Submitted:
02 October 2025
Posted:
02 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Functional Food – Definitions and Market Significance
3. Black Chokeberry – Health-Promoting Properties and Bioactive Composition
4. Modern Techniques for Obtaining Plant Extracts and Their Formulation
4.1. Ultrasonically-Assisted Extraction (UAE)
4.2. Microwave-Assisted Extraction (MAE)
4.3. Supercritical Fluid Extraction (SFE)
4.4. Accelerated Solvent Extraction (PLE/ASE)
4.5. Extraction with Natural Eutectic Liquids (NADES)
4.6. Enzyme-Assisted Extraction (EAE)
4.7. Pulsed Electric Field (PEF)
4.8. Hybrid Extractions and an Integrated Approach
4.9. Stabilization of Extracts Using Microencapsulation
5. Aronia Extracts – Methods of Obtaining
6. Application Possibilities and Stability of Extracts in Technological Processes

7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topolska, K.; Florkiewicz, A.; Filipiak-Florkiewicz, A. Functional Food—Consumer Motivations and Expectations. Int. J. Environ. Res. Public Health 2021, 18, 5327. [CrossRef]
- Rutkowska, J.; Pasqualone, A. Plant Extracts as Functional Food Ingredients. Foods 2025, 14, 374. [CrossRef]
- Essa, M.M; Bishir, M.; Bhat, A; Chidambaram, S.B.; Al-Balushi, B.; Hamdan, H.; Govindarajan, N.; Freidland, R.P.; Qoronfleh, M.W. Functional foods and their impact on health. Journal of Food Science and Technology 2023, 60(3):820-834. [CrossRef]
- Bigliardi, B.; Galati, F. Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology 2013, 31 118-129. [CrossRef]
- Sreedharan, S.; Nair, V.; Bhargava, P.; Cisneros-Zevallos, L. Protective Role of Polyphenols from Aronia Berry (Aronia melanocarpa) Against LPS-Induced Inflammation in Colon Cells and Macrophages. Nutrients 2025, 17, 1652. [CrossRef]
- Chamberlin, M.L.; Peach, J.T.; Wilson, S.M.G.; Miller, Z.T.; Bothner, B.; Walk, S.T.; Yeoman, C.J.; Miles, M.P. Polyphenol-Rich Aronia melanocarpa Fruit Beneficially Impact Cholesterol, Glucose, and Serum and Gut Metabolites: A Randomized Clinical Trial. Foods 2024, 13, 2768. [CrossRef]
- Zapolska-Downar, D.; Bryk, D.; Małecki, M.; Hajdukiewicz, K.; Sitkiewicz, D. Aronia melanocarpa fruit extract exhibits anti-inflammatory activity in human aortic endothelial cells. European Journal of Nutrition 2011, 51, 563-572. [CrossRef]
- Xu, J.; Li, F.; Zheng, M.; Sheng, L.; Shi, D.; Song, K. A Comprehensive Review of the Functional Potential and Sustainable Applications of Aronia melanocarpa in the Food Industry. Plants 2024, 13, 3557. [CrossRef]
- Raczkowska, E.; Nowicka, P.; Wojdyło, A.; Styczyńska, M.; Lazar, Z. Chokeberry Pomace as a Component Shaping the Content of Bioactive Compounds and Nutritional, Health-Promoting (Anti-Diabetic and Antioxidant) and Sensory Properties of Shortcrust Pastries Sweetened with Sucrose and Erythritol. Antioxidants 2022, 11, 190. [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.; Kapoor, A.; Vo, D.-N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19 (4), 3409–3443. [CrossRef]
