Submitted:
10 September 2025
Posted:
10 September 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Three Assumptions and Two Applications of Our 4G Model of Final Unification
- (1)
- There exists a characteristic electroweak fermion of rest energy, . It can be considered as the zygote of all elementary particles.
- (2)
- There exists a nuclear elementary charge in such a way that, = Strong coupling constant and .
- (3)
- Each atomic interaction is associated with a characteristic large gravitational coupling constant. Their fitted magnitudes are,
- (1)
- In a unified approach, most important point to be noted is that,
- (2)
- Another interesting application is that, string theory [9] can be made practical with reference to the three atomic gravitational constants associated with weak, strong, and electromagnetic interaction gravitational constants. These constants provide a framework to bridge the gap between quantum mechanics and gravity at the atomic scale, offering new insights into particle interactions. By incorporating these gravitational couplings into string theory models, it becomes possible to explore unified descriptions of fundamental forces. This approach may lead to testable predictions linking microscopic string dynamics with observable nuclear phenomena, thereby advancing both theoretical and experimental physics. See Table 1. and Table 2. for sample string tensions and energies without any coupling constants.
- (3)
- Weak interaction point of view [13], following our assumptions, Fermi’s weak coupling constant can be fitted with the following relations.
3. Formula Development and Methodology
3.1. Advanced Nuclear Mass Radius Formula
- ➢
- The aA1/3 base term originates from the classic geometric model of the nucleus, where the radius scales with the cube root of the mass number, describing the approximate constancy of nuclear density across the chart.
- ➢
- The bI isospin asymmetry term I=(N−Z)/A represents the correction for neutron-proton imbalance, which is known to influence nuclear size and is included in several radius fitting studies.
- ➢
- The cδ pairing correction accounts for the variation in nuclear radii depending on whether the nucleus has even or odd numbers of protons and neutrons; such terms appear in both mass and radius systematics.
- ➢
- The dA−1/3 inverse scaling term and the constant e are added for additional fitting flexibility and improved regression accuracy.
- ➢
- The fS shell correction term incorporates effects from nuclear shell structure, particularly close to magic numbers, as described in various empirical and theoretical studies
- ➢
- a,b,c,d,e,f are coefficients fitted to experimental data.
- ➢
- This formula is given by AI by considering so many references. It needs proper citation and confirmation. For the time being, we consider it as an advanced mass radius formula. For details, see the python program presented in section (6).
- ➢
- It is very interesting to note that, numerically, output of this advanced mass radius relation can be compared with 4G model relation, See Table 3, columns 4 and 5.
- ➢
- This formula captures detailed nuclear structure features but involves multiple fitted parameters and terms.
3.2. Proposed Simple Formula
- (A)
- Mass Radius:
- (1)
- The mass radius refers to the spatial extent of the total nuclear mass distribution, considering both protons and neutrons as massive particles within the nucleus.
- (2)
- It describes the radius at which the nuclear matter density drops to half its central value and is defined through gravitational form factors or nuclear density profiles.
- (3)
- Mass radii can be probed in specialized reactions and models but are not directly measured in typical scattering experiments.
- (B)
- Charge Radius:
- (1)
- The charge radius is the root-mean-square (rms) distance of the distribution of the proton (electric charge) density inside the nucleus.
- (2)
- It is measured directly by high-precision experiments, such as elastic electron scattering, muonic atom spectroscopy, or optical isotope shifts, since these techniques respond to the nuclear electric field produced by protons.
- (3)
- The charge radius is particularly sensitive to the spatial arrangement of protons, not neutrons, in the nucleus.
- (C)
- Key Differences:
- (1)
- The mass radius reflects the distribution of all nucleons (protons and neutrons), while the charge radius primarily describes the distribution of protons only.
- (2)
- Experimental nuclear charge radii are typically slightly smaller than mass radii in nuclei with a neutron excess, because neutron-rich nuclei have a more extended neutron distribution (sometimes called a neutron skin).
- (3)
- In some light nuclei (e.g., 4He), mass radius and charge radius can be nearly identical due to similar proton and neutron distributions, but differences become apparent in heavier or neutron-rich nuclei.
- (D)
- Proposed Formulae
- (1)
- Fine structure ratio helps in increasing the mass distribution radius by a factor of
- (2)
- Strong coupling coefficient helps in increasing the mass distribution by a factor of.
- (3)
- Close to stable mass numbers, mass distribution radius takes the following form,
- (4)
- Above and below the stable mass numbers, mass distribution radius takes the following form,
4. Results: Figures and Data Table
| Z | N | Approximate stable mass number (As) |
Advanced Mass Radius (fm) | A(1/3)*1.24 (fm) |
Estimated Nuclear Charge Radius [28] (fm) | Mass Distribution Factor | Estimated Mass Radius (fm) |
Error (fm) |
Percentage Error (%) |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 2 | 4 | 1.695 | 1.968 | 1.562 | 1.127 | 1.760 | -0.065 | 3.84 |
| 3 | 3 | 6 | 2.071 | 2.253 | 1.788 | 1.177 | 2.106 | -0.035 | 1.67 |
| 4 | 4 | 8 | 2.315 | 2.480 | 1.968 | 1.191 | 2.345 | -0.03 | 1.28 |
| 5 | 5 | 10 | 2.562 | 2.671 | 2.120 | 1.200 | 2.544 | 0.018 | 0.70 |
| 6 | 6 | 12 | 2.712 | 2.839 | 2.253 | 1.206 | 2.717 | -0.005 | 0.17 |
| 7 | 7 | 14 | 2.906 | 2.989 | 2.372 | 1.211 | 2.872 | 0.034 | 1.16 |
| 8 | 8 | 16 | 3.032 | 3.125 | 2.480 | 1.215 | 3.013 | 0.019 | 0.63 |
| 9 | 10 | 19 | 3.293 | 3.309 | 2.594 | 1.222 | 3.169 | 0.124 | 3.75 |
| 10 | 11 | 21 | 3.317 | 3.421 | 2.686 | 1.224 | 3.289 | 0.028 | 0.84 |
| 11 | 12 | 23 | 3.517 | 3.526 | 2.771 | 1.227 | 3.401 | 0.116 | 3.30 |
| 12 | 13 | 25 | 3.525 | 3.626 | 2.852 | 1.230 | 3.507 | 0.018 | 0.52 |
| 13 | 14 | 27 | 3.743 | 3.720 | 2.928 | 1.232 | 3.608 | 0.135 | 3.60 |
| 14 | 15 | 29 | 3.740 | 3.810 | 3.000 | 1.235 | 3.704 | 0.036 | 0.95 |
| 15 | 16 | 31 | 3.917 | 3.895 | 3.069 | 1.237 | 3.797 | 0.12 | 3.08 |
| 16 | 18 | 34 | 3.994 | 4.017 | 3.145 | 1.241 | 3.902 | 0.092 | 2.30 |
| 17 | 19 | 36 | 4.102 | 4.094 | 3.208 | 1.243 | 3.987 | 0.115 | 2.81 |
