Submitted:
29 September 2025
Posted:
30 September 2025
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Influence of Homogenization Treatment on Microstructure and Texture Modification
3.2. Impact of Homogenization Treatment on Recrystallization and Mechanical Behavior
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AR | As received |
| HT | Heat treated |
| IPF | Inverse pole figure |
| PSN | Particle simulated nucleation |
| EBSD | Electron back scattered diffraction |
| GOS | Grain orientation spread |
| KAM | Kernel average misorientation |
References
- Chaudry, U. M.; Farooq, A.; Sufyan, M.; Tariq, H. M. R.; Malik, A.; Kim, M.; Tariq, A.; Hamad, K.; Jun, T.-S. , Corrosion behavior of AZ31 and AZ31-0.5 Ca in different concentrations of NaCl and Na2SO4 at various temperatures. Corrosion 2025, 81, 232–244. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, M.; Zhang, W.; Ning, J. , High-Temperature Deformation Behaviors of Gradient-Structured Mg-Gd-Y-Zr Alloys at High Strain Rates. Materials 2025, 18, 4085. [Google Scholar] [CrossRef] [PubMed]
- Nidadavolu, E.; Mikulics, M.; Wolff, M.; Ebel, T.; Willumeit-Römer, R.; Zeller-Plumhoff, B.; Mayer, J.; Hardtdegen, H. H. , Correlative Raman Spectroscopy–SEM Investigations of Sintered Magnesium–Calcium Alloys for Biomedical Applications. Materials 2025, 18, 3873. [Google Scholar] [CrossRef]
- Mukhtar, S.; Kamran, M.; Tayyeb, A.; Hussain, F.; Ishtiaq, M.; Riaz, F.; Asghar, W. , Composition design and performance analysis of binary and ternary Mg-Zn-Ti alloys for biomedical implants. Journal of Biological Physics 2025, 51, 9. [Google Scholar] [CrossRef]
- Chaudry, U. M.; Tariq, H. M. R.; Ansari, N.; Kim, C.-S.; Lee, S. Y.; Jun, T.-S. , Exceptional improvement in the yield strength of AZ61 magnesium alloy via cryo-stretching and its implications on the grain growth during annealing. Journal of Alloys and Compounds 2024, 970, 172630. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Chaudry, U. M.; Kim, C.-S.; Jun, T.-S. , Synergetic improvement in strength and ductility of AZX211 Mg alloy facilitated by {10–12}-{01–12} twin-twin interactions during pre-stretching at cryogenic temperature. Journal of Materials Research and Technology 2024. [Google Scholar] [CrossRef]
- Hafiz Muhammad Rehan, T.; Umer Masood, C.; Jeong-Rim, L.; Nooruddin, A.; Mansoor, A.; Tea-Sung, J. , Tensile Failure Mode Transitions from Subzero to Elevated Deformation Temperature in Mg-6Al-1Zn Alloy. International Journal of Minerals, Metallurgy and Materials 2025. [Google Scholar]
- Zhang, Z.; Kim, J.; Lee, T.; Li, M.; Gao, Y.; Pan, F. , Effect of Substituting Y with Gd on LPSO Phase Dispersion and Mechanical Properties of Mg-2Ni-2Y Alloy. Metals and Materials International 2023, 1–11. [Google Scholar] [CrossRef]
- Khan, M. A.; Afifi, M. A.; Hafeez, M. A.; Chaudry, U. M.; Brechtl, J.; Zulfiqar, M.; Tariq, H. M. R.; Hussain, M. A.; Kamran, M.; ishtiaq, M. , Evolution of microstructure, texture, and mechanical performance of Mg-13Gd-2Er-0.3 Zr alloy by double extrusion at different temperatures. Archives of Civil and Mechanical Engineering 2024, 25, 26. [Google Scholar] [CrossRef]
- Chaudry, U. M.; Tariq, H. M. R.; Zubair, M.; Ansari, N.; Jun, T.-S. , Implications of twinning on the microstructure development, crystallographic texture and mechanical performance of Mg alloys-a critical review. Journal of Magnesium and Alloys 2023, 11, 4146–4165. [Google Scholar] [CrossRef]
- Chaudry, U. M.; Rehan Tariq, H. M.; Hamad, K.; Khan, M. K.; Jun, T.-S. , Twinning-induced texture weakening in Mg alloy and its consequent influence on ductility and formability. Materials Science and Technology 2025, 41, 101–105. [Google Scholar] [CrossRef]