- Intrasook, J.; Tsusaka, T.W.; Anal A.K. Trends and current food safety regulations and policies for functional foods and beverages containing botanicals. Journal of Food and Drug Analysis 2024; 32, 112-139. [CrossRef]
- Diplock, A.T.; Aggett, P.J.; Ashwell, M.; Bornet, F.; Fern, E.B.; Roberfroid, M.B.; et al. Scientific Concepts of Functional Foods in Europe—Consensus Document. Br. J. Nutr. 1999, 81 (Suppl. 1), S1–S27. [CrossRef]
- Iwatani, S., & Yamamoto, N. Functional food products in Japan: A review. Food Science and Human Wellness, 2019 8(2), 96–101. [CrossRef]
- Sadohara, R.; Martirosyan, D. Functional Food Centers’ Vision on Functional Food Definition and Science in Comparison to FDA’s Health Claim Authorization and Japan’s Foods for Specified Health Uses. Funct. Foods Health Dis. 2020, 10, 753. [CrossRef]
- Obayomi OV, Olaniran AF, Owa SO. Unveiling the Role of Functional Foods with Emphasis on Prebiotics and Probiotics in Human Health: A Review. J. Funct. Foods 2024, 119, 106337. [CrossRef]
- Martirosyan, D.; Kanya, H.; Nadalet, C. Can Functional Food Reduce the Risk of Disease? Advancement of Functional Food Definition and Steps to Create Functional Food Products. Funct. Foods Health Dis. 2021, 11, 213–221. [CrossRef]
- Egbuna, C., & Tupas, G. D. (Eds.). (2020). Functional foods and nutraceuticals: Bioactive components, formulations and innovations. Springer. [CrossRef]
- Global Market Insights. Functional Foods Market Size, Share & Growth Trend 2025-2034, 2025. (Online resource; accessed 7 July 2025).
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer Acceptance toward Functional Foods: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 1217. [CrossRef]
- Shuval, K.; Leonard, T.; Drope, J.; Galárraga, O.; Melaku, Y. A.; Knai, C.; Moodie, R.; Rutter, H.; Stuckler, D.; Chaloupka, F. J. The Impact of Health and Nutrition Claims on Consumer Perceptions and Consumption: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2017, 14 (1), 35. [CrossRef]
- Fernqvist, F.; Spendrup, S.; Tellström, R. Understanding food choice: A systematic review of reviews. Heliyon 2024, 10 (12), e32492. [CrossRef]
- Hajzer ZE, Alibrahem W, Kharrat Helu N, Oláh C, Prokisch J. Functional Foods in Clinical Trials and Future Research Directions. Foods 2025; 14(15):2675. [CrossRef]
- World Health Organization. World Report on Ageing and Health 2020. WHO Press, 2020.
- Piasecka, I.; Wiktor, A.; Górska, A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Appl. Sci. 2022, 12, 1734. [CrossRef]
- Do Thi, N.; Hwang, E. Effects of Drying Methods on Contents of Bioactive Compounds and Antioxidant Activities of Black Chokeberries (Aronia melanocarpa). Food Sci. Biotechnol. 2016, 29; 25 (1) 55–61. [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of Anthocyanins in Common Foods in the United States and Estimation of Normal Consumption. J. Agric. Food Chem. 2021, 69, 1773–1784. [CrossRef]
