Scholar] [CrossRef]
- Lucca, M. Dark energy-dark matter interactions as a solution to the S8 tension. Physics of the Dark Universe 2021, 34, 100899. [Google Scholar] [CrossRef]
- Brout, D.; Collaboration), O.P. The Pantheon+ Analysis: Cosmological Constraints. The Astrophysical Journal 2022, 938, 110. [Google Scholar] [CrossRef]
- Lodha, K.; et al. DESI 2024: Constraints on physics-focused aspects of dark energy using DESI DR1 BAO data. Phys. Rev. D 2025, 111, 023532. [Google Scholar] [CrossRef]
- Cuillandre, J.C.; Collaboration), O.E. Euclid: Early Release Observations - Programme overview and data products. Astronomy & Astrophysics 2025, 686, A1. [Google Scholar] [CrossRef]
- Ogonowski, P. Proposed method of combining continuum mechanics with Einstein Field Equations. International Journal of Modern Physics D 2023, 2350010, 15. [Google Scholar] [CrossRef]
- Ogonowski, P. Developed method: Interactions and their quantum picture. Frontiers in Physics 2023, 11, 1264925. [Google Scholar] [CrossRef]
- Ogonowski, P. Gravitational waves and Higgs-like potential from Alena Tensor. Physica Scripta 2025, 100. [Google Scholar] [CrossRef]
- Ogonowski, P.; Skindzier, P. Alena Tensor in unification applications. Physica Scripta 2024, 100, 015018. [Google Scholar] [CrossRef]
- Forger, M.; Römer, H. Currents and the energy-momentum tensor in classical field theory: A fresh look at an old problem. Annals of Physics 2004, 309, 306–389. [Google Scholar] [CrossRef]
- Blaschke, D.N.; Gieres, F.; Reboud, M.; Schweda, M. The energy-momentum tensor(s) in classical gauge theories. Nuclear Physics B 2016, 912, 192–223. [Google Scholar] [CrossRef]
- Lelli, F.; McGaugh, S.S.; Schombert, J.M. SPARC: Mass Models for 175 Disk Galaxies with Spitzer Photometry and Accurate Rotation Curves. The Astronomical Journal 2016, 152, 157. [Google Scholar] [CrossRef]
- Koyama, K. Cosmological tests of modified gravity. Reports on Progress in Physics 2016, 79, 046902. [Google Scholar] [CrossRef]
- Harvey-Hawes, C.; Galoppo, M. A Novel Test for MOND: Gravitational Lensing by Disk Galaxies. The Astrophysical Journal 2025, 994, 167. [Google Scholar] [CrossRef]
- Best, H.; Fagin, J.; Vernardos, G.; O’Dowd, M. Resolving the vicinity of supermassive black holes with gravitational microlensing. Monthly Notices of the Royal Astronomical Society 2024, 531, 1095–1112. [Google Scholar] [CrossRef]
- Vernardos, G.; Sluse, D.; Pooley, D.; Schmidt, R.W.; Millon, M.; Weisenbach, L.; Motta, V.; Anguita, T.; Saha, P.; O’Dowd, M.; et al. Microlensing of Strongly Lensed Quasars. Space Science Reviews 2024, 220, 14. [Google Scholar] [CrossRef]
- Román-Roche, J.; Herráiz-López, V.; Zueco, D. Exact solution for quantum strong long-range models via a generalized Hubbard-Stratonovich transformation. Physical Review B 2023, 108, 165130. [Google Scholar] [CrossRef]
- Cacciapaglia, G.; Frandsen, M.T.; Huang, W.C.; Rosenlyst, M.; Sørensen, P. Techni-composite Higgs models with symmetric and asymmetric dark matter candidates. Physical Review D 2022, 106, 075022. [Google Scholar] [CrossRef]
- Del Debbio, L.; Zwicky, R. Dilaton and massive hadrons in a conformal phase. Journal of High Energy Physics 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Oevermann, E.; Koenigstein, A.; Floerchinger, S. Functional renormalization of QCD in 1+ 1 dimensions: Four-fermion interactions from quark-gluon dynamics. Physical Review D 2025, 111, 074006. [Google Scholar] [CrossRef]
- Wang, Y.; Matsuzaki, S.; Kawaguchi, M.; Tomiya, A. First-order CP phase transition in two-flavor QCD at θ= π under electromagnetic scale anomaly via a Nambu-Jona-Lasinio description. Physical Review D 2025, 111, 074028. [Google Scholar] [CrossRef]
- Gudnason, S.B.; Speight, J.M. Backreacted Coulomb energy in the Skyrme model. Journal of High Energy Physics 2025, 2025, 1–59. [Google Scholar] [CrossRef]