- Zhou, W.; Aprilia, A.; Mark, C. K. , Mechanisms of cracking in laser welding of magnesium alloy AZ91D. Metals 2021, 11, 1127. [Google Scholar] [CrossRef]
- Li, X.; Jiao, F.; Al-Samman, T.; Chowdhury, S. G. , Influence of second-phase precipitates on the texture evolution of Mg–Al–Zn alloys during hot deformation. Scripta Materialia 2012, 66, 159–162. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Ishtiaq, M.; Kang, H.-H.; Chaudry, U. M.; Jun, T.-S. , A Critical Review on the Comparative Assessment of Rare-Earth and Non-Rare-Earth Alloying in Magnesium Alloys. Metals 2025, 15, 128. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Chaudry, U. M.; Kim, C.-S.; Jun, T.-S. , Synergetic improvement in strength and ductility of AZX211 Mg alloy facilitated by {10–12}-{01–12} twin-twin interactions during pre-stretching at cryogenic temperature. Journal of Materials Research and Technology 2024, 29, 3249–3254. [Google Scholar] [CrossRef]
- Chaudry, U. M.; Tariq, H. M. R.; Ansari, N.; Mansoor, A.; Khan, M. K.; Hamad, K.; Jun, T.-S. , Effect of CaO Content and Annealing Treatment on the Room-Temperature Mechanical Properties of AZ61 and AZ61-CaO Alloys. Metals 2023, 13, 1962. [Google Scholar] [CrossRef]
- Shah, S.; Liu, M.; Khan, A.; Ahmad, F.; Chaudry, U. M.; Khan, M. Y.; Abdullah, M.; Xu, S.; Peng, Z. , Recrystallization aspects and factors affecting their roles in Mg alloys: A comprehensive review. Journal of Magnesium and Alloys 2025. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Kang, H. H.; Chaudry, U. M.; Khan, M. K.; Jun, T. S. , Impact of Surface Roughness on the Yield Drop of Hot-Rolled AZX311 Mg Alloy. Advanced Engineering Materials 2024, 2401689. [Google Scholar] [CrossRef]
- Hussain, F.; Manzoor, M. U.; Kamran, M.; Ahmad, T.; Riaz, F.; Mukhtar, S.; Rehan Tariq, H. M.; Ishtiaq, M. , Optimizing Biocompatibility of Mg-AZ31B Alloy through Varied Surface Roughness and Anodization Time. Iranian Journal of Materials Science & Engineering 2024, 21. [Google Scholar]
- Park, J.; Kim, M.; Yoon, U.; Kim, W. , Microstructures and mechanical properties of Mg–Al–Zn–Ca alloys fabricated by high frequency electromagnetic casting method. Journal of materials science 2009, 44, 47–54. [Google Scholar] [CrossRef]
- Gneiger, S.; Papenberg, N.; Mitsche, S.; Fehlbier, M. , Manufacturing and processing of sheets using a Mg–Al–Ca–Zn–Y alloy for automotive applications. Results in Engineering 2024, 21, 101700. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, K.-k.; Nie, K.-b.; Xu, F.-j.; Su, K.; Liang, W. , Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Materials Science and Engineering: A 2015, 636, 279–288. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, B.; Yang, H.; Yang, Q.; Dai, J.; Pan, F. , Influence of the Al2Ca phase on microstructure and mechanical properties of Mg–Al–Ca alloys. Journal of Alloys and Compounds 2015, 647, 357–363. [Google Scholar] [CrossRef]
- Fan, Y.; Zhu, G.; Park, J.-S.; Zhang, X.; Song, Z.; Wang, H.; Zeng, X.; Wang, L. , The role of Ca on the microstructure and tensile properties of Mg-Al-Zn-Ca alloys. Materialia 2023, 29, 101787. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Chaudry, U. M.; Kim, C.-S.; Jun, T.-S. , Effect of Calcium on the Rate of Grain Boundary Migration in Pure Magnesium During Annealing. Metals and Materials International 2024, 1–6. [Google Scholar] [CrossRef]
- Siddique, J. A.; Kim, B. H.; Rafiei, S.; Shah, A. W.; Song, R.; Ha, S.-H.; Yoon, Y. O.; Lim, H. K.; Kim, S. K. , Role of dislocation density on the onset and intensity of stretcher strain marks in novel Al-Mg alloys with high Mg content. Journal of Materials Research and Technology 2025, 35, 5552–5562. [Google Scholar] [CrossRef]