- Chrubasik, C.; Li, G.; Chrubasik, S. The Clinical Effectiveness of Chokeberry: A Systematic Review. Phytother. Res. 2010, 24, 1107–1114. [CrossRef]
- Bräunlich, M.; Slimestad, R.; Wangensteen, H.; Brede, C.; Malterud, K.E.; Barsett, H. Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients 2013, 5, 663–678. [CrossRef]
- Francik, R., Krośniak, M., Sanocka, I., Bartoń, H., Hebda, T., Francik, S. Aronia melanocarpa Treatment and Antioxidant Status in Selected Tissues in Wistar Rats. BioMed Res Int. 2014; 2014:457085. [CrossRef]
- Dufour C, Villa-Rodriguez JA, Furger C, Lessard-Lord J, Gironde C, Rigal M, Badr A, Desjardins Y, Guyonnet D. Cellular Antioxidant Effect of an Aronia Extract and Its Polyphenolic Fractions Enriched in Proanthocyanidins, Phenolic Acids, and Anthocyanins. Antioxidants 2022;11(8):1561. [CrossRef]
- Kaczmarczyk, S.; Dziewiecka, H.; Pasek, M.; et al. Effects of Black Chokeberry (Aronia melanocarpa) Supplementation on Oxidative Stress, Inflammation and Gut Microbiota: A Systematic Review of Human and Animal Studies. Br. J. Nutr. 2025, 133, 58–81. [CrossRef]
- Sarıkaya, B.; Kolay, E.; Guney-Coskun, M.; et al. The Effect of Black Chokeberry (Aronia melanocarpa) on Human Inflammation Biomarkers and Antioxidant Enzymes: A Systematic Review of Randomized Controlled Trials. Nutr. Rev. 2025, 83, 1083–1098. [CrossRef]
- Mesárošová, A.; Bobko, M.; Jurčaga, L.; Bobková, A.; Poláková, K.; Demianová, A.; Lidiková, J.; Bučko, O.; Tóth, T. Chokeberry (Aronia melanocarpa) as a Natural Antioxidant for the Meat Industry. Czech J. Food Sci. 2024, 42, 69–76. [CrossRef]
- Skąpska, S.; Marszałek, K.; Woźniak, Ł.; Zawada, K.; Wawer, I. Aronia Dietary Drinks Fortified with Selected Herbal Extracts Preserved by Thermal Pasteurization and High Pressure Carbon Dioxide. LWT–Food Science and Technology 2017, 85, 423–426. [CrossRef]
- Liu, C.-Y.; Liu, W.-Y.; Shi, Y.-C.; Wu, S.-C. Unveiling the Therapeutic Benefits of Black Chokeberry (Aronia melanocarpa) in Alleviating Hyperuricemia in Mice. Front. Nutr. 2025, 12, Article 1556527. [CrossRef]
- Li, L., Li, J., Xu, H., Zhu, F., Li, Z., Lu, H., Zhang, J., Yang, Z., & Liu, Y. The protective effect of anthocyanins extracted from Aronia melanocarpa berry in renal ischemia-reperfusion injury in mice. Mediators of Inflammation, 2021, 7372893. [CrossRef]
- Lupu, M. I.; Canja, C. M.; Maier, A.; Padureanu, V.; Branescu, G. R.; Manolica, A.-M. The Impact of the Infusion Method of Chokeberry Powder in White Tea. Carpathian J. Food Sci. Technol. 2024, 16 (4), 28. [CrossRef]
- Broncel, M.; Koziróg-Kołacińska, M.; Andryskowski, G.; Duchnowicz, P.; Koter-Michalak, M.; Owczarczyk, A.; Chojnowska-Jezierska, J. Effect of anthocyanins from Aronia melanocarpa on blood pressure, concentration of endothelin-1 and lipids in patients with metabolic syndrome. Polski Merkuriusz Lekarski 2007, 23 (134), 116-119.