| 18 | 20 | 38 | 4.157 | 4.169 | 3.269 | 1.245 | 4.068 | 0.089 | 2.12 |
| 19 | 21 | 40 | 4.259 | 4.241 | 3.327 | 1.247 | 4.148 | 0.111 | 2.60 |
| 20 | 23 | 43 | 4.290 | 4.344 | 3.392 | 1.249 | 4.239 | 0.051 | 1.21 |
| 21 | 24 | 45 | 4.461 | 4.411 | 3.447 | 1.251 | 4.313 | 0.148 | 3.33 |
| 22 | 25 | 47 | 4.430 | 4.475 | 3.499 | 1.253 | 4.385 | 0.045 | 1.01 |
| 23 | 26 | 49 | 4.611 | 4.538 | 3.551 | 1.255 | 4.455 | 0.156 | 3.38 |
| 24 | 28 | 52 | 4.655 | 4.628 | 3.608 | 1.257 | 4.536 | 0.119 | 2.55 |
| 25 | 29 | 54 | 4.727 | 4.687 | 3.656 | 1.259 | 4.603 | 0.124 | 2.62 |
| 26 | 30 | 56 | 4.763 | 4.744 | 3.703 | 1.261 | 4.668 | 0.095 | 1.98 |
| 27 | 32 | 59 | 4.898 | 4.827 | 3.755 | 1.263 | 4.743 | 0.155 | 3.16 |
| 28 | 33 | 61 | 4.855 | 4.881 | 3.800 | 1.265 | 4.806 | 0.049 | 1.02 |
| 29 | 34 | 63 | 5.011 | 4.934 | 3.844 | 1.266 | 4.867 | 0.144 | 2.87 |
| 30 | 36 | 66 | 5.040 | 5.011 | 3.892 | 1.268 | 4.937 | 0.103 | 2.04 |
| 31 | 37 | 68 | 5.118 | 5.061 | 3.934 | 1.270 | 4.996 | 0.122 | 2.39 |
| 32 | 39 | 71 | 5.118 | 5.135 | 3.980 | 1.272 | 5.063 | 0.055 | 1.08 |
| 33 | 40 | 73 | 5.268 | 5.182 | 4.020 | 1.273 | 5.120 | 0.148 | 2.83 |
| 34 | 41 | 75 | 5.218 | 5.229 | 4.059 | 1.275 | 5.175 | 0.043 | 0.82 |
| 35 | 43 | 78 | 5.363 | 5.298 | 4.103 | 1.277 | 5.239 | 0.124 | 2.32 |
| 36 | 44 | 80 | 5.400 | 5.343 | 4.141 | 1.278 | 5.293 | 0.107 | 1.99 |
| 37 | 46 | 83 | 5.518 | 5.409 | 4.183 | 1.280 | 5.354 | 0.164 | 2.97 |
| 38 | 47 | 85 | 5.448 | 5.452 | 4.219 | 1.282 | 5.406 | 0.042 | 0.77 |
| 39 | 49 | 88 | 5.588 | 5.515 | 4.259 | 1.283 | 5.466 | 0.122 | 2.19 |
| 40 | 50 | 90 | 5.607 | 5.557 | 4.294 | 1.285 | 5.517 | 0.09 | 1.61 |
| 41 | 52 | 93 | 5.719 | 5.618 | 4.333 | 1.286 | 5.574 | 0.145 | 2.53 |
| 42 | 53 | 95 | 5.661 | 5.658 | 4.367 | 1.288 | 5.623 | 0.038 | 0.66 |
| 43 | 55 | 98 | 5.796 | 5.717 | 4.404 | 1.290 | 5.680 | 0.116 | 2.01 |
| 44 | 56 | 100 | 5.812 | 5.756 | 4.437 | 1.291 | 5.728 | 0.084 | 1.45 |
| 45 | 58 | 103 | 5.920 | 5.813 | 4.474 | 1.292 | 5.782 | 0.138 | 2.33 |
| 46 | 60 | 106 | 5.927 | 5.868 | 4.510 | 1.294 | 5.836 | 0.091 | 1.53 |
| 47 | 61 | 108 | 5.990 | 5.905 | 4.541 | 1.295 | 5.882 | 0.108 | 1.81 |
| 48 | 63 | 111 | 5.971 | 5.959 | 4.576 | 1.297 | 5.935 | 0.036 | 0.60 |
| 49 | 64 | 113 | 6.108 | 5.995 | 4.606 | 1.298 | 5.980 | 0.128 | 2.10 |
| 50 | 66 | 116 | 6.112 | 6.047 | 4.640 | 1.300 | 6.031 | 0.081 | 1.32 |
| 51 | 68 | 119 | 6.214 | 6.099 | 4.673 | 1.301 | 6.082 | 0.132 | 2.14 |
| 52 | 69 | 121 | 6.150 | 6.133 | 4.702 | 1.303 | 6.125 | 0.025 | 0.40 |
| 53 | 71 | 124 | 6.291 | 6.183 | 4.735 | 1.304 | 6.175 | 0.116 | 1.85 |
| 54 | 73 | 127 | 6.267 | 6.233 | 4.767 | 1.306 | 6.224 | 0.043 | 0.69 |
| 55 | 74 | 129 | 6.386 | 6.265 | 4.795 | 1.307 | 6.266 | 0.12 | 1.87 |
| 56 | 76 | 132 | 6.385 | 6.314 | 4.826 | 1.308 | 6.314 | 0.071 | 1.11 |
| 57 | 78 | 135 | 6.483 | 6.361 | 4.857 | 1.310 | 6.361 | 0.122 | 1.88 |
| 58 | 80 | 138 | 6.481 | 6.408 | 4.887 | 1.311 | 6.408 | 0.073 | 1.12 |
| 59 | 81 | 140 | 6.538 | 6.439 | 4.914 | 1.312 | 6.449 | 0.089 | 1.36 |
| 60 | 83 | 143 | 6.510 | 6.484 | 4.944 | 1.314 | 6.495 | 0.015 | 0.23 |
| 61 | 85 | 146 | 6.631 | 6.529 | 4.973 | 1.315 | 6.540 | 0.091 | 1.36 |
| 62 | 87 | 149 | 6.601 | 6.574 | 5.002 | 1.317 | 6.585 | 0.016 | 0.23 |
| 63 | 88 | 151 | 6.731 | 6.603 | 5.027 | 1.318 | 6.625 | 0.106 | 1.58 |
| 64 | 90 | 154 | 6.726 | 6.647 | 5.056 | 1.319 | 6.669 | 0.057 | 0.84 |
| 65 | 92 | 157 | 6.819 | 6.689 | 5.084 | 1.320 | 6.713 | 0.106 | 1.56 |
| 66 | 94 | 160 | 6.812 | 6.732 | 5.112 | 1.322 | 6.756 | 0.056 | 0.82 |
| 67 | 96 | 163 | 6.905 | 6.774 | 5.139 | 1.323 | 6.799 | 0.106 | 1.53 |
| 68 | 98 | 166 | 6.897 | 6.815 | 5.166 | 1.324 | 6.842 | 0.055 | 0.80 |
| 69 | 99 | 168 | 6.951 | 6.842 | 5.190 | 1.326 | 6.880 | 0.071 | 1.02 |
| 70 | 101 | 171 | 6.917 | 6.883 | 5.217 | 1.327 | 6.922 | -0.005 | 0.07 |
| 71 | 103 | 174 | 7.033 | 6.923 | 5.243 | 1.328 | 6.963 | 0.07 | 0.98 |
| 72 | 105 | 177 | 6.998 | 6.962 | 5.269 | 1.329 | 7.005 | -0.007 | 0.10 |
| 73 | 107 | 180 | 7.113 | 7.001 | 5.295 | 1.331 | 7.046 | 0.067 | 0.94 |
| 74 | 109 | 183 | 7.077 | 7.040 | 5.320 | 1.332 | 7.087 | -0.01 | 0.13 |
| 75 | 111 | 186 | 7.191 | 7.078 | 5.346 | 1.333 | 7.127 | 0.064 | 0.89 |
| 76 | 113 | 189 | 7.155 | 7.116 | 5.371 | 1.334 | 7.167 | -0.012 | 0.17 |
| 77 | 115 | 192 | 7.268 | 7.154 | 5.396 | 1.336 | 7.207 | 0.061 | 0.84 |
| 78 | 117 | 195 | 7.231 | 7.191 | 5.420 | 1.337 | 7.246 | -0.015 | 0.22 |
| 79 | 119 | 198 | 7.343 | 7.227 | 5.445 | 1.338 | 7.286 | 0.057 | 0.78 |
| 80 | 121 | 201 | 7.305 | 7.264 | 5.469 | 1.339 | 7.325 | -0.02 | 0.27 |
| 81 | 123 | 204 | 7.417 | 7.300 | 5.493 | 1.341 | 7.363 | 0.054 | 0.72 |
| 82 | 125 | 207 | 7.378 | 7.335 | 5.516 | 1.342 | 7.402 | -0.024 | 0.32 |
| 83 | 127 | 210 | 7.489 | 7.370 | 5.540 | 1.343 | 7.440 | 0.049 | 0.65 |
| 84 | 129 | 213 | 7.450 | 7.405 | 5.563 | 1.344 | 7.478 | -0.028 | 0.38 |
| 85 | 131 | 216 | 7.560 | 7.440 | 5.586 | 1.345 | 7.516 | 0.044 | 0.58 |
| 86 | 133 | 219 | 7.520 | 7.474 | 5.609 | 1.347 | 7.553 | -0.033 | 0.44 |
| 87 | 135 | 222 | 7.629 | 7.508 | 5.632 | 1.348 | 7.590 | 0.039 | 0.51 |
| 88 | 138 | 226 | 7.650 | 7.553 | 5.657 | 1.349 | 7.631 | 0.019 | 0.24 |
| 89 | 140 | 229 | 7.733 | 7.586 | 5.679 | 1.350 | 7.668 | 0.065 | 0.85 |
| 90 | 142 | 232 | 7.717 | 7.619 | 5.701 | 1.351 | 7.704 | 0.013 | 0.17 |
| 91 | 144 | 235 | 7.800 | 7.652 | 5.723 | 1.352 | 7.740 | 0.06 | 0.77 |
| 92 | 146 | 238 | 7.783 | 7.684 | 5.745 | 1.354 | 7.777 | 0.006 | 0.09 |
| 93 | 148 | 241 | 7.866 | 7.717 | 5.767 | 1.355 | 7.812 | 0.054 | 0.68 |
| 94 | 151 | 245 | 7.809 | 7.759 | 5.791 | 1.356 | 7.852 | -0.043 | 0.55 |
| 95 | 153 | 248 | 7.916 | 7.791 | 5.812 | 1.357 | 7.887 | 0.029 | 0.36 |
| 96 | 155 | 251 | 7.873 | 7.822 | 5.833 | 1.358 | 7.922 | -0.049 | 0.63 |
| 97 | 157 | 254 | 7.980 | 7.853 | 5.854 | 1.359 | 7.957 | 0.023 | 0.28 |
| 98 | 159 | 257 | 7.936 | 7.884 | 5.875 | 1.360 | 7.992 | -0.056 | 0.71 |
| 99 | 162 | 261 | 8.077 | 7.924 | 5.898 | 1.362 | 8.030 | 0.047 | 0.58 |
| 100 | 164 | 264 | 8.058 | 7.955 | 5.918 | 1.363 | 8.065 | -0.007 | 0.09 |
| 101 | 166 | 267 | 8.138 | 7.985 | 5.939 | 1.364 | 8.099 | 0.039 | 0.48 |
| 102 | 169 | 271 | 8.078 | 8.024 | 5.961 | 1.365 | 8.137 | -0.059 | 0.72 |
| 103 | 171 | 274 | 8.183 | 8.054 | 5.981 | 1.366 | 8.170 | 0.013 | 0.16 |
| 104 | 173 | 277 | 8.138 | 8.083 | 6.001 | 1.367 | 8.204 | -0.066 | 0.81 |
| 105 | 176 | 281 | 8.277 | 8.122 | 6.023 | 1.368 | 8.241 | 0.036 | 0.44 |
| 106 | 178 | 284 | 8.257 | 8.151 | 6.042 | 1.369 | 8.274 | -0.017 | 0.21 |
| 107 | 180 | 287 | 8.336 | 8.179 | 6.062 | 1.370 | 8.308 | 0.028 | 0.34 |
| 108 | 183 | 291 | 8.274 | 8.217 | 6.083 | 1.372 | 8.344 | -0.07 | 0.84 |
| 109 | 185 | 294 | 8.378 | 8.245 | 6.103 | 1.373 | 8.377 | 0.001 | 0.01 |
