Submitted:
14 October 2025
Posted:
15 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Integrated Overview of Multi-Omics Approaches
2.1. Genomics
2.2. Transcriptomics
2.3. Proteomics
2.4. Metabolomics
2.5. Epigenomics
2.6. Interactomics
2.7. miRNAomics
2.8. Relationship Between Omics
3. Joint Study of Omics in Response to Abiotic Stress in Plants
3.1. Plant Response to Salt Stress
3.2. Response of Plants to Drought Stress
3.3. Response of Plants to Temperature Stress
3.4. Response of Plants to Heavy Metal Stress
3.5. Response of Plants to Multiple Abiotic Stresses
4. Understanding the Molecular Response Process and Its Significance
5. Challenges and Future Directions
5.1. Impact on Secondary Metabolites
5.2. Role of Multi-Omics Correlation Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pandey, P., Irulappan, V., Bagavathiannan, M. V., and Senthil-Kumar, M. (2017). Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits. Front. Plant Sci., 8, 537. [CrossRef]
- Alpuerto, J. B., Hussain, R. M. F., Fukao, T., Wen, W. W., Li, K., Alseekh, S., et al. (2016). The key regulator of submergence tolerance, SUB1A, promotes photosynthetic and metabolic recovery from submergence damage in rice leaves. Plant Cell Environ., 39(3), 672-684.
- Kushalappa, A. C., Gunnaiah, R., Farmer, E. E., Mueller, M. J., Fiehn, O., Yang, S., et al. (2013). Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci., 18(9), 522-531.
- Wen, W. W., Li, K., Alseekh, S., Omranian, N., Zhao, L. J., Zhou, Y., et al. (2015). Genetic Determinants of the Network of Primary Metabolism and Their Relationships to Plant Performance in a Maize Recombinant Inbred Line Population. Plant Cell, 27(7), 1839-1856. [CrossRef]
- Farmer, E. E., Mueller, M. J., Fiehn, O., Yang, S., Antonio, R. G., Alberto, S. L., et al. (2013). ROS-Mediated Lipid Peroxidation and RES-Activated Signaling. Annu. Rev. Plant Biol., 64(1), 429-450.
- Fiehn, O., Yang, S., Antonio, R. G., Alberto, S. L., Carlos, B., Forrest, A. R. R., et al. (2002). Metabolomics–the link between genotypes and phenotypes. Plant Mol. Biol., 48(1 - 2), 155-171.
- Ambrosino, L., Colantuono, C., Diretto, G., Fiore, A., and Chiusano, M. L. (2020). Bioinformatics resources for plant abiotic stress responses: state of the art and opportunities in the fast evolving-omics era. Plants, 9(5), 591. [CrossRef]
- Abbas, Z. (2023). Bioinformatics and Genomics: Advancements in Interdisciplinary Research. Pak. J. Health Solutions, 1(02), 48–50.
- Yang, S. (2004). The Progress of systems Biology. Bull. Chin. Acad. Sci., 1, 31-34.
- Project, I. R. G. S. (2005). The map-based sequence of the rice genome. Nature, 436(7052), 793–800.
- Ekblom, R., and Wolf, J. B. (2014). A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl., 7(9), 1026–1042. [CrossRef]
- Califano, A., Butte, A. J., Friend, S., Ideker, T., and Schadt, E. (2012). Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet., 44(8), 841–847.
- Xiong, L., Schumaker, K. S., Zhu, J. K., Kim, J. M., Sasaki, T., Ueda, M., et al. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14 Suppl, 165-183.
- Paudel, P., Pandey, M. K., Subedi, M., Paudel, P., and Kumar, R. (2024). Genomic approaches for improving drought tolerance in wheat (Triticum aestivum L.): A Comprehensive Review. Plant Arch., 24(1), 1289–1300. [CrossRef]
- Bashir, K., Matsui, A., Rasheed, S., and Seki, M. (2019). Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress. F1000Res., 8, F1000 Faculty Rev-658. [CrossRef]
- Forrest, A. R. R., Carninci, P., Sun, H. J., Wei, H. J., Tyers, M., Mann, M., et al. (2009). Whole genome transcriptome analysis. RNA Biol., 6(2), 107-112.
- Antonio, R. G., Alberto, S. L., Carlos, B., Forrest, A. R. R., Carninci, P., Sun, H. J., et al. (2017). RNA - Seq - Based Comparative Transcriptomics: RNA Preparation and Bioinformatics. Methods Mol. Biol., 1645, 59-72.