- Wen, H.; Cui, H.; Tian, H.; Zhang, X.; Ma, L.; Ramassamy, C.; Li, J. Isolation of Neuroprotective Anthocyanins from Black Chokeberry (Aronia melanocarpa) against Amyloid-β-Induced Cognitive Impairment. Foods 2020, 10, 63. [CrossRef]
- Young Go, M.; Kim, J.; Young Jeon, C.; Wook Shin, D. Functional Activities and Mechanisms of Aronia melanocarpa in Our Health. Curr. Issues Mol. Biol. 2024, 46, 8071–8087. [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [CrossRef]
- Doma AO, Cristina RT, Dumitrescu E, Degi D, Moruzi RF, Brezovan D, Petroman I, Muselin F. The antioxidant effect of Aronia melanocarpa extract in rats oxidative stress induced by cisplatin administration. J Trace Elem Med Biol. 2023, 79:127205. [CrossRef]
- Trusov NV, Shipelin VA, Mzhelskaya KV, Shumakova AA, Timonin AN, Riger NA, Apryatin SA, Gmoshinski IV. Effect of resveratrol on behavioral, biochemical, and immunological parameters of DBA/2J and tetrahybrid DBCB mice receiving diet with excess fat and fructose. J. Nutr. Biochem. 2021, 88, 108527. [CrossRef]
- Kulling, S.E.; Rawel, H.M. Chokeberry (Aronia melanocarpa)—A Review on the Characteristic Components and Potential Health Effects. Planta Hum. 2008, 74(13), 1625-1634. [CrossRef]
- Kasprzak-Drozd, K.; Oniszczuk, T.; Soja, J.; Gancarz, M.; Wojtunik-Kulesza, K.; Markut-Miotła, E.; Oniszczuk, A. The Efficacy of Black Chokeberry Fruits against Cardiovascular Diseases. Int. J. Mol. Sci. 2021, 22 (12), 6541. [CrossRef]
- Frumuzachi, O.; Mocan, A.; Rohn, S.; Gavrilaș, L. Daily Supplementation with Aronia melanocarpa (Chokeberry) Reduces Blood Pressure and Cholesterol: A Meta-Analysis of Controlled Clinical Trials. Nutrients 2025, 17 (9), 1488. [CrossRef]
- Shah, K.; Shah, P. Effect of Anthocyanin Supplementations on Lipid Profile and Inflammatory Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cholesterol 2018, Article 8450793. [CrossRef]
- Zhang J., Zhang Y., Wang J., Jin H., Qian S., Chen P., Wang M., Chen N., Ding L. Comparison of Antioxidant Capacity and Muscle Amino Acid and Fatty Acid Composition of Nervous and Calm Hu Sheep. Antioxidants. 2023;12(2):459. [CrossRef]
- Strugała, P.; Wójciak, K.M.; Kawecki, D.; Wójtowicz, A. Antioxidant Activity and Anti-Inflammatory Effect of Fruit Extracts from Blackcurrant, Chokeberry, Hawthorn, and Rosehip, and Their Mixture with Linseed Oil on a Model Lipid Membrane. Eur. J. Lipid Sci. Technol. 2016, 118, 1047–1057. [CrossRef]
- Palai, S.; Shekhawat, N. Novel Extraction Techniques for Phytochemicals: A Comprehensive Review. Int. J. Pharm. Res. 2022, 14 (3), 21-30. [CrossRef]
- Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Analytical and Bioanalytical Chemistry 2017;409(22):5513–5525. [CrossRef]
- Zhang, Y., Zhang, M., & Wang, L. Combined calcium pretreatment and ultrasonic/microwave drying to dehydrate black chokeberry: Novel mass transfer modeling and metabolic pathways of polyphenols. Innovative Food Science & Emerging Technologies, 2022, 80, 103215. [CrossRef]
- Lazović, M. Č.; Jović, M. D.; Petrović, M.; Dimkić, I. Z.; Gašić, U. M.; Milojković Opsenica, D. M.; Ristivojević, P. M.; Trifković, J. Đ. Potential Application of Green Extracts Rich in Phenolics for Innovative Functional Foods: Natural Deep Eutectic Solvents as Media for Isolation of Biocompounds from Berries. Food Funct. 2024, 15, 4122–4139. [CrossRef]
- Krzepiłko, A.; Kordowska-Wiater, M.; Sosnowska, B.; Pytka, M. Effects of Plant Extracts on Microorganisms; Lublin University of Life Sciences Press: Lublin, Poland, 2020; p. 27.