- Gudnason, S.B.; Halcrow, C. Quantum binding energies in the Skyrme model. Physics Letters B 2024, 850, 138526. [Google Scholar] [CrossRef]
- Naya, C.; Schubring, D.; Shifman, M.; Wang, Z. Skyrmions and hopfions in three-dimensional frustrated magnets. Physical Review B 2022, 106, 094434. [Google Scholar] [CrossRef]
- Shen, Y.; He, C.; Song, Z.; Chen, B.; He, H.; Ma, Y.; Fells, J.A.; Elston, S.J.; Morris, S.M.; Booth, M.J.; et al. Topologically controlled multiskyrmions in photonic gradient-index lenses. Physical Review Applied 2024, 21, 024025. [Google Scholar] [CrossRef]
- Volovik, G.E. The Universe in a Helium Droplet; Oxford University Press, 2003. [Google Scholar]
- Annala, T.; Zamora-Zamora, R.; Möttönen, M. Topologically protected vortex knots and links. Communications Physics 2022, 5, 309. [Google Scholar] [CrossRef]
- Mashhoon, B.; Obukhov, Y.N. Spin-of-light gyroscope and the spin-rotation coupling. Physical Review D 2024, 110, 104015. [Google Scholar] [CrossRef]
- Hehl, F.W.; Ni, W.T. Inertial effects of a Dirac particle. Phys. Rev. D 1990, 42, 2045–2048. [Google Scholar] [CrossRef] [PubMed]
- Obukhov, Y.N.; Silenko, A.J.; Teryaev, O.V. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments. Physical Review D 2016, 94, 044019. [Google Scholar] [CrossRef]
- Cong, L.; Ji, W.; Fadeev, P.; Ficek, F.; Jiang, M.; Flambaum, V.V.; Guan, H.; Jackson Kimball, D.F.; Kozlov, M.G.; Stadnik, Y.V.; et al. Spin-dependent exotic interactions. Rev. Mod. Phys. 2025, 97, 025005. [Google Scholar] [CrossRef]
- Danner, A.; Demirel, B.; Kersten, W.; Lemmel, H.; Wagner, R.; Sponar, S.; Hasegawa, Y. Spin-rotation coupling observed in neutron interferometry. npj Quantum Information 2020, 6, 23. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, J.; Liang, Y.; Tian, M.; Quan, W. A single-beam dual-axis atomic spin comagnetometer for rotation sensing. Applied Physics Letters 2022, 120. [Google Scholar] [CrossRef]
- Huang, X.; Wei, K.; Rui, Y.; Gong, D.; Zhou, S.; Zheng, J.; Quan, W. Dynamically polarized atomic comagnetometer. Cell Reports Physical Science 2025, 6. [Google Scholar] [CrossRef]
- Bartelmann, M.; Schneider, P. Weak gravitational lensing. Reports on Progress in Physics 2001, 64, 691–757. [Google Scholar] [CrossRef]
- et al., T.E.C. Strong Gravitational Lensing as a Probe of Dark Matter. Space Science Reviews 2024, 220, 87. [CrossRef]
- Cadoni, M.; Sanna, A.P.; Tuveri, M. Anisotropic fluid cosmology: An alternative to dark matter? Physical Review D 2020, 102, 023514. [Google Scholar] [CrossRef]
- Cadoni, M.; Casadio, R. Effective fluid description of the dark universe. Physics Letters B 2018, 776, 242–248. [Google Scholar] [CrossRef]
- et al., B.D. Anisotropic strong lensing as a probe of dark matter self-interaction. Monthly Notices of the Royal Astronomical Society 2023, 526, 5455–5473. [CrossRef]
- et al., D.P. Dark matter fluid constraints from galaxy rotation curves. European Physical Journal C 2023, 83, 11457. [CrossRef]
- Rourke, C. A geometric alternative to dark matter. arXiv 2020, arXiv:1911.08920. [Google Scholar] [CrossRef]
- Konno, K.; Matsuyama, T.; Asano, Y.; Tanda, S. Flat rotation curves in Chern-Simons modified gravity. Physical Review D 2008, 78, 024037. [Google Scholar] [CrossRef]
- Balasin, H.; Grumiller, D. Non-Newtonian behavior in weak field general relativity for extended rotating sources. International Journal of Modern Physics D 2008, 17, 475–488. [Google Scholar] [CrossRef]
- Hanafy, W.E.; Hashim, M.; Nashed, G.G.L. Revisiting flat rotation curves in Chern-Simons modified gravity. Physics Letters B 2024, 856, 138882. [Google Scholar] [CrossRef]
- Walrand, S. A machian model as potential alternative to dark matter halo thesis in galactic rotational velocity prediction. Frontiers in Astronomy and Space Sciences 2024, 11, 1429235. [Google Scholar] [CrossRef]