- Agarwal, P., Parida, S. K., Mahto, A., Das, S., Mathew, I. E., Malik, N., and Tyagi, A. K. (2014). Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol. J., 9(12), 1480–1492. [CrossRef]
- Pastinen, T. (2023). Single nucleotide polymorphism genotyping using microarrays. Microarrays Microplates, 89–113.
- Sun, H. J., Wei, H. J., Tyers, M., Mann, M., Yarmush, M. L., Jayaraman, A., et al. (2018). The Application of RNA-Seq Technology in the Study of the Transcriptome. Chin. Foreign Med. Res., 16 (20), 184-187.
- Yarmush, M. L., and Jayaraman, A. (2002). Advances in proteomic technologies. Annu. Rev. Biomed. Eng., 4, 349–373.
- Christopher, J. A., Stadler, C., Martin, C. E., Morgenstern, M., Pan, Y., Betsinger, C. N., et al. (2021). Subcellular proteomics. Nat. Rev. Methods Primers 1(1), 32.
- Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics., 3(12), 1154-1169.
- Zhang, H. Y., Lei, G., Zhou, H. W., He, C., Liao, J. L., Ross, P. L., et al. (2007). Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. Proteomics, 17(5), 1600365. [CrossRef]
- Chandra, H., Reddy, P. J., Srivastava, S., Chitteti, B. R., Peng, Z., Goodacre, R., et al. (2011). Protein microarrays and novel detection platforms. Expert Rev. Proteomics., (1), 61-79.
- Chitteti, B. R., Peng, Z., Goodacre, R., Urano, K., Kurihara, Y., Seki, M., et al. (2007). Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J. Proteome Res., 6(5), 1718-1727.
- Milanesi, R., Coccetti, P., and Tripodi, F. (2020). The regulatory role of key metabolites in the control of cell signaling. Biomolecules 10(6), 862. [CrossRef]
- Lankadurai, B. P., Nagato, E. G., and Simpson, M. J. (2013). Environmental metabolomics: an emerging approach to study organism responses to environmental stressors. Environ. Rev., 21(3), 180–205. [CrossRef]
- Goodacre, R., Urano, K., Kurihara, Y., Seki, M., Shinozaki, K., Zhao, M. X., et al. (2004). Metabolic profiling: pathways in discovery. Drug Discov. Today., 9(6), 260-261.
- Gibney, E. R., and Nolan, C. M. (2010). Epigenetics and gene expression. Heredity 105(1), 4–13.
- Bure, I. V., Nemtsova, M. V., and Kuznetsova, E. B. (2022). Histone modifications and non-coding RNAs: mutual epigenetic regulation and role in pathogenesis. Int. J. Mol. Sci. 23(10), 5801. [CrossRef]
- Moore, L. D., Le, T., and Fan, G. (2013). DNA methylation and its basic function. Neuropsychopharmacology 38(1), 23-38. [CrossRef]
- Hino, S., Sato, T., and Nakao, M. (2022). Chromatin immunoprecipitation sequencing (ChIP-seq) for detecting histone modifications and modifiers. In Epigenomics: Methods Mol. Biol., 2577, 55–64.
- Buenrostro, J. D., Wu, B., Chang, H. Y., and Greenleaf, W. J. (2015). ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 109(1), 21-29.
- Ilott, N. E., and Ponting, C. P. (2013). Predicting long non-coding RNAs using RNA sequencing. Methods, 63(1), 50-59. [CrossRef]
- Xavier, M. J., Roman, S. D., Aitken, R. J., and Nixon, B. (2019). Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Hum. Reprod. Update, 25(5), 519-541.
- Maple, J., and Møller, S. G. (2007). Yeast two-hybrid screening. Methods Mol. Biol. 362, 207-223.
- Lin, J. S., and Lai, E. M. (2017). Protein-protein interactions: co-immunoprecipitation. Methods Mol. Biol. 1615, 211-219.
- Gnanasekaran, P., and Pappu, H. R. (2023). Affinity purification-mass spectroscopy (AP-MS) and co-immunoprecipitation (Co-IP) technique to study protein-protein interactions. Methods Mol. Biol., 2690, 81-85.
- Shang, L., Zhang, Y., Liu, Y., Jin, C., Yuan, Y., Tian, C., Ni, M., Bo, X., Zhang, L., Li, D., He, F., and Wang, J. (2022). A yeast BiFC-seq method for genome-wide interactome mapping. Genomics Proteomics Bioinformatics, 20(4), 795-807. [CrossRef]
- May, D. G., Scott, K. L., Campos, A. R., and Roux, K. J. (2020). Comparative application of BioID and TurboID for protein-proximity biotinylation. Cells 9(5), 1070.