- Kuzmanović Nedelijković, S.; Radan, M.; Ćujić Nikolić, N.; Mutavski, Z.; Krgović, N.; Marković, S.; Stević, T.; Živković, J.; Šavkin, K. Microencapsulated Bilberry and Chokeberry Leaf Extracts with Potential Health Benefits. Plants, 2023, 12, 3979. [CrossRef]
- Zlabur, J.; Dobricevic, N.; Pliestić, S.; Galić, A.; Bilić, D.; Voca, S. Antioxidant Potential of Fruit Juice with Added Chokeberry Powder (Aronia melanocarpa). Molecules 2017, 22, 2158. [CrossRef]
- Gheorghita, R.E.; Lupaescu, A.V.; Gâtlan, A.M.; Dabija, D.; Lobiuc, A.; Iatcu, O.C.; Buculei, A.; Andriesi, A.; Dabija, A. Biopolymers-Based Macrogels with Applications in the Food Industry: Capsules with Berry Juice for Functional Food Products. Gels 2024, 10, 71. [CrossRef]
- Bitwell C, Sen IS, Luke C, Kakoma MK. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African 2023; e01585. [CrossRef]
- Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. [CrossRef]
- Kudra, T., Mujumdar A.S. Advanced Drying Technologies, 2009. [CrossRef]
- Chezanoglou, E.; Goula, C.M. Co-crystallization in sucrose: A promising method for encapsulation of food bioactive components. Trends in Food Science & Technology 2021, 114 262-274. [CrossRef]
- George, M.; Abraham, T.E. Polyionic Hydrocolloids for the Intestinal Delivery of Protein Drugs: Alginate and Chitosan—A Review. J. Control. Release 2006, 114, 1–14. [CrossRef]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2020, 37, 106–126. [CrossRef]
- Tzatsi, P.; Goula, A. Encapsulation of Extract from Unused Chokeberries by Spray Drying, Co-Crystallization, and Ionic Gelation. Waste Biomass Valorization 2021, 12, 4567-4585. [CrossRef]
- Ben-Othman, S.; Bleive, U.; Kaldmäe, H.; Aluvee, A.; Ratsep, R.; Sats, A.; Pap, N.; Jarvenpaa, E.; Rinken, T. Characterization of Plant-Based Spray-Dried Powders Using Oilseed Proteins and Chokeberry Extract from Wine By-Product. Sci. Rep. 2024, 14, 6233.
- Peron, G.; Ferrarese, I.; Carmo Dos Santos, N.; Rizzo, F.; Gargari, G.; Bertoli, N.; Gobbi, E.; Perosa, A.; Selva, M.; Dall’Acqua, S. Sustainable Extraction of Bioactive Compounds and Nutrients from Agri-Food Wastes: Potential Reutilization of Berry, Honey, and Chicory Byproducts. Appl. Sci. 2024, 14, 10785. [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H. A. R. Extraction and Characterization of Phenolic Compounds and Their Potential Antioxidant Activities. Environ. Sci. Pollut. Res. Int. 2022, 29 (54), 81112–81129. [CrossRef]
- Ivanova, M.; Petkova, N.; Balabanova, T.; Ognyanov, M.; Vlaseva, R. Food Design of Dairy Desserts with Encapsulated Cornelian Cherry, Chokeberry and Blackberry Juices. Ann. Univ. Dunarea de Jos Galati Fasc. VI – Food Technology 2018, 42, 137-146.