- Acquaviva, G.; et al. Simple-graduated dark energy and spatial curvature. Physical Review D 2021, 104, 023505. [Google Scholar] [CrossRef]
- Buchert, T.; Räsänen, S. Backreaction in Late-Time Cosmology. Annual Review of Nuclear and Particle Science 2012, 62, 57–79. [Google Scholar] [CrossRef]
- Gao, D.; Zhou, L.; Wang, J.; Zhan, M. Constraining the spin-gravity coupling effects to the 10- 10 level with dual-species atom interferometers. Physical Review A 2024, 110, 043322. [Google Scholar] [CrossRef]
- Obukhov, Y.N. Spin, Gravity, and Inertia. Phys. Rev. Lett. 2001, 86, 192–195. [Google Scholar] [CrossRef]
- Silenko, A.J. Foldy-Wouthuysen Transformation and Semiclassical Limit for Relativistic Particles. Phys. Rev. A 2005, 72, 012118. [Google Scholar] [CrossRef]
- Becattini, F.; Lisa, M.A. Polarization and vorticity in the quark–gluon plasma. Annual Review of Nuclear and Particle Science 2020, 70, 395–423. [Google Scholar] [CrossRef]
- Tatara, G. Hydrodynamic theory of vorticity-induced spin transport. Physical Review B 2021, 104, 184414. [Google Scholar] [CrossRef]
- Singh, S.K.; Alam, J. Suppression of spin polarization as an indicator of QCD critical point. The European Physical Journal C 2023, 83, 585. [Google Scholar] [CrossRef]
- Huidobro, M.; Leask, P.; Naya, C.; Wereszczyński, A. Compressibility of dense nuclear matter in the ρ-meson variant of the Skyrme model. Journal of High Energy Physics 2025, 2025, 1–25. [Google Scholar] [CrossRef]
- Saavedra, E.; Altbir, D.; Escrig, J.; Castillo-Sepúlveda, S.; Corona, R.; Carvalho-Santos, V. Exploring hopfion stability and dynamics in ring-like structures. Results in Physics 2024, 62, 107835. [Google Scholar] [CrossRef]
- Battye, R.A.; Sutcliffe, P.M. Solitons, links and knots. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 1999, 455, 4305–4331. [Google Scholar] [CrossRef]
- Nitta, M. Relations among topological solitons. Physical Review D 2022, 105, 105006. [Google Scholar] [CrossRef]
- Cao, G. Extended Nambu-Jona-Lasinio model for quark and nuclear matters. Physics Letters B 2025, 860, 139140. [Google Scholar] [CrossRef]
- Covone, S.; Davighi, J.; Isidori, G.; Pesut, M.; et al. Flavour deconstructing the composite Higgs. Journal of High Energy Physics 2025, 041. [Google Scholar] [CrossRef]
- Carragher, E.; et al. Extending global fits of 4D composite Higgs models with partially composite leptons. Journal of High Energy Physics 2024, 185. [Google Scholar] [CrossRef]
- Zajc, W.A. The fluid nature of quark-gluon plasma. Nuclear Physics A 2008, 805, 283c–294c. [Google Scholar] [CrossRef]
- Barraco, D.E.; Hamity, V.H.; Gleiser, R.J. Anisotropic spheres in general relativity reexamined. Physical Review D 2003, 67, 064003. [Google Scholar] [CrossRef]
- Lopes, L.L. Role of local anisotropy in hybrid stars. The European Physical Journal C 2024, 84, 13442. [Google Scholar] [CrossRef]
- Son, D.T.; Surówka, P. Hydrodynamics with Triangle Anomalies. Phys. Rev. Lett. 2009, 103, 191601. [Google Scholar] [CrossRef]
- Lin, S.; Yang, L. Magneto-vortical effect in strong magnetic field. Journal of High Energy Physics 2021, 2021, 1–28. [Google Scholar] [CrossRef]
- Brax, P.; Fichet, S. Scalar-mediated quantum forces between macroscopic bodies and interferometry. Physics of the Dark Universe 2023, 42, 101294. [Google Scholar] [CrossRef]
- Malaver, M.; Assunção, A.K.T.; Moraes, P.H.R.S. Realistic anisotropic neutron stars: Pressure effects. Physical Review D 2024, 109, 043025. [Google Scholar] [CrossRef]
- Lopes, L.L.; Das, H. Spherically symmetric anisotropic strange stars. The European Physical Journal C 2024, 84, 166. [Google Scholar] [CrossRef]
- Yau, H. Quantized field with excitations of spacetime. Scientific Reports 2025, 15, 30844. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