- O’Brien, J., Hayder, H., Zayed, Y., and Peng, C. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. 9, 402. [CrossRef]
- Islam, M. T., Ferdous, A. S., Najnin, R. A., Sarker, S. K., and Khan, H. (2015). High-throughput sequencing reveals diverse sets of conserved, nonconserved, and species-specific miRNAs in jute. Int. J. Genomics 2015, 125048. [CrossRef]
- Zhakypbek, Y., Rakhmetullina, A., Kamarkhan, Z., Tursbekov, S., Shi, Q., Xing, F., Pyrkova, A., Ivashchenko, A., Kossalbayev, B. D., and Belkozhayev, A. M. (2025). In silico analysis of miRNA-mRNA binding sites in Arabidopsis thaliana as a model for drought-tolerant plants. Plants, 14(12), 1800. [CrossRef]
- Lan, P., Li, W., and Schmidt, W. (2012). Complementary proteome and transcriptome profiling in phosphate-deficient Arabidopsis roots reveals multiple levels of gene regulation. Mol. Cell. Proteomics, 11(11), 1156-1166.
- Singh, P., Choudhary, K. K., Chaudhary, N., Gupta, S., Sahu, M., Tejaswini, B., and Sarkar, S. (2022). Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front. Plant Sci. 13, 1006617. [CrossRef]
- Jia, X., Sun, C. S., Zuo, Y. C., Li, G. Y., Li, G. B., Ren, L. Y., et al. (2016). Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress. BMC Genomics, 188. [CrossRef]
- Kim, J., Woo, H. R., Nam, H. G., Coman, C., Solari, F. A., Hentschel, A., et al. (2016). Toward Systems Understanding of Leaf Senescence: An Integrated Multi-Omics Perspective on Leaf Senescence Research. Mol. Plant., 9(6), 813-825.
- Michaletti, A., Naghavi, M. R., Toorchi, M., Zolla, L., Rinalducci, S., Guan, S., et al. (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Sci. Rep., 8(1), 5710. [CrossRef]
- Pan, L., Meng, C., Wang, J. P., Ma, X., Zhang, X. Q., Eom, S. H., et al. (2018). Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress. BMC Plant Biol., 18(1), 26. [CrossRef]
- Fernie, A. R., and Stitt, M. (2012). On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol. 158(3), 1139-1145.
- Zhao, M. X., He, F. F., Wang, W. Q., Sun, B. R., Fu, C. Y., Fan, Z. L., et al. (2015). Effect of salt stress on seed germination of Melilotus and Puccinellia distans. Heilongjiang Agric. Sci., 06, 109-112.
- Krishnamurthy, P., Mohanty, B., Wijaya, E. P., Lee, D. Y., Prakash, P., Kumar, A., et al. (2017). Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci. Rep., (1), 10031. [CrossRef]
- Amirbakhtiar, N., Ismaili, A., Ghaffari, M. R., Nazarian F., F., Shobbar, Z. S., Jain, M., et al. (2019). Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. Plos One, 14(3), e0213305.
- Price, J., Laxmi, A., St Martin, S. K., and Jang, J. C. (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell, 16(8), 2128-2150.
- Hasanuzzaman, M., Raihan, M. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., and Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci., 22(17), 9326. [CrossRef]
- Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., and Yaish, M. W. (2017). The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 8, 509.
- Cui, F., Sui, N., Duan, G., Liu, Y. Y., Han, Y., Shan, S., et al. (2018). Identification of Metabolites and Transcripts Involved in Salt Stress and Recovery in Peanut. Front. Plant Sci., 9, 217.
- Garg, R., Shankar, R., Thakkar, B., Kudapa, H., Krishnamurthy, L., Mantri, N., et al. (2016). Transcriptome analyses reveal genotype - and developmental stage - specific molecular responses to drought and salinity stresses in chickpea. Sci. Rep., 6, 19228.
- Zhang, A. Q., Wang, H. F., Yan, X. F., Pang, Q. Y., Zhang, Y. J., Li, D. H., et al. (2018). Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus L.) root based on de novo assembly sequencing analysis. Planta, 247(3), 715-732.