| 110 | 187 | 297 | 8.331 | 8.273 | 6.122 | 1.374 | 8.410 | -0.079 | 0.94 |
| 111 | 190 | 301 | 8.469 | 8.310 | 6.143 | 1.375 | 8.445 | 0.024 | 0.27 |
| 112 | 192 | 304 | 8.447 | 8.338 | 6.162 | 1.376 | 8.478 | -0.031 | 0.37 |
| 113 | 195 | 308 | 8.508 | 8.374 | 6.182 | 1.377 | 8.513 | -0.005 | 0.06 |
| 114 | 197 | 311 | 8.461 | 8.401 | 6.201 | 1.378 | 8.545 | -0.084 | 1.00 |
| 115 | 200 | 315 | 8.597 | 8.437 | 6.221 | 1.379 | 8.580 | 0.017 | 0.20 |
| 116 | 202 | 318 | 8.574 | 8.464 | 6.240 | 1.380 | 8.612 | -0.038 | 0.44 |
| 117 | 205 | 322 | 8.635 | 8.499 | 6.260 | 1.381 | 8.647 | -0.012 | 0.14 |
| 118 | 207 | 325 | 8.587 | 8.525 | 6.278 | 1.382 | 8.678 | -0.091 | 1.07 |







4.1. Data Table Observations and analysis
- (1)
- The table shows data for various nuclides with proton number (Z), neutron number (N), and mass number (A).
- (2)
- It lists the advanced radius, estimated nuclear charge radius (using relation involving Z1/3 and N1/3, mass distribution factor, estimated mass radius, and percentage error between the estimated and advanced mass radii.
- (3)
- The percentage error is generally very low, often below 2%, especially for medium and heavy nuclei. For example, for larger nuclei like Z=50 and above, errors hover near or below 1%, indicating high accuracy of the simple formula.
- (4)
- This confirms the simple formula’s efficacy for rapid nuclear radius estimation with minimal parameters, particularly suitable for large-scale or educational applications where complex calculations are impractical.
- (5)
- For Z=2 and its isotopes, average % error is 8.1%. Similarly for Z=8,20,28,50,82 and 114, average % errors are, 1.29%, 0.725%, 0.81%, 0.665%, 0.632% and 0.784% respectively. These percentage errors can be considered for further analysis positively.
- (6)
- Even though percentage errors are slightly larger (3 to 12 %) in very light nuclei, range of difference in radii is (0.03 to 0.14) fm. It needs further study.
4.2. Graphical Observations
- (1)
- The graphs depict estimated nuclear mass radii for isotopes of magic numbers Z=2, 8,20,28,50,82,114 as a function of mass number A.
- (2)
- Trends show a smooth increase in radius with increasing A, consistent with the power-law dependence on proton and neutron numbers.
- (3)
- The estimated radii closely track the advanced formula results across isotopes, validating the model’s predictive power.
- (4)
- Regions near magic numbers show slight structural effects possibly reflected in minor deviations or curvature in the radii trends.
4.3. Overall Commentary
5. Simplicity of the Proposed Formula
- (1)
- It separately accounts for proton and neutron contributions through Z1/3 and N1/3, physically motivated by differing mass distributions.
- (2)
- The mass distribution coefficient Cmd introduces a tuneable mild dependence on proton number, neutron number and mass number offering empirical flexibility without excessive complication.
- (3)
- Compared to the multi-parameter advanced formula, it is computationally simpler and easier to implement in broad nuclear system studies or educational settings.
- (4)
- Despite its simplicity, it exhibits high fidelity across a broad mass range, supporting its utility for approximate radius calculations when detailed corrections are unavailable or unnecessary.
- (5)
- Crucially, reliably approximates experimental nuclear charge radii [28,29,30,31] for a wide spectrum of elements. This strong correspondence validates the formula’s capability to capture essential aspects of nuclear spatial charge distribution, underscoring its scientific robustness and practical utility. See the following Figure 9 and Table 4. For light atomic nuclides, charge radius can be approximated with,

6. Python Program for Nuclear Mass Radius Calculation
| import math import csv import os import matplotlib.pyplot as plt def calculate_nuclear_radius_advanced(Z, A): N = A - Z I = (N - Z) / A if (Z % 2 == 0) and (N % 2 == 0): delta = 0 elif (Z % 2 == 1) and (N % 2 == 1): delta = 0.5 elif (Z % 2 == 1) and (N % 2 == 0): delta = 1 elif (Z % 2 == 0) and (N % 2 == 1): delta = -1 else: delta = 0 magic_numbers = [2, 8, 20, 28, 50, 82, 126] S = 0.1 if any(abs(A - m) <= 2 for m in magic_numbers) else 0 a = 1.25 b = -0.15 c = 0.05 d = -0.8 e = 0.2 f = 0.15 R = a * A ** (1/3) + b * I + c * delta + d * A ** (-1/3) + e + f * S return R # precision kept for calculations def calculate_estimated_radii(Z, A): N = A - Z estimated_charge_radius = 0.62 * (pow(Z,1/3)+pow(Z*Z*N,1/9)) sms = int((2 * Z) + (0.0064 * Z * Z)) mass_distribution_factor =1 + (pow(pow(Z*Z,0.5), 2/3) * 0.0073) + (0.1152*(1+pow((pow(N*N,0.5)-2)/A,0.5))) mass_distribution_factor =mass_distribution_factor*pow(A/sms,0.25) estimated_mass_radius = mass_distribution_factor * estimated_charge_radius return N, estimated_charge_radius, mass_distribution_factor, estimated_mass_radius def get_positive_integer(prompt): while True: try: value = int(input(prompt)) if value > 0: return value else: print("Please enter a positive integer greater than zero.") except ValueError: print("Invalid input. Please enter a positive integer.") def save_results_to_csv(Z, A_values, neutrons, advanced_radii, estimated_charge_radii, mass_distribution_factors, estimated_mass_radii, filename_csv): with open(filename_csv, mode='w', newline='') as file: writer = csv.writer(file) writer.writerow([ "Z", "N", "A", "Advanced Mass Radius (fm)", "Estimated Nuclear Charge Radius (fm)", "Mass Distribution Factor", "Estimated Mass Radius (fm)", "Percentage Error (%)" ]) error_sum = 0 count = 0 for i, A in enumerate(A_values): radius_adv = advanced_radii[i] radius_charge = estimated_charge_radii[i] mdf = mass_distribution_factors[i] radius_mass = estimated_mass_radii[i] neutron = neutrons[i] percent_error = abs((radius_mass - radius_adv) / radius_adv) * 100 writer.writerow([ Z, neutron, A, round(radius_adv, 4), round(radius_charge, 4), round(mdf, 5), round(radius_mass, 4), round(percent_error, 3) ]) error_sum += percent_error count += 1 avg_error = error_sum / count writer.writerow([]) writer.writerow(["Average % Error", "", "", "", "", "", "", round(avg_error, 3)]) print(f"Data has been saved to '{filename_csv}'.") def plot_nuclear_radii(Z, A_values, advanced_radii, estimated_charge_radii, estimated_mass_radii, filename_graph): fig, ax = plt.subplots(figsize=(10, 6)) ax.plot(A_values, advanced_radii, label='Advanced Mass Radius', marker='o', color='green') ax.plot(A_values, estimated_mass_radii, label='Estimated Mass Radius', marker='x', color='red') ax.plot(A_values, estimated_charge_radii, label='Estimated Nuclear Charge Radius', marker='^', color='black') ax.set_xlabel('Mass Number (A)') ax.set_ylabel('Nuclear Radius (fm)') ax.set_title(f'Proton