- Usman M, Nakagawa M, Cheng S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023;11(12):3444. [CrossRef]
- Krakowska-Sieprawska A, Kiełbasa A, Rafińska K, Ligor M, Buszewski B. Modern methods of pre-treatment of plant material for the extraction of bioactive compounds. Molecules 2022;27(3):730. [CrossRef]
- Martins RF, Advinha B, Barbosa A, Sales HJ, Pontes R, Nunes J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11(8):2255. [CrossRef]
- Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 2013;117(4):426–436. [CrossRef]
- Sowbhagya HB, Chitra VN. Enzyme-assisted extraction of flavorings and colorants from plant materials. Critical Reviews in Food Science and Nutrition 2010;50(2):146–161. [CrossRef]
- Wang, J.; Wang, J.; Hao, J.; Jiang, M.; Zhao, C.; Fan, Z. Antioxidant Activity and Structural Characterization of Anthocyanin–Polysaccharide Complexes from Aronia melanocarpa. Int. J. Mol. Sci. 2024, 25 (24), 13347. [CrossRef]
- Piras, A.; Porcedda, S.; Smeriglio, A.; Trombetta, D.; Nieddu, M.; Piras, F.; Sogos, V.; Rosa, A. Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries. Molecules 2024, 29 (11), 2577. [CrossRef]
- Sönmez Gürer, E.; Karadağ, A. E.; Altıntaş, A. Comparison of Chemical Profiles of Aronia melanocarpa Fruit Extracts. Turkish J. Agric. Food Sci. Technol. 2023, 11 (2), 323–328. [CrossRef]
- Park, Y.; Puligundla, P.; Mok, C. Decontamination of Chokeberries (Aronia melanocarpa L.) by Cold Plasma Treatment and Its Effects on Biochemical Composition and Storage Quality of Their Corresponding Juices. Food Sci. Biotechnol. 2021, 30, 703–710. [CrossRef]
- Kowalska, J.; Marzec, A.; Domian, E.; Galus, S.; Ciurzyńska, A.; Lenart, A.; Kowalska, H. The Use of Antioxidant Potential of Chokeberry Juice in Creating Pro-Healthy Dried Apples by Hybrid (Convection-Microwave-Vacuum) Method. Molecules 2020, 25 (23) 5680. [CrossRef]
- Ciurzyńska, A.; Popkowicz, P.; Galus, S.; Janowicz, M. Innovative Freeze-Dried Snacks with Sodium Alginate and Fruit Pomace (Only Apple or Only Chokeberry) Obtained within the Framework of Sustainable Production. Molecules 2022, 27, 3095. [CrossRef]
- Masztalerz, K.; Łyczko, J.; Lech, K.; Szumny, A.; Figiel, A. The Effect of Filtrated Osmotic Solutions Based on Chokeberry Juice Enriched with Mint Extract on Volatile Compounds in Dried Apples. J. Food Process Eng. 2021, 44, e13803. [CrossRef]
- Sadowska, A.; Świderski, F.; Hallmann, E.; Świąder, K. Assessment of Chokeberry Powders Quality Obtained Using an Innovative Fluidized-Bed Jet Milling and Drying Method with Pre-Drying Compared with Convection Drying. Foods 2021, 10, 292. [CrossRef]
- Sidor, A.; Ziemlewska, A.; Dobrzyńska-Inger, A.; Gramza-Michałowska, A. The Effect of Plant Additives on the Stability of Polyphenols in Dried Black Chokeberry. Foods 2021, 10, 2766. [CrossRef]
- Nemetz, N.; Schieber, A.; Weber, F. Application of Crude Pomace Powder of Chokeberry, Bilberry, and Elderberry as a Coloring Foodstuff. Molecules 2021, 26, 2689. [CrossRef]
- Żbikowska, A.; Łukasiak, P.; Kowalska, M.; Łukasiak, A.; Kozłowska, M.; Marciniak-Łukasiak, K. Incorporation of Chokeberry Pomace into Baked Products: Influence on the Quality of the Dough and the Muffins. Appl. Sci. 2024, 14, 9675. [CrossRef]
- Karwacka, M., A. Ciurzyńska, S. Galus, and M. Janowicz. 2024. The Effect of Storage Time and Temperature on Quality Changes in Freeze-Dried Snacks Obtained With Fruit Pomace and Pectin Powders as a Sustainable Approach for New Product Development. Sustainability 2024, 16 (11) 4736. [CrossRef]
- Drożdż, W.; Boruczkowska, H.; Boruczkowski, T.; Tomaszewska-Ciosk, E.; Zdybel, E. Use of Blackcurrant and Chokeberry Press Residue in Snack Products. Pol. J. Chem. Technol. 2019, 21, 1, 13-19.