- Zhang, Y. J., Li, D. H., Zhou, R., Wang, X., Dossa, K., Wang, L. H., et al. (2019). Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biol., 19(1), 66. [CrossRef]
- Liao, H., Wong, F. L., Phang, T. H., Cheung, M. Y., Li, F. W. Y., Shao, G., et al. (2003). GmPAP3, a novel purple acid phosphatase-like gene in soybean induced by NaCl stress but not phosphorus deficiency. Gene, 318, 103-111. [CrossRef]
- Yu, Y., Wang, N., Hu, R., Xiang, F., Han, B., Xu, W., et al. (2016). Genome-wide identification of soybean WRKY transcription factors in response to salt stress. SpringerPlus, 5(1), 920. [CrossRef]
- Han, B., Xu, W., Ahmed, N., Yu, A., Wang, Z. Q., Liu, A. Z., et al. (2020). Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean. Plant Cell Physiol., 61(6), 1120-1133. [CrossRef]
- Chen, M., Lu, C., Sun, P., Nie, Y., Tian, Y., Hu, Q., et al. (2020). Comprehensive transcriptome and proteome analyses reveal a novel sodium chloride responsive gene network in maize seed tissues during germination. Plant Cell Environ., 44(1), 88–101.
- Qiao, M., Hong, C., Jiao, Y., Hou, S., and Gao, H. (2024). Impacts of drought on photosynthesis in major food crops and the related mechanisms of plant responses to drought. Plants 13(13), 1808. [CrossRef]
- Yan, H. Z., Yoo, M. J., Koh, J., Liu, L. H., Chen, S. U., Meng, L., et al. (2014). Molecular reprogramming of Arabidopsis in response to perturbation of jasmonate signaling. J. Proteome Res., 13, 5751-5766. [CrossRef]
- Meng, L., Zhang, T., Geng, S., Scott, P. B., Li, H., Chen, S., et al. (2019). Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. J. Proteomics, 196, 81-91.
- You, J., Zhang, Y. J., Liu, A. L., Li, D. h., Zhang, X. R., Jia, X., et al. (2019). Transcriptomic and metabolomic profiling of drought-tolerant and susceptible sesame genotypes in response to drought stress. BMC Plant Biol., 19(1), 267. [CrossRef]
- Wang, B., Liu, C., Zhang, D. F., He, C. M., Li, Z. X., Guo, J., et al. (2019). Effects of maize organ-specific drought stress response on yields from transcriptome analysis. BMC Plant Biol., 19(1), 335. [CrossRef]
- Guo, J., Li, C., Zhang, X. Q., Li, Y. X., Wang, T. Y., Zhao, X. B., et al. (2020). Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci., 292, 110380.
- Zhao, X. B., Wan, C. J., Zhang, S. B., Yan, T. T., Shan, C. X., Pan, L., et al. (2018). Transcriptomic analysis and discovery of genes in the response of Arachis hypogaea to drought stress. Mol. Biol. Rep., 45(2), 119-131.
- Eom, S. H., Baek, S. A., Kim, J., Hyun, T., Hong, Y., Ni, S. J., et al. (2018). Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Molecules, 23(5), 1186.
- Hong, Y., Ni, S. J., Zhang, G. P., Aili, Y., Zhao, J. F., Wang, Z. H., et al. (2020). Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress. Plant Physiol. Biochem., 152, 1-11.
- Aili, Y., Zhao, J. F., Wang, Z. H., Cheng, K., Zhang, P., Tian, G., et al. (2020). Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids-related pathways during germination process under PEG stress. BMC Plant Biol., 20(1), 274. [CrossRef]
- Chmielewska, K., Rodziewicz, P., Swarcewicz, B., Sawikowska, A., Krajewski, P., Marczak, U., et al. (2016). Analysis of Drought-Induced Proteomic and Metabolomic Changes in Barley (Hordeum vulgare L.) Leaves and Roots Unravels Some Aspects of Biochemical Mechanisms Involved in Drought Tolerance. Front. Plant Sci., 7, 1108. [CrossRef]
- Zeng, W. J., Peng, Y. L., Zhao, X. Q., Wu, B. Y., Ding, Y. F., Wang, X., et al. (2019). Comparative Proteomics Analysis of the Seedling Root Response of Drought - sensitive and Drought-tolerant Maize Varieties to Drought Stress. Int. J. Mol. Sci., 20(11), 2793. [CrossRef]
- Wang, X., Zenda, T., Liu, S., Liu, G., Duan, H. J., Michaletti, A., et al. (2019). Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling - Kernel Drought-Responsive Genes and Metabolic Pathways. Int. J. Mol. Sci., 20(15), 3743.