and neutron number dependent nuclear mass radii for the isotpes of Z = {Z}') ax.legend() ax.grid(True) # Set border thickness for all four axis spines for spine in ax.spines.values(): spine.set_linewidth(1.5) # Add border around entire figure fig.patch.set_linewidth(2) fig.patch.set_edgecolor('black') fig.patch.set_facecolor('white') # Keep background white plt.tight_layout() plt.savefig(filename_graph) print(f"Graph has been saved as '{filename_graph}'.") plt.show() def main(): print("Current working directory:", os.getcwd()) Z = get_positive_integer("Enter proton number Z: ") A_lower = 2 * Z A_upper = int(3.5 * Z) A_values = list(range(A_lower, A_upper + 1)) neutrons = [] advanced_radii = [] estimated_charge_radii = [] mass_distribution_factors = [] estimated_mass_radii = [] for A in A_values: N, charge_r, mdf, mass_r = calculate_estimated_radii(Z, A) neutrons.append(N) estimated_charge_radii.append(charge_r) mass_distribution_factors.append(mdf) estimated_mass_radii.append(mass_r) advanced_radii.append(calculate_nuclear_radius_advanced(Z, A)) filename_csv = f"nuclear_radius_output_Z{Z}.csv" filename_graph = f"nuclear_radius_plot_Z{Z}.png" save_results_to_csv(Z, A_values, neutrons, advanced_radii, estimated_charge_radii, mass_distribution_factors, estimated_mass_radii, filename_csv) plot_nuclear_radii(Z, A_values, advanced_radii, estimated_charge_radii, estimated_mass_radii, filename_graph) if __name__ == "__main__": main() |
7. Discussion
7.1. Physical Rationale for Separate Contributions
7.2. Role of the Mass Distribution Coefficient
7.3. Accuracy and Limitations Across the Nuclear Chart
7.4. Implications for Nuclear Modelling and Astrophysical Phenomena
7.5. Connection to Fundamental Constants
7.6. Limitations, Outlook and Future Directions
- (1)
- Light Nuclei Accuracy: For light nuclei (e.g., Helium-4), the simplified formula cannot accommodate quantum effects, cluster structures, or strong pairing correlations captured by detailed advanced models; errors rise above 5–10% in some cases.
- (2)
- Physical Basis for Mass Distribution Coefficient: The mass distribution factor Cmd is currently tuned with fine structure ratio and the strong coupling constant. Even though there is limited discussion on its theoretical underpinnings—further studies or density functional theory analyses might clarify its physical interpretation.
- (3)
- Neglect of Higher Order Corrections: While the formula’s simplicity is a virtue, effects such as deformation, nuclear skin thickness, or isospin-dependent density variations are only indirectly and approximately encoded.
- Separate proton (Z1/3) and neutron (N1/3) contributions,
- A physically motivated, tuneable mass distribution coefficient (Cmd) linked to fundamental constants (fine structure ratio, strong coupling constant),
- Minimal adjustable parameters compared to multi-coefficient advanced formulas,
- The advanced formula coefficients are best applied acknowledging typical ±5% variability or uncertainty.
- The 4G model’s simplified formula stands as a robust, physically transparent, and practical nuclear radius estimation method, reducing reliance on complex empirical parameter calibrations.
- This dual perspective—combining empirical coefficient sensitivity awareness and physically motivated simplification—provides a comprehensive, precise, and efficient framework for nuclear radius evaluations in both academic and applied contexts.
8. Conclusion
Data Availability Statement
Acknowledgements
Conflict of Interest
References
- Rutherford, E. The scattering of α and β particles by matter and the structure of the atom. Philosophical Magazine, 21(125), 669-688, 1911.
- N. Gauthier; Deriving a formula for nuclear radii using the measured atomic masses of elements. Am. J. Phys. 57 (4): 344–346, 1989. [CrossRef]
- Nerlo-Pomorska, B., Pomorski, K. Simple formula for nuclear charge radius. Z. Physik A - Hadrons and Nuclei. 348, 169–172, 1994. [CrossRef]
- Hiroyuki Koura, Masahiro Unoa, Takahiro Tachibana, Masami Yamadaa. Nuclear mass formula with shell energies calculated by a new method. Nuclear Physics A 674. 47–76, 2000. [CrossRef]
- Möller, P., Nix, J.R., Myers, W.D., Swiatecki, W.J., Nuclear Ground-State Masses and Deformations, Atomic Data and Nuclear Data Tables 59, 185–381 (1995). [CrossRef]
- Audi, G., Wang, M., Wapstra, A.H., et al., The Ame2012 Atomic Mass Evaluation: (II). Tables, Graphs, and References, Chinese Physics C, 36(12), 1287–1602 (2012).
- Brown, B.A., Proton and neutron radii in nuclei, Phys. Rev. Lett. 85, 5296–5299 (2000).
- Yao, J.M., et al. Constraints on nuclear symmetry energy and neutron skins from nuclear collective oscillations, Frontiers in Physics 8, Article 55 (2020).
- Seshavatharam U. V. S, Gunavardhana Naidu T and Lakshminarayana S. Nuclear evidences for confirming the physical existence of 585 GeV weak fermion and galactic observations of TeV radiation. International Journal of Advanced Astronomy. 13(1):1-17, 2025.
- Seshavatharam U V S and Lakshminarayana S. 4G model of final unification – A brief report Journal of Physics: Conference Series 2197 p 012029, 2022.
- Seshavatharam U.V.S and Lakshminarayana S. A very brief review on strong and electroweak mass formula pertaining to 4G model of final unification. Proceedings of the DAE Symp. on Nucl. Phys. 67,1173, 2023.
- Apoorva D. Patel. EPR Paradox, Bell Inequalities and Peculiarities of Quantum Correlations.arXiv:2502.06791v1,2025. [CrossRef]
- Clifford Cheung, Aaron Hillman, Grant N. Remmen. String Theory May Be Inevitable as a Unified Theory of Physics. Physics World, 2025.
- Ahmed Abokhalil. The Higgs Mechanism and Higgs Boson: Unveiling the Symmetry of the Universe. arXiv:2306.01019v2 [hep-ph].
- Koura, H., Uno, M., Tachibana, T., & Yamada, M. Nuclidic mass formula with shell and pairing corrections. Nucl. Phys. A 674, 47–70. 2005.
- LI Ru-Heng, HU Yong-Mao and LI Mao-Cai. An analysis of nuclear charge radii based on the empirical formula.CPC(HEP & NP), 33(Suppl.): 123—125 C, 2009. [CrossRef]
- Lu Tang and Zhen-Hua Zhang. Nuclear charge radius predictions by kernel ridge regression with odd-even effects. Nucl. Sci. Tech. 35, 19, 2024. [CrossRef]
- Tuncay Bayram, Serkan Akkoyun, S.Okan Kara, Alper Sinan. New Parameters for Nuclear Charge Radius Formulas. Acta Phys. Polon.B 44, 8, 1791-1799,2013. [CrossRef]
- Y.H. Wang, D.Y. Pang, W.D. Chen, Y.P. Xu, W.L. Hai. Nuclear radii from total reaction cross section measurements at intermediate energies with complex turning point corrections to the eikonal model.Phys.Rev.C 109, 1, 014621, 2024. [CrossRef]
- Takayuki Miyagi. Nuclear radii from first principles. Front. Phys., 09 May 2025. [CrossRef]
- S. Navas et al. Electroweak Model and Constraints on New Physics.