- Pei, R.; Zou, Y.; Wei, D.; Al-Samman, T. , Grain boundary co-segregation in magnesium alloys with multiple substitutional elements. Acta Materialia 2021, 208, 116749. [Google Scholar] [CrossRef]
- Kim, H. J.; Jin, S.-C.; Jung, J.-G.; Park, S. H. , Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg–7Sn–1Al–1Zn alloy during low-and high-temperature extrusions. Journal of Materials Science & Technology 2021, 71, 87–97. [Google Scholar]
- Zhang, L.; Wu, X.; Zhang, X.; Yang, X.; Li, Y. , Constitutive model and recrystallization mechanism of Mg-8.7 Gd-4.18 Y-0.42 Zr magnesium alloy during hot deformation. Materials 2022, 15, 3914. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Chaudry, U. M.; Suh, J. S.; Kim, Y. M.; Jun, T.-S. , Effect of cryogenic temperature on the strengthening mechanisms of AZ61 Mg alloy extruded at different temperatures. Journal of Materials Research and Technology 2024, 33, 335–348. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, S.; Cheng, M.; Zhang, S.; Li, Y.; Yang, Y. , Controlling dynamic recrystallization via modified LPSO phase morphology and distribution in Mg-Gd-Y-Zn-Zr alloy. Journal of Magnesium and Alloys 2023, 11, 4218–4234. [Google Scholar] [CrossRef]
- Tariq, H. M. R.; Chaudry, U. M.; Ishtiaq, M.; Kim, M.; Ali, M.; Jun, T.-S. , Effect of Al addition on the room and cryogenic temperature deformation of Mg-xAl-1Zn-1Ca alloy (x= 1, 2 wt.%). Journal of Magnesium and Alloys 2024, 12, 4694–4708. [Google Scholar] [CrossRef]
- Zhu, G.; Wang, L.; Wang, J.; Wang, J.; Park, J.-S.; Zeng, X. , Highly deformable Mg–Al–Ca alloy with Al2Ca precipitates. Acta Mater. 2020, 200, 236–245. [Google Scholar] [CrossRef]
- Chaudry, U. M.; Lee, M.-S.; Jun, T.-S. , Dynamic recrystallization of commercially pure titanium during cryogenic compression. Materials Characterization 2023, 206, 113423. [Google Scholar] [CrossRef]
- Changizian, P.; Zarei-Hanzaki, A.; Abedi, H. R. , On the recrystallization behavior of homogenized AZ81 magnesium alloy: The effect of mechanical twins and γ precipitates. Materials Science and Engineering: A 2012, 558, 44–51. [Google Scholar] [CrossRef]
- Shah, S. S. A.; Liu, M.; Khan, A.; Ahmad, F.; Chaudry, U. M.; Khan, M. Y.; Abdullah, M. R.; Xu, S.; Peng, Z. , Recrystallization aspects and factors affecting their roles in Mg alloys: A comprehensive review. Journal of Magnesium and Alloys 2025, 13, 1879–1914. [Google Scholar] [CrossRef]
- Robson, J. D.; Henry, D. T.; Davis, B. , Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation. Acta Mater. 2009, 57, 2739–2747. [Google Scholar] [CrossRef]
- Zhang, K.; Shao, Z.; Jiang, J. , Effects of twin-twin interactions and deformation bands on the nucleation of recrystallization in AZ31 magnesium alloy. Materials & Design 2020, 194, 108936. [Google Scholar]
- Kim, H. J.; Jin, S.-C.; Jung, J.-G.; Park, S. H. , Influence of undissolved second-phase particles on dynamic recrystallization behavior of Mg–7Sn–1Al–1Zn alloy during low- and high-temperature extrusions. Journal of Materials Science & Technology 2021, 71, 87–97. [Google Scholar]
- Masood Chaudry, U.; Hoo Kim, T.; Duck Park, S.; Sik Kim, Y.; Hamad, K.; Kim, J.-G. , On the High Formability of AZ31-0.5Ca Magnesium Alloy. Materials 2018, 11, 2201. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R. E. , A review of dynamic recrystallization phenomena in metallic materials. Materials & Design 2016, 111, 548–574. [Google Scholar]
- Raabe, D. 23 - Recovery and Recrystallization: Phenomena, Physics, Models, Simulation. In Physical Metallurgy (Fifth Edition), Laughlin, D. E.; Hono, K., Eds. Elsevier: Oxford, 2014; pp. 2291–2397. [Google Scholar]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