- Devireddy, A. R., Tschaplinski, T. J., Tuskan, G. A., Muchero, W., and Chen, J. G. (2021). Role of reactive oxygen species and hormones in plant responses to temperature changes. Int. J. Mol. Sci. 22(16), 8843. [CrossRef]
- Barik, S. (2020). Evolution of protein structure and stability in global warming. Int. J. Mol. Sci. 21(24), 9662.
- Guan, S., Xu, Q., Ma, D., Ma, D. R., Zhang, W. Z., Xu, Z. J., et al. (2019). Transcriptomics profiling in response to cold stress in cultivated rice and weedy rice. Gene, 685, 96-105. [CrossRef]
- Cui, G., Chai, H., Yin, H., Yang, M., Zhang, P., Shen, J. Z., et al. (2019). Full-length transcriptome sequencing reveals the low-temperature-tolerance mechanism of Medicago falcata roots. BMC Plant Biol., 19(1), 575. [CrossRef]
- Rabeh, K., Hnini, M., and Oubohssaine, M. (2025). A comprehensive review of transcription factor-mediated regulation of secondary metabolites in plants under environmental stress. Stress Biol., 5(1), 15.
- Shen, J. Z., Zhang, D. Y., Zhou, L., Jieren, Liao, D., Wen, Y. C., et al. (2019). Transcriptomic and metabolomic profiling of Camellia sinensis L. cv. ’Suchazao’ exposed to temperature stresses reveals modification in protein synthesis and photosynthetic and anthocyanin biosynthetic pathways. Tree Physiol., 39(9), 1583-1599.
- Zhou, P. L., Li, Q. Y., Liu, G. L., Xu, N., Yang, Y. J., Zeng, W. L., et al. (2018). Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct. Plant Biol.,.
- Hao, X., Tang, H., Wang, B., Yue, C., Wang, L., Zeng, J. M., et al. (2018). Integrative transcriptional and metabolic analyses provide insights into cold spell response mechanisms in young shoots of the tea plant. Tree Physiol., 38 (11), 1655-1671. [CrossRef]
- Wang, J., Lv, J., Liu, Z. B., Liu, Y. H., Zou, X. X., Glaubitz, U., et al. (2019). Integration of Transcriptomics and Metabolomics for Pepper (Capsicum annuum L.) in Response to Heat Stress. Int. J. Mol. Sci., 20(20), 5042. [CrossRef]
- Tan, Y., Cao, Y., Mou, F., Liu, B., Wu, H., Zou, S., Ai, L., and Sui, S. (2024). Transcriptome profiling of two Camellia japonica cultivars with different heat tolerance reveals heat stress response mechanisms. Plants 13(21), 3089. [CrossRef]
- Fan, Z., Song, H., Qi, M., Wang, M., Bai, Y., Sun, Y., and Yu, H. (2025). Impact of high-temperature stress on maize seed setting: cellular and molecular insights of thermotolerance. Int. J. Mol. Sci. 26(3), 1283. [CrossRef]
- Das, S., Sultana, K. W., Ndhlala, A. R., Mondal, M., and Chandra, I. (2023). Heavy metal pollution in the environment and its impact on health: exploring green technology for remediation. Environ. Health Insights 17, 11786302231201259. [CrossRef]
- Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., and Wang, M. Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics, 9(3), 42. [CrossRef]
- Wang, J. Y. (2020). Advances in plant metabolomics under heavy metal stress. J. Green Sci. Technol., 01, 33-34.
- Li, J., Zhang, M., Sun, J., Mao, X., Zou, D., Herrera, H., et al. (2020). Heavy Metal Stress-Associated Proteins in Rice and Arabidopsis: Genome-Wide Identification, Phylogenetics, Duplication, and Expression Profiles Analysis. Front. Genet., 11, 477.
- Herrera, H., Valadares, R., Oliveira, G., Fuentes, A., Almonacid, L., Nascimento, S. V., et al. (2018). Adaptation and tolerance mechanisms developed by mycorrhizal Bipinnula fimbriata plantlets (Orchidaceae) in a heavy metal-polluted ecosystem. Mycorrhiza, 28(7), 651-663. [CrossRef]
- Luo, J. S., Zhang, Z., Shivi, T., Shumayla, Madhu, Kashmir, S., et al. (2019). Proteomic changes in the xylem sap of Brassica napus under cadmium stress and functional validation. BMC Plant Biol., 19(1), 280.
- Shivi, T., Shumayla, Madhu, Kashmir, S., Santosh, K. U., Borges, K. L. R., et al. (2021). Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.). J. Hazard. Mater., 403, 123686.