- S. Navas et al. Quantum Chromodynamics. (Particle Data Group), Phys. Rev. D 110, 030001, 2024.
- D d’Enterria et al. The strong coupling constant: state of the art and the decade ahead. J. Phys. G: Nucl. Part. Phys. 51 090501, 2024. [CrossRef]
- Seshavatharam U.V.S and Lakshminarayana S. Computing unified atomic mass unit and Avogadro number with various nuclear binding energy formulae coded in Python. Int. J. Chem. Stud. 2025;13(1):24-30.
- Seshavatharam, U. V. S.; Lakshminarayana, S. Revised Electroweak and Asymmetry Terms of the Strong and Electroweak Mass Formula Associated with 4G Model of Final Unification. Preprints 2025050425, 2025.
- P.R. Chowdhury, C. Samanta, D.N. Basu, Modified Bethe– Weizsacker mass formula with isotonic shift and new driplines. Mod. Phys. Lett. A 20, 1605–1618, 2005.
- G. Royer, On the coefficients of the liquid drop model mass formulae and nuclear radii. Nuclear Physics A, 807, 3–4, 105-118, 2008. [CrossRef]
- I. Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: An update, Atomic Data and Nuclear Data Tables 99, 69–95, 2013. [CrossRef]
- Ning Wang and Tao Li. Shell and isospin effects in nuclear charge radii.Phys. Rev. C 88, 011301(R). [CrossRef]
- Rong An, Xiang Jiang, Na Tang, Li-Gang Cao, Feng-Shou Zhang. An improved description of nuclear charge radii: Global trends beyond N = 28 shell closure.arXiv:2312.04912v1 [nucl-th], 2024.
- Tao Li, Yani Luo, Ning Wang, Compilation of recent nuclear ground state charge radius measurements and tests for models, Atomic Data and Nuclear Data Tables, 140, 2021. [CrossRef]

| S.No | Interaction | String Tension | String Energy |
|---|---|---|---|
|
1 |
Weak |
||
|
2 |
Strong |
||
|
3 |
Electromagnetic |
| S.No | Interaction | String Tension | String Energy |
|---|---|---|---|
|
1 |
Weak |
||
|
2 |
Strong |
||
|
3 |
Electromagnetic |
| Symbol | Z | N | Approximate Stable Mass Number As | Reference Charge Radius [24] (fm) |
Reference Uncertainty (fm) | Estimated Charge Radius (fm) | Difference (fm) |
%Error |
|---|---|---|---|---|---|---|---|---|
| C | 6 | 6 | 12 | 2.4702 | 0.0022 | 2.2532 | 0.2170 | 8.78 |
| C | 6 | 7 | 13 | 2.4614 | 0.0034 | 2.2727 | 0.1887 | 7.67 |
| C | 6 | 8 | 14 | 2.5025 | 0.0087 | 2.2898 | 0.2127 | 8.50 |
| N | 7 | 7 | 14 | 2.5582 | 0.007 | 2.3720 | 0.1862 | 7.28 |
| N | 7 | 8 | 15 | 2.6058 | 0.008 | 2.3898 | 0.2160 | 8.29 |
| O | 8 | 8 | 16 | 2.6991 | 0.0052 | 2.4800 | 0.2191 | 8.12 |
| O | 8 | 9 | 17 | 2.6932 | 0.0075 | 2.4963 | 0.1969 | 7.31 |
| O | 8 | 10 | 18 | 2.7726 | 0.0056 | 2.5111 | 0.2615 | 9.43 |
| F | 9 | 10 | 19 | 2.8976 | 0.0025 | 2.5945 | 0.3031 | 10.46 |
| Ne | 10 | 7 | 17 | 3.0413 | 0.0088 | 2.6196 | 0.4217 | 13.87 |
| Ne | 10 | 8 | 18 | 2.9714 | 0.0076 | 2.6388 | 0.3326 | 11.19 |
| Ne | 10 | 9 | 19 | 3.0082 | 0.004 | 2.6560 | 0.3522 | 11.71 |
| Ne | 10 | 10 | 20 | 3.0055 | 0.0021 | 2.6715 | 0.3340 | 11.11 |
| Ne | 10 | 11 | 21 | 2.9695 | 0.0033 | 2.6857 | 0.2838 | 9.56 |
| Ne | 10 | 12 | 22 | 2.9525 | 0.004 | 2.6988 | 0.2537 | 8.59 |
| Ne | 10 | 13 | 23 | 2.9104 | 0.0071 | 2.7110 | 0.1994 | 6.85 |
| Ne | 10 | 14 | 24 | 2.9007 | 0.0078 | 2.7224 | 0.1783 | 6.15 |
| Ne | 10 | 15 | 25 | 2.9316 | 0.0088 | 2.7331 | 0.1985 | 6.77 |
| Ne | 10 | 16 | 26 | 2.9251 | 0.01 | 2.7431 | 0.1820 | 6.22 |
| Ne | 10 | 18 | 28 | 2.9642 | 0.0134 | 2.7616 | 0.2026 | 6.83 |
| Na | 11 | 9 | 20 | 2.9718 | 0.042 | 2.7273 | 0.2445 | 8.23 |
| Na | 11 | 10 | 21 | 3.0136 | 0.0284 | 2.7432 | 0.2704 | 8.97 |
| Na | 11 | 11 | 22 | 2.9852 | 0.0169 | 2.7577 | 0.2275 | 7.62 |
| Na | 11 | 12 | 23 | 2.9936 | 0.0021 | 2.7711 | 0.2225 | 7.43 |
| Na | 11 | 13 | 24 | 2.9735 | 0.0169 | 2.7836 | 0.1899 | 6.39 |
| Na | 11 | 14 | 25 | 2.9769 | 0.0252 | 2.7952 | 0.1817 | 6.10 |
| Na | 11 | 15 | 26 | 2.9928 | 0.0331 | 2.8061 | 0.1867 | 6.24 |
| Na | 11 | 16 | 27 | 3.0136 | 0.0467 | 2.8164 | 0.1972 | 6.55 |
| Na | 11 | 17 | 28 | 3.04 | 0.0581 | 2.8261 | 0.2139 | 7.04 |
| Na | 11 | 18 | 29 | 3.0922 | 0.0723 | 2.8353 | 0.2569 | 8.31 |
| Na | 11 | 19 | 30 | 3.118 | 0.0884 | 2.8441 | 0.2739 | 8.79 |
| Na | 11 | 20 | 31 | 3.1704 | 0.0893 | 2.8524 | 0.3180 | 10.03 |
| Mg | 12 | 12 | 24 | 3.057 | 0.0016 | 2.8389 | 0.2181 | 7.13 |
| Mg | 12 | 13 | 25 | 3.0284 | 0.0022 | 2.8516 | 0.1768 | 5.84 |
| Mg | 12 | 14 | 26 | 3.0337 | 0.0018 | 2.8634 | 0.1703 | 5.61 |
| Al | 13 | 14 | 27 | 3.061 | 0.0031 | 2.9277 | 0.1333 | 4.35 |
| Si | 14 | 14 | 28 | 3.1224 | 0.0024 | 2.9886 | 0.1338 | 4.29 |
| Si | 14 | 15 | 29 | 3.1176 | 0.0052 | 3.0001 | 0.1175 | 3.77 |
| Si | 14 | 16 | 30 | 3.1336 | 0.004 | 3.0109 | 0.1227 | 3.92 |
| P | 15 | 16 | 31 | 3.1889 | 0.0019 | 3.0691 | 0.1198 | 3.76 |