- Babaoglu, A.; Unal, K.; Dilek, N.; Pocan, H.; Karakaya, M. Antioxidant and Antimicrobial Effects of Blackberry, Black Chokeberry, Blueberry, and Red Currant Pomace Extracts on Beef Patties Subject to Refrigerated Storage. Meat Sci. 2022, 188, 108794. [CrossRef]
- Eisinaitė, V.; Kazernavičiūtė, R.; Kaniauskienė, I.; Venskutonis, P.; Leskauskaitė, D. Effect of Black Chokeberry Pomace Extract Incorporation on Physical and Oxidative Stability of Water-inioil-in-water emulsion. J. Sci. Food Agric. 2021, 101, 4570-4577. [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Sturza, R.; Niculaua, M.; Patras, A.; Synthetic Dye Substitution with Chokeberry Extract in Jelly Candies. J. Food Sci. Technol. 2020, 57, 4383-4394. [CrossRef]
- Wathon, M.H.; Beaumont, N.; Benohoud, M.; Blackburn, R.S.; Rayner, C. Extraction of anthocyanins from Aronia melanocarpa skin waste as a sustainable source of natural colorants. Coloration Technology 2019, 135(1), 5-16. [CrossRef]
- Szajnar, K.; Pawlos, M.; Znamirowska, A. The Effect of the Addition of Chokeberry Fiber on the Quality of Sheep’s Milk Fermented by Lactobacillus. Int. J. Food Sci. 2021, 7928745. [CrossRef]
- Li, S.; Chen, J.; Sarengaowa; Chen, C.; Hu, W. Application of Procyanidins from Aronia melanocarpa (Michx.) Elliott in Fresh-Cut Apple Preservation. Horticulturae 2024, 10, 556. [CrossRef]
- Kowalczyk, M.; Domaradzki, P.; Materska, M.; Florek, M.; Kaliniak-Dziura, A.; Skałecki, P.; Żółkiewski, P.; Grenda, T.; Pabich, M. Effect of the Addition of Chokeberry Leaf Extract on the Physicochemical and Sensory Properties of Burgers from Dark Cutting Veal. Food Chem. 2023, 399, 133937. [CrossRef]
- Cichowska, J.; Samborska, K.; Kowalska, H. Influence of Chokeberry Juice Concentrate Used as Osmotic Solution on the Quality of Differently Dried Apples During Storage. Eur. Food Res. Technol. 2018, 244, 1773–1782. [CrossRef]
- Sady, S.; Sielicka-Różyńska, M. Quality Assessment of Experimental Cookies Enriched with Freeze-Dried Black Chokeberry. Acta Sci. Pol. Technol. Alimony. 2019, 18, 67–75. [CrossRef]
- Taskin, O. Evaluation of Freeze Drying for Whole, Half Cut and Puree Black Chokeberry (Aronia melanocarpa L.). Heat Mass Transf. 2020, 56, 2503-2513. [CrossRef]
- Güneş, R. Quality Assessment of Chokeberry Fruit Powders Obtained by Convective Hot Air and Freeze Drying Methods. GIDA 2023, 48 (5) 1109-1122. [CrossRef]
- Petković, M.; Filipović, V.; Lončar, B.; Filipović, J.; Miletić, N.; Malasević, Z.; Jevremović, D. A Comparative Analysis of Thin-Layer Microwave and Microwave/Convective Dehydration of Chokeberry. Foods 2023, 12, 1651. [CrossRef]
- Habschied, K.; Nisević, J.; Krstanović, V.; Lončarić, A.; Lendić, K.; Mastanjević, K. Formulation of a Wort-Based Beverage with the Addition of Chokeberry (Aronia melanocarpa) Juice and Mint Essential Oil. Appl. Sci. 2023, 13(4), 2334. [CrossRef]
- Samborska, K.; Eliasson, L.; Marzec, A.; Kowalska, J.; Piotrowski, D.; Lenart, A.; Kowalska, H. The Effect of Adding Berry Fruit Juice Concentrates and By-Product Extract to Sugar Solution on Osmotic Dehydration and Sensory Properties of Apples. J. Food Sci. Technol. 2019, 56, 1927–1938. [CrossRef]