- Borges, K. L. R., Salvato, F., Loziuk, P. L., Muddiman, D. C., Azevedo, R. A., Oliveira, B. R. M., et al. (2019). Quantitative proteomic analysis of tomato genotypes with differential cadmium tolerance. Environ Sci. Pollut. Res. Int., 26(25), 26039-26051.
- Oliveira, B. R. M., De Almeida, A. F., Pirovani, C. P., Barroso, J. P., De C. Neto, C. H., Santos, N. A., et al. (2020). Mitigation of Cd toxicity by Mn in young plants of cacao, evaluated by the proteomic profiles of leaves and roots. Ecotoxicology, 29(3), 340-358. [CrossRef]
- Zhang, W. F., Gong, Z. H., Wu, M. B., Chan, H., Yuan, Y. J., Tang, N., et al. (2019). Integrative comparative analyses of metabolite and transcript profiles uncovers complex regulatory network in tomato (Solanum lycopersicum L.) fruit undergoing chilling injury. Sci. Rep., 9(1), 4470. [CrossRef]
- Zhou, P. L., Li, Q. Y., Liu, G. L., Xu, N., Yang, Y. J., Zeng, W. L., et al. (2018). Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress. Funct. Plant Biol., 46(1), 30-43.
- Zou, X. W., Yue, J., Li, Z. Y., Bai, X., Wei, B., Zhao, J., et al. (2019). Effect of heat shock transcription factor HsfA2b on abiotic stress resistance in rice. Biotechnol. Bull, 40 (02).
- Xiong, L., Schumaker, K. S., Zhu, J. K., Kim, J. M., Sasaki, T., Ueda, M., et al. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell, 14 Suppl, 165-183.
- Sulaiman, A., Muhammad, S. S. K., Songlei, X., Yichuan, F., Yang, Z., Yang, H., et al. (2024). A comprehensive overview of omics - based approaches to enhance biotic and abiotic stress tolerance in sweet potato. Hortic. Res., 2024, 11(03).
- Sun, B. R., Fu, C. Y., Fan, Z. L., Chen, Y., Chen, W. F., Zhang, J., et al. (2019). Genomic and transcriptomic analysis reveal molecular basis of salinity tolerance in a novel strong salt-tolerant rice landrace Changmaogu. Rice (N. Y.), 12(1), 99. [CrossRef]
- Kim, J. M., Sasaki, T., Ueda, M., Sako, K., Seki, M., Matsui, A., et al. (2015). Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci., 6, 114.
- Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T. A., et al. (2008). Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol., 49(8), 1135-1149. [CrossRef]
- Wu, S. F., Zhu, Y. P., He, F. C., Kim, J., Woo, H. R., Nam, H. G., et al. (2005). Progress in the comparison of transcriptome and proteome. Prog. Biochem. Biophys., 32(2), 99-105.
- Gupta, B., and Huang, B. (2014). Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int. J. Genomics, 2014, 701596. [CrossRef]
- Cruz de Carvalho, M. H. (2008). Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal. Behav. 3(3), 156-165.
- Salam, U., Ullah, S., Tang, Z. H., Elateeq, A. A., Khan, Y., Khan, J., Khan, A., and Ali, S. (2023). Plant metabolomics: an overview of the role of primary and secondary metabolites against different environmental stress factors. Life, 13(3), 706.
- Hu, G. S., Zheng, Z. Z., He, Y. H., Wang, D. C., Nie, R. C., and Liu, W. (2025). Integrated analysis of proteome and transcriptome profiling reveals pan-cancer-associated pathways and molecular biomarkers. Mol. Cell. Proteomics, 24(3), 100919. [CrossRef]
- Coman, C., Solari, F. A., Hentschel, A., Sickmann, A., Ahrends, R., Zou, X. W., et al. (2016). Simultaneous Metabolite, Protein, Lipid Extraction (SIMPLEX): A Combinatorial Multimolecular Omics Approach for Systems Biology. Mol. Cell Proteomics., 15(4), 1453-1466.
- Bai, X., Wei, B., Zhao, J., Sulaiman, A., Muhammad, S. S. K., Songlei, X., et al. (2019). Cloning and stress response model analysis of soybean GmRLP19 gene. J. Northeast Agric. Univ., 2019, 50 (04).
- Arisha, M. H., Hesham, A., Ahmad, M. Q., Liu, Y. J., Li, Q., Yan, H. Z., et al. (2020). Transcriptome sequencing and whole genome expression profiling of hexaploid sweetpotato under salt stress. BMC Genomics, 21(1), 197.