| S | 16 | 16 | 32 | 3.2611 | 0.0018 | 3.1246 | 0.1365 | 4.19 |
| S | 16 | 18 | 34 | 3.2847 | 0.0021 | 3.1452 | 0.1395 | 4.25 |
| S | 16 | 20 | 36 | 3.2985 | 0.0024 | 3.1638 | 0.1347 | 4.08 |
| Cl | 17 | 18 | 35 | 3.3654 | 0.0191 | 3.1985 | 0.1669 | 4.96 |
| Cl | 17 | 20 | 37 | 3.384 | 0.017 | 3.2174 | 0.1666 | 4.92 |
| Ar | 18 | 14 | 32 | 3.3468 | 0.0062 | 3.2050 | 0.1418 | 4.24 |
| Ar | 18 | 15 | 33 | 3.3438 | 0.0058 | 3.2171 | 0.1267 | 3.79 |
| Ar | 18 | 16 | 34 | 3.3654 | 0.004 | 3.2286 | 0.1368 | 4.07 |
| Ar | 18 | 17 | 35 | 3.3636 | 0.0042 | 3.2394 | 0.1242 | 3.69 |
| Ar | 18 | 18 | 36 | 3.3905 | 0.0023 | 3.2497 | 0.1408 | 4.15 |
| Ar | 18 | 19 | 37 | 3.3908 | 0.0022 | 3.2595 | 0.1313 | 3.87 |
| Ar | 18 | 20 | 38 | 3.4028 | 0.0019 | 3.2689 | 0.1339 | 3.94 |
| Ar | 18 | 21 | 39 | 3.4093 | 0.0031 | 3.2778 | 0.1315 | 3.86 |
| Ar | 18 | 22 | 40 | 3.4274 | 0.0026 | 3.2864 | 0.1410 | 4.12 |
| Ar | 18 | 23 | 41 | 3.4251 | 0.003 | 3.2946 | 0.1305 | 3.81 |
| Ar | 18 | 24 | 42 | 3.4414 | 0.0041 | 3.3025 | 0.1389 | 4.04 |
| Ar | 18 | 25 | 43 | 3.4354 | 0.0039 | 3.3101 | 0.1253 | 3.65 |
| Ar | 18 | 26 | 44 | 3.4454 | 0.0046 | 3.3175 | 0.1279 | 3.71 |
| Ar | 18 | 28 | 46 | 3.4377 | 0.0044 | 3.3315 | 0.1062 | 3.09 |
| K | 19 | 19 | 38 | 3.4264 | 0.0051 | 3.3088 | 0.1176 | 3.43 |
| K | 19 | 20 | 39 | 3.4349 | 0.0019 | 3.3183 | 0.1166 | 3.40 |
| K | 19 | 21 | 40 | 3.4381 | 0.0028 | 3.3273 | 0.1108 | 3.22 |
| K | 19 | 22 | 41 | 3.4518 | 0.0055 | 3.3360 | 0.1158 | 3.36 |
| K | 19 | 23 | 42 | 3.4517 | 0.007 | 3.3443 | 0.1074 | 3.11 |
| K | 19 | 24 | 43 | 3.4556 | 0.0086 | 3.3523 | 0.1033 | 2.99 |
| K | 19 | 25 | 44 | 3.4563 | 0.0101 | 3.3600 | 0.0963 | 2.78 |
| K | 19 | 26 | 45 | 3.4605 | 0.0118 | 3.3675 | 0.0930 | 2.69 |
| K | 19 | 27 | 46 | 3.4558 | 0.0126 | 3.3747 | 0.0811 | 2.35 |
| K | 19 | 28 | 47 | 3.4534 | 0.0138 | 3.3817 | 0.0717 | 2.08 |
| Ca | 20 | 19 | 39 | 3.4595 | 0.0025 | 3.3563 | 0.1032 | 2.98 |
| Ca | 20 | 20 | 40 | 3.4776 | 0.0019 | 3.3659 | 0.1117 | 3.21 |
| Ca | 20 | 21 | 41 | 3.478 | 0.0019 | 3.3750 | 0.1030 | 2.96 |
| Ca | 20 | 22 | 42 | 3.5081 | 0.0021 | 3.3838 | 0.1243 | 3.54 |
| Ca | 20 | 23 | 43 | 3.4954 | 0.0019 | 3.3922 | 0.1032 | 2.95 |
| Ca | 20 | 24 | 44 | 3.5179 | 0.0021 | 3.4003 | 0.1176 | 3.34 |
| Ca | 20 | 25 | 45 | 3.4944 | 0.0021 | 3.4081 | 0.0863 | 2.47 |
| Ca | 20 | 26 | 46 | 3.4953 | 0.002 | 3.4157 | 0.0796 | 2.28 |
| Ca | 20 | 27 | 47 | 3.4783 | 0.0024 | 3.4229 | 0.0554 | 1.59 |
| Ca | 20 | 28 | 48 | 3.4771 | 0.002 | 3.4300 | 0.0471 | 1.35 |
| Ca | 20 | 30 | 50 | 3.5168 | 0.0064 | 3.4434 | 0.0734 | 2.09 |
| Sc | 21 | 21 | 42 | 3.5702 | 0.0238 | 3.4211 | 0.1491 | 4.18 |
| Sc | 21 | 22 | 43 | 3.5575 | 0.0147 | 3.4299 | 0.1276 | 3.59 |
| Sc | 21 | 23 | 44 | 3.5432 | 0.0016 | 3.4384 | 0.1048 | 2.96 |
| Sc | 21 | 24 | 45 | 3.5459 | 0.0025 | 3.4466 | 0.0993 | 2.80 |
| Sc | 21 | 25 | 46 | 3.5243 | 0.0089 | 3.4545 | 0.0698 | 1.98 |
| Ti | 22 | 22 | 44 | 3.6115 | 0.0051 | 3.4745 | 0.1370 | 3.79 |
| Ti | 22 | 23 | 45 | 3.5939 | 0.0032 | 3.4831 | 0.1108 | 3.08 |
| Ti | 22 | 24 | 46 | 3.607 | 0.0022 | 3.4914 | 0.1156 | 3.20 |
| Ti | 22 | 25 | 47 | 3.5962 | 0.0019 | 3.4994 | 0.0968 | 2.69 |
| Ti | 22 | 26 | 48 | 3.5921 | 0.0017 | 3.5071 | 0.0850 | 2.37 |
| Ti | 22 | 27 | 49 | 3.5733 | 0.0021 | 3.5145 | 0.0588 | 1.65 |
| Ti | 22 | 28 | 50 | 3.5704 | 0.0022 | 3.5217 | 0.0487 | 1.36 |
| V | 23 | 28 | 51 | 3.6002 | 0.0022 | 3.5654 | 0.0348 | 0.97 |
| Cr | 24 | 26 | 50 | 3.6588 | 0.0065 | 3.5928 | 0.0660 | 1.81 |
| Cr | 24 | 28 | 52 | 3.6452 | 0.0042 | 3.6077 | 0.0375 | 1.03 |
| Cr | 24 | 29 | 53 | 3.6511 | 0.0075 | 3.6148 | 0.0363 | 0.99 |
| Cr | 24 | 30 | 54 | 3.6885 | 0.0074 | 3.6217 | 0.0668 | 1.81 |
| Mn | 25 | 25 | 50 | 3.712 | 0.0196 | 3.6258 | 0.0862 | 2.32 |
| Mn | 25 | 26 | 51 | 3.7026 | 0.0212 | 3.6337 | 0.0689 | 1.86 |
| Mn | 25 | 27 | 52 | 3.6706 | 0.0128 | 3.6414 | 0.0292 | 0.80 |
| Mn | 25 | 28 | 53 | 3.6662 | 0.0076 | 3.6488 | 0.0174 | 0.48 |
| Mn | 25 | 29 | 54 | 3.6834 | 0.0049 | 3.6559 | 0.0275 | 0.75 |
| Mn | 25 | 30 | 55 | 3.7057 | 0.0022 | 3.6629 | 0.0428 | 1.16 |
| Mn | 25 | 31 | 56 | 3.7146 | 0.0052 | 3.6696 | 0.0450 | 1.21 |
| Fe | 26 | 28 | 54 | 3.6933 | 0.0019 | 3.6887 | 0.0046 | 0.13 |
| Fe | 26 | 30 | 56 | 3.7377 | 0.0016 | 3.7029 | 0.0348 | 0.93 |
| Fe | 26 | 31 | 57 | 3.7532 | 0.0017 | 3.7097 | 0.0435 | 1.16 |
| Fe | 26 | 32 | 58 | 3.7745 | 0.0014 | 3.7164 | 0.0581 | 1.54 |
| Co | 27 | 32 | 59 | 3.7875 | 0.0021 | 3.7554 | 0.0321 | 0.85 |
| Ni | 28 | 30 | 58 | 3.7757 | 0.002 | 3.7799 | -0.0042 | -0.11 |
| Ni | 28 | 32 | 60 | 3.8118 | 0.0016 | 3.7935 | 0.0183 | 0.48 |