| Extract Type | Technique | Application | The added value of the enriched product | References |
|---|---|---|---|---|
| Aronia juice concentrate/juice | Cold pressing, filtration, pasteurization, concentration (up to 65 Brix) | Osmotic impregnation before drying fruits, | Improved colour (ΔE > 6.0), increased antioxidant capacity (DPPH +45%); inhibition of anthocyanin degradation by 30% during storage | [78,79,80] |
| Aronia powder (freeze-dried) | Freeze-drying (-40 °C, 0.1 mbar for 48h); convection drying (60 °C for 24h) | Sweet confectionery, drinks, dairy desserts | Higher polyphenol content (820-900 mg GAE/100g for freeze-dried vs. 470 mg GAE/100g for hot air drying); Anthocyanin behavior above 85% | [56,81,82] |
| Aronia pomace | Drying with hot air (50-60 °C); grinding | Bread, snacks, pectin substitutes dairy products | Improvement of fiber content (up to 22% d.m.), reduction of polyphenol losses by up to 10% during baking, increase in moisture retention in baked goods by 15-18% | [83,84,85,86] |
| Phenolic/polyphenolic extracts | Extraction with 50% ethanol (1:10 m/v, 60 °C, 30 min.); ultrasound-assisted (20kHz, 30 min.) | Oil emulsions, meat, supplements | Total polyphenols (TPC) up to 2400 mg GAE/100g; reduction of TBARS in meat by 40-60% during storage (14 days, 4 °C) | [49,53,87,88] |
| Anthocyanin/procyanide extracts | SPE (Solid Phase Extraction) from ethanol and water (50:50), purification on C18 columns. Extraction-adsorption method. | Jelly beans, natural colourants. | Maintaining color stability (up to 85%) at pH 3-4; inhibition of ascorbic acid oxidation by 52%; colour fastness 28 days at 4 °C. Increased yield and purity of anthocyanin extract produced from chokeberry pomace using a new method compared to the traditional SPE method. | [89,90] |
| Aronia leaf extract | Hydroalcoholic extraction (60% ethanol, 1:15 m/v, 40 °C, 2h), microencapsulation | Meat products | Reduction of lipid oxidation (TBARS) by 42% in beef burgers, increase in sensory acceptability (panel 8/9 pts.) | [55] |
| Microencapsulated extracts | Spray drying (inlet temperature 170 °C, output temperature 80 °C); co-crystallation with maltodextrin or alginate gelation | Yoghurts, dairy desserts, dietary supplements | Retention of 90-95% of polyphenols after 6 weeks of storage, reduction of Maillard reaction, greater stability at pH 4-5. | [64] |
| Dietary fiber (powder) | Pomace drying (55 °C, 24h), mechanical separation | Fermented products (e.g. sheep’s milk) | Increase in the number of LAB bacteria by 1.5 log CFU/mL; improved texture, increase in overall sensory acceptance | [91] |
| Macrogels with aronia juice | Gelation of biopolymers (e.g. carboxymethylcellulose, pea protein) | Functional gummies, gelled products | Anthocyanin retention at 80%, improving antioxidant stability, masking astringent taste | [57] |
| Natural aronia dye replacing E-131, E-162 | Water-ethanol extraction, filtration | Jelly beans, pastries, drinks | Colour fastness for 4 weeks (4 °C, pH 3.0); 65% increase in ORAC of gummies, compliance with “clean label” standards | [83,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