- Glaubitz, U., Li, X., Schaedel, S., Erban, A., Zuther, E., Jian, H., et al. (2017). Integrated analysis of rice transcriptomic and metabolomic responses to elevated night temperatures identifies sensitivity- and tolerance-related profiles. Plant Cell Environ., 40(1), 121-137. [CrossRef]
- Niu, Y., Liu, Z. J., He, H., Han, X., Qi, Z. Q., Yang, Y., et al. (2020). Gene expression and metabolic changes of Momordica charantia L. seedlings in response to low temperature stress. PloS one, 15(5), e0233130. [CrossRef]
- Jian, H., Xie, L., Wang, Y., Cao, Y., Liu, L., Wang, J. Y., et al. (2020). Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. PeerJ, 8, e8704.
| Stress of adversity | Species | Relevant omics | Key genes, proteins, or metabolites | References |
| Oryza sativa L. | Genomics/Transcriptomics | OsPP2C8,phosphatase 2C family,bZIP,bHLH | [101,104] | |
| Salt stress | Avicennia officinalis | Transcriptomics/Metabolomics | Zinc finger11,MYBs,BZIPs,ARF6,proline,glycinebetaine,polyols,sugars | [53] |
| Cicer arietinum L. | Transcriptomics/Metabolomics | AP2-EREBPs,MYBs,HBs,WEKYs,UDP-glucose,Fucose,citrulline,yloglucan | [59] | |
| Glycine max (L.) Merr. | Transcriptomics/Proteomics | GmPAP3,GmWRKY | [62,113] | |
| Arachis hypogaea L. | Transcriptomics/Metabolomics | AhHKT1,1,5-Anhydroglucitol,proline,Lactobionic Acid | [58] | |
| Triticum aestivum | Transcriptomics/Metabolomics | Ta.NCL2,Ta.GLR,Ta.ABAC15,Ta.CIPK31,Ta. SOS1 | [54] | |
| Helianthus tuberosus L. | Transcriptomics/Proteomics | peroxidase 5-like,alkaline leaf peroxidase,Condensin-2 complex subunit D3,Dihydroxy-acid dehydratase | [60] | |
| Sesamum indicum L. | Transcriptomics/Metabolomics | bHLHs,bZIPs,LEA,MYBs,NACs,maltose,raffinose,erythritol | [61] | |
| Castor Bean | Transcriptomics/Genomics | RSM1,OPS,bHLHs,ERFs,HD-ZIPs,NACs,WRKYs,MYBs | [64] | |
| Zeamays. L | Transcriptomics/Proteomics | ABH1,ABI5,ZEP,Ethylene-responsive transcription factor 2 | [65] | |
| Ipomoea batatas L.Lam | Transcriptomics/Genomics | GNAT TFs,bZIPs,BLH-1,Hsp70,AhpC/TSA gene family | [103,114] | |
| Stress of adversity | Species | Relevant omics | Key genes, proteins, or metabolites | References |
| drought stress | Hordeum vulgare L. | Transcriptomics/Proteomics/Metabolomics | HSP40,HSP70,HSP70,Fructokinase,Caffeoyl-CoA O-methyltransferase,proline,Ascorbic acid,PAL1-Methyladenosine,2-Ethoxyethanol | [74,76] |
| Arabidopsis thaliana | Proteomics/Metabolomics | JAZ7,Proteins involved in disease defense,energy and metabolic functions,Secondary metabolic pathways such as amino acids and antioxidant metabolites, flavonoids,flavonols,and flavonoid biosynthesis are abundant | [68] | |
| Zeamays. L | Genomics/Transcriptomics/Proteomics | RAPs,ERFs,BRH1,BRs,Xyloglucan endotransglucosylase/hydrolase,heat shock proteins,MDA,SOD/ubiquitin fusion degradation protein,asparagine synthetase,aldehyde dehydrogenase | [70,71,77,78] | |
|
Sesamum indicum L. |
Transcriptomics/Metabolomics | Dehydrin,Glycosyl transferase family 8,ABA,GABA,saccharopine,2-aminoadipate,allantoin,proline | [69] | |
| Astragalus membranaceus Bge. var. mongolicus | Transcriptomics/Metabolomics | Sucrose,prolin),malate | [47] | |
| Lolium multiflorum L. | Transcriptomics/Proteomics/Metabolomics, | LTP3,MYBs,bHLHs,bZIPs,CAT,SOD,APX,tyrosine aminotransferase,Stearidonic acid | [50] | |
| Triticum aestivum L. | Proteomics/Metabolomics | RuBisCO large subunit-binding protein subunit beta,ATP synthase CF1 beta subunit,proline,methionine,glutamate | [49] | |