| Ni | 28 | 33 | 61 | 3.8225 | 0.0019 | 3.8001 | 0.0224 | 0.59 |
| Ni | 28 | 34 | 62 | 3.8399 | 0.0021 | 3.8064 | 0.0335 | 0.87 |
| Ni | 28 | 36 | 64 | 3.8572 | 0.0023 | 3.8187 | 0.0385 | 1.00 |
| Cu | 29 | 34 | 63 | 3.8823 | 0.0015 | 3.8436 | 0.0387 | 1.00 |
| Cu | 29 | 36 | 65 | 3.9022 | 0.0014 | 3.8560 | 0.0462 | 1.18 |
| Zn | 30 | 34 | 64 | 3.9283 | 0.0015 | 3.8799 | 0.0484 | 1.23 |
| Zn | 30 | 36 | 66 | 3.9491 | 0.0014 | 3.8924 | 0.0567 | 1.44 |
| Zn | 30 | 37 | 67 | 3.953 | 0.0027 | 3.8984 | 0.0546 | 1.38 |
| Zn | 30 | 38 | 68 | 3.9658 | 0.0014 | 3.9042 | 0.0616 | 1.55 |
| Zn | 30 | 40 | 70 | 3.9845 | 0.0019 | 3.9155 | 0.0690 | 1.73 |
| Ga | 31 | 38 | 69 | 3.9973 | 0.0017 | 3.9399 | 0.0574 | 1.44 |
| Ga | 31 | 40 | 71 | 4.0118 | 0.0018 | 3.9513 | 0.0605 | 1.51 |
| Ge | 32 | 38 | 70 | 4.0414 | 0.0012 | 3.9747 | 0.0667 | 1.65 |
| Ge | 32 | 40 | 72 | 4.0576 | 0.0013 | 3.9862 | 0.0714 | 1.76 |
| Ge | 32 | 41 | 73 | 4.0632 | 0.0014 | 3.9917 | 0.0715 | 1.76 |
| Ge | 32 | 42 | 74 | 4.0742 | 0.0012 | 3.9971 | 0.0771 | 1.89 |
| Ge | 32 | 44 | 76 | 4.0811 | 0.0012 | 4.0077 | 0.0734 | 1.80 |
| As | 33 | 42 | 75 | 4.0968 | 0.002 | 4.0314 | 0.0654 | 1.60 |
| Se | 34 | 40 | 74 | 4.07 | 0.02 | 4.0537 | 0.0163 | 0.40 |
| Se | 34 | 42 | 76 | 4.1395 | 0.0016 | 4.0648 | 0.0747 | 1.80 |
| Se | 34 | 43 | 77 | 4.1395 | 0.0018 | 4.0702 | 0.0693 | 1.67 |
| Se | 34 | 44 | 78 | 4.1406 | 0.0017 | 4.0755 | 0.0651 | 1.57 |
| Se | 34 | 46 | 80 | 4.14 | 0.0018 | 4.0857 | 0.0543 | 1.31 |
| Se | 34 | 48 | 82 | 4.14 | 0.0019 | 4.0956 | 0.0444 | 1.07 |
| Br | 35 | 44 | 79 | 4.1629 | 0.0021 | 4.1084 | 0.0545 | 1.31 |
| Br | 35 | 46 | 81 | 4.1599 | 0.0021 | 4.1187 | 0.0412 | 0.99 |
| Kr | 36 | 36 | 72 | 4.1635 | 0.006 | 4.0944 | 0.0691 | 1.66 |
| Kr | 36 | 38 | 74 | 4.187 | 0.0041 | 4.1067 | 0.0803 | 1.92 |
| Kr | 36 | 39 | 75 | 4.2097 | 0.0041 | 4.1127 | 0.0970 | 2.30 |
| Kr | 36 | 40 | 76 | 4.202 | 0.0036 | 4.1185 | 0.0835 | 1.99 |
| Kr | 36 | 41 | 77 | 4.2082 | 0.0037 | 4.1242 | 0.0840 | 2.00 |
| Kr | 36 | 42 | 78 | 4.2038 | 0.0033 | 4.1298 | 0.0740 | 1.76 |
| Kr | 36 | 43 | 79 | 4.2034 | 0.0032 | 4.1352 | 0.0682 | 1.62 |
| Kr | 36 | 44 | 80 | 4.197 | 0.0029 | 4.1405 | 0.0565 | 1.35 |
| Kr | 36 | 45 | 81 | 4.1952 | 0.0026 | 4.1458 | 0.0494 | 1.18 |
| Kr | 36 | 46 | 82 | 4.1919 | 0.0025 | 4.1509 | 0.0410 | 0.98 |
| Kr | 36 | 47 | 83 | 4.1871 | 0.0023 | 4.1559 | 0.0312 | 0.74 |
| Kr | 36 | 48 | 84 | 4.1884 | 0.0022 | 4.1609 | 0.0275 | 0.66 |
| Kr | 36 | 49 | 85 | 4.1846 | 0.0022 | 4.1657 | 0.0189 | 0.45 |
| Kr | 36 | 50 | 86 | 4.1835 | 0.0021 | 4.1705 | 0.0130 | 0.31 |
| Kr | 36 | 51 | 87 | 4.1984 | 0.0027 | 4.1752 | 0.0232 | 0.55 |
| Kr | 36 | 52 | 88 | 4.2171 | 0.0043 | 4.1798 | 0.0373 | 0.89 |
| Kr | 36 | 53 | 89 | 4.2286 | 0.0054 | 4.1843 | 0.0443 | 1.05 |
| Kr | 36 | 54 | 90 | 4.2423 | 0.0069 | 4.1887 | 0.0536 | 1.26 |
| Kr | 36 | 55 | 91 | 4.2543 | 0.0081 | 4.1931 | 0.0612 | 1.44 |
| Kr | 36 | 56 | 92 | 4.2724 | 0.0099 | 4.1974 | 0.0750 | 1.76 |
| Kr | 36 | 57 | 93 | 4.2794 | 0.0107 | 4.2016 | 0.0778 | 1.82 |
| Kr | 36 | 58 | 94 | 4.3002 | 0.0129 | 4.2058 | 0.0944 | 2.20 |
| Kr | 36 | 59 | 95 | 4.3067 | 0.0136 | 4.2099 | 0.0968 | 2.25 |
| Kr | 36 | 60 | 96 | 4.3267 | 0.0158 | 4.2139 | 0.1128 | 2.61 |
| Rb | 37 | 39 | 76 | 4.2273 | 0.007 | 4.1441 | 0.0832 | 1.97 |
| Rb | 37 | 40 | 77 | 4.2356 | 0.008 | 4.1499 | 0.0857 | 2.02 |
| Rb | 37 | 41 | 78 | 4.2385 | 0.0083 | 4.1557 | 0.0828 | 1.95 |
| Rb | 37 | 42 | 79 | 4.2284 | 0.0065 | 4.1613 | 0.0671 | 1.59 |
| Rb | 37 | 43 | 80 | 4.2271 | 0.0061 | 4.1667 | 0.0604 | 1.43 |
| Rb | 37 | 44 | 81 | 4.2213 | 0.0051 | 4.1721 | 0.0492 | 1.17 |
| Rb | 37 | 45 | 82 | 4.216 | 0.0042 | 4.1774 | 0.0386 | 0.92 |
| Rb | 37 | 46 | 83 | 4.2058 | 0.0028 | 4.1825 | 0.0233 | 0.55 |
| Rb | 37 | 47 | 84 | 4.1999 | 0.0023 | 4.1876 | 0.0123 | 0.29 |
| Rb | 37 | 48 | 85 | 4.2036 | 0.0024 | 4.1926 | 0.0110 | 0.26 |
| Rb | 37 | 49 | 86 | 4.2025 | 0.0023 | 4.1975 | 0.0050 | 0.12 |
| Rb | 37 | 50 | 87 | 4.1989 | 0.0021 | 4.2022 | -0.0033 | -0.08 |
| Rb | 37 | 51 | 88 | 4.217 | 0.0038 | 4.2069 | 0.0101 | 0.24 |
| Rb | 37 | 52 | 89 | 4.2391 | 0.0074 | 4.2116 | 0.0275 | 0.65 |
| Rb | 37 | 53 | 90 | 4.2554 | 0.0102 | 4.2161 | 0.0393 | 0.92 |
| Rb | 37 | 54 | 91 | 4.2723 | 0.0131 | 4.2206 | 0.0517 | 1.21 |
| Rb | 37 | 55 | 92 | 4.2903 | 0.0163 | 4.2250 | 0.0653 | 1.52 |
| Rb | 37 | 56 | 93 | 4.3048 | 0.0187 | 4.2293 | 0.0755 | 1.75 |
| Rb | 37 | 57 | 94 | 4.3184 | 0.0211 | 4.2336 | 0.0848 | 1.96 |
| Rb | 37 | 58 | 95 | 4.3391 | 0.0248 | 4.2378 | 0.1013 | 2.34 |