| Setaria italica (L.) P. Beauv. | Transcriptomics/Metabolomics | MYBs,WRKYs,AP2/ERF,PAL,cinnamic acid | [75] |
| Stress of adversity | Species | Relevant omics | Key genes, proteins, or metabolites | References |
| temperature stress | Oryza sativa L. | Transcriptomics/Metabolism omics |
bHLHs,LRR,MYBs,WRKYs,MYSs,Glucose-6-phosphate,Glutathione,phenylpropanoids,polyhydroxy acids | [71,115] |
| Medicago falcata | Transcriptomics/Metabolomics | ERF, MYB, bHLH,NAC | [82] | |
| Camellia sinensis L. cv. ‘Suchazao’ | Transcriptomics/Metabolomics | Hsp70,Hsp90,late embryogenesis abundant(LEA),anthocyanin | [84] | |
| Capsicum annuum L. | Transcriptomics/Metabolomics | NAC2,,HSP20,WRKY40,HSP90,HSP70,D-glucoronic,flavonoids | [87] | |
| Nicotiana tabacum | Transcriptomics/Metabolomics | C4H,PAL,lignin,HCT,L-phenylalanine | [100] | |
| Camellia sinensis | Transcriptomics/Metabolomics | CBFs,HSFs,CYPs,GSTU18,Fatty acid desaturase,Calcium-binding protein CML45 | [86] | |
| Momordica charantia L. | Genomics/Metabolomics | McERF,McMYB,McWRKY,L-Valine,NAD,Sucrose | [116] | |
| Brassica napus L. | Metabolomics/Transcriptomics |
bHLH,ERF,MYB,WRKY,D-+-sucrose,dihydromyricetin |
[117] | |
| Solanum lycopersicum L. | Transcriptomics/Metabolomics | ACS,IDH,Citrate,succinate | [99] |
| Stress of adversity | Species | Relevant omics | Key genes, proteins, or metabolites | References |
| heavy metal stress | Bipinnula fimbriata | Proteomics/Metabolomics | Ribosomal protein,Glutamate decarboxylase,Beta-tubulin,Peroxidase | [94] |
|
Oryza sativa L. |
Proteomics/Genomics/Transcriptomics | OsHMP37,OsHMP09,OsHMP18,OsHMP22/Plasma membrane H+-ATPase,Phosphate transporter 5,Phospholipase D,Sucrose synthase,GTP-binding protein | [93] | |
| Brassica napus) | Transcriptomics/Metabolomics | Defense-like proteins,DAI-related protein 5 | [95] | |
| Solanum lycopersicum | Proteomics/Metabolomics | cysteine,expansin,aldehyde dehydrogenase,aldolase | [97] | |
| Arabidopsis thaliana | Genomics/Transcriptomics | AtHMP20,AtHMP23,AtHMP25,AtHMP31,AtHMP35,AtHMP46 | [93] |
|
| Triticum aestivum L. | Genomics | TaCAT | [96] |
| Stress Type | Gene/miRNA | Function/Target | Transgenic Plant | Improved Trait Observed | Reference |
| Drought, Salt, Heavy metal | miR398 | Targets CSD1/2 (superoxide dismutase), regulates oxidative stress | Arabidopsis thaliana | Enhanced tolerance to drought and salt stress by reducing ROS damage | [42] |
| Drought | miR159 | Targets MYB transcription factors, regulates ABA signaling | Arabidopsis thaliana | Improved drought tolerance via stomatal regulation | [44] |
| Salt | miR393 | Targets TIR1 auxin receptor, modulates auxin signaling | Rice (Oryza sativa) | Increased salt tolerance by modulating root architecture | [46] |
| Drought, Salt, Heat, Cold | miR164 | Targets NAC transcription factors, regulates stress responses | Arabidopsis thaliana | Enhanced tolerance to multiple abiotic stresses | [105] |
| Leaf senescence, drought | miR390 | Involved in TAS3 tasiRNA pathway, regulates ARF transcription factors | Arabidopsis thaliana | Delayed leaf senescence and improved drought tolerance | [48] |
| Cold | miR319, miR394 | Targets TCP, LCR regulatory pathways | Melon /Arabidopsis | Downregulation under cold correlates with cold response | J Integr Plant Biol (2017) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