| Rb | 37 | 59 | 96 | 4.3501 | 0.0267 | 4.2419 | 0.1082 | 2.49 |
| Rb | 37 | 60 | 97 | 4.4231 | 0.0395 | 4.2460 | 0.1771 | 4.00 |
| Rb | 37 | 61 | 98 | 4.4336 | 0.0414 | 4.2500 | 0.1836 | 4.14 |
| Sr | 38 | 39 | 77 | 4.2569 | 0.0044 | 4.1749 | 0.0820 | 1.93 |
| Sr | 38 | 40 | 78 | 4.2561 | 0.004 | 4.1808 | 0.0753 | 1.77 |
| Sr | 38 | 41 | 79 | 4.2586 | 0.0039 | 4.1865 | 0.0721 | 1.69 |
| Sr | 38 | 42 | 80 | 4.2562 | 0.0037 | 4.1922 | 0.0640 | 1.50 |
| Sr | 38 | 43 | 81 | 4.2547 | 0.0034 | 4.1977 | 0.0570 | 1.34 |
| Sr | 38 | 44 | 82 | 4.2478 | 0.003 | 4.2031 | 0.0447 | 1.05 |
| Sr | 38 | 45 | 83 | 4.2455 | 0.0027 | 4.2084 | 0.0371 | 0.87 |
| Sr | 38 | 46 | 84 | 4.2394 | 0.0024 | 4.2136 | 0.0258 | 0.61 |
| Sr | 38 | 47 | 85 | 4.2304 | 0.0021 | 4.2187 | 0.0117 | 0.28 |
| Sr | 38 | 48 | 86 | 4.2307 | 0.002 | 4.2237 | 0.0070 | 0.17 |
| Sr | 38 | 49 | 87 | 4.2249 | 0.0019 | 4.2286 | -0.0037 | -0.09 |
| Sr | 38 | 50 | 88 | 4.224 | 0.0018 | 4.2334 | -0.0094 | -0.22 |
| Sr | 38 | 51 | 89 | 4.2407 | 0.0023 | 4.2381 | 0.0026 | 0.06 |
| Sr | 38 | 52 | 90 | 4.2611 | 0.0037 | 4.2428 | 0.0183 | 0.43 |
| Sr | 38 | 53 | 91 | 4.274 | 0.0046 | 4.2473 | 0.0267 | 0.62 |
| Sr | 38 | 54 | 92 | 4.2924 | 0.0064 | 4.2518 | 0.0406 | 0.94 |
| Sr | 38 | 55 | 93 | 4.3026 | 0.0075 | 4.2563 | 0.0463 | 1.08 |
| Sr | 38 | 56 | 94 | 4.3191 | 0.0091 | 4.2606 | 0.0585 | 1.35 |
| Sr | 38 | 57 | 95 | 4.3305 | 0.0102 | 4.2649 | 0.0656 | 1.51 |
| Sr | 38 | 58 | 96 | 4.3522 | 0.0125 | 4.2691 | 0.0831 | 1.91 |
| Sr | 38 | 59 | 97 | 4.3625 | 0.0135 | 4.2733 | 0.0892 | 2.05 |
| Sr | 38 | 60 | 98 | 4.4377 | 0.0214 | 4.2774 | 0.1603 | 3.61 |
| Sr | 38 | 61 | 99 | 4.4495 | 0.0226 | 4.2814 | 0.1681 | 3.78 |
| Sr | 38 | 62 | 100 | 4.464 | 0.024 | 4.2854 | 0.1786 | 4.00 |
| Y | 39 | 47 | 86 | 4.2513 | 0.0023 | 4.2491 | 0.0022 | 0.05 |
| Y | 39 | 48 | 87 | 4.2498 | 0.0022 | 4.2542 | -0.0044 | -0.10 |
| Y | 39 | 49 | 88 | 4.2441 | 0.0021 | 4.2591 | -0.0150 | -0.35 |
| Y | 39 | 50 | 89 | 4.243 | 0.0021 | 4.2640 | -0.0210 | -0.49 |
| Y | 39 | 51 | 90 | 4.2573 | 0.0026 | 4.2687 | -0.0114 | -0.27 |
| Y | 39 | 53 | 92 | 4.2887 | 0.005 | 4.2780 | 0.0107 | 0.25 |
| Y | 39 | 54 | 93 | 4.3052 | 0.0065 | 4.2825 | 0.0227 | 0.53 |
| Y | 39 | 55 | 94 | 4.3142 | 0.0074 | 4.2870 | 0.0272 | 0.63 |
| Y | 39 | 56 | 95 | 4.3284 | 0.0087 | 4.2913 | 0.0371 | 0.86 |
| Y | 39 | 57 | 96 | 4.3402 | 0.0099 | 4.2957 | 0.0445 | 1.03 |
| Y | 39 | 58 | 97 | 4.358 | 0.0116 | 4.2999 | 0.0581 | 1.33 |
| Y | 39 | 59 | 98 | 4.3711 | 0.0129 | 4.3041 | 0.0670 | 1.53 |
| Y | 39 | 60 | 99 | 4.4658 | 0.0223 | 4.3082 | 0.1576 | 3.53 |
| Y | 39 | 61 | 100 | 4.4705 | 0.0228 | 4.3122 | 0.1583 | 3.54 |
| Y | 39 | 62 | 101 | 4.4863 | 0.0244 | 4.3162 | 0.1701 | 3.79 |
| Y | 39 | 63 | 102 | 4.4911 | 0.0249 | 4.3202 | 0.1709 | 3.81 |
| Zr | 40 | 47 | 87 | 4.2789 | 0.003 | 4.2791 | -0.0002 | 0.00 |
| Zr | 40 | 48 | 88 | 4.2787 | 0.0025 | 4.2841 | -0.0054 | -0.13 |
| Zr | 40 | 49 | 89 | 4.2706 | 0.001 | 4.2891 | -0.0185 | -0.43 |
| Zr | 40 | 50 | 90 | 4.2694 | 0.001 | 4.2940 | -0.0246 | -0.58 |
| Zr | 40 | 51 | 91 | 4.2845 | 0.0013 | 4.2988 | -0.0143 | -0.33 |
| Zr | 40 | 52 | 92 | 4.3057 | 0.0013 | 4.3035 | 0.0022 | 0.05 |
| Zr | 40 | 54 | 94 | 4.332 | 0.0013 | 4.3126 | 0.0194 | 0.45 |
| Zr | 40 | 56 | 96 | 4.3512 | 0.0015 | 4.3215 | 0.0297 | 0.68 |
| Zr | 40 | 57 | 97 | 4.3792 | 0.0136 | 4.3258 | 0.0534 | 1.22 |
| Zr | 40 | 58 | 98 | 4.4012 | 0.0164 | 4.3301 | 0.0711 | 1.62 |
| Zr | 40 | 59 | 99 | 4.4156 | 0.0181 | 4.3343 | 0.0813 | 1.84 |
| Zr | 40 | 60 | 100 | 4.4891 | 0.0289 | 4.3385 | 0.1506 | 3.36 |
| Zr | 40 | 61 | 101 | 4.5119 | 0.0318 | 4.3425 | 0.1694 | 3.75 |
| Zr | 40 | 62 | 102 | 4.5292 | 0.034 | 4.3465 | 0.1827 | 4.03 |
| Nb | 41 | 49 | 90 | 4.2891 | 0.004 | 4.3186 | -0.0295 | -0.69 |
| Nb | 41 | 50 | 91 | 4.2878 | 0.004 | 4.3235 | -0.0357 | -0.83 |
| Nb | 41 | 51 | 92 | 4.3026 | 0.0043 | 4.3283 | -0.0257 | -0.60 |
| Nb | 41 | 52 | 93 | 4.324 | 0.0017 | 4.3330 | -0.0090 | -0.21 |
| Nb | 41 | 58 | 99 | 4.4062 | 0.0125 | 4.3598 | 0.0464 | 1.05 |
| Nb | 41 | 60 | 101 | 4.4861 | 0.0203 | 4.3682 | 0.1179 | 2.63 |
| Nb | 41 | 62 | 103 | 4.5097 | 0.0227 | 4.3763 | 0.1334 | 2.96 |
| Mo | 42 | 48 | 90 | 4.3265 | 0.0016 | 4.3425 | -0.0160 | -0.37 |
| Mo | 42 | 49 | 91 | 4.3182 | 0.0012 | 4.3475 | -0.0293 | -0.68 |
| Mo | 42 | 50 | 92 | 4.3151 | 0.0012 | 4.3524 | -0.0373 | -0.87 |
| Mo | 42 | 52 | 94 | 4.3529 | 0.0013 | 4.3620 | -0.0091 | -0.21 |
| Mo | 42 | 53 | 95 | 4.3628 | 0.0018 | 4.3667 | -0.0039 | -0.09 |
| Mo | 42 | 54 | 96 | 4.3847 | 0.0015 | 4.3713 | 0.0134 | 0.31 |
| Mo | 42 | 55 | 97 | 4.388 | 0.0015 | 4.3758 | 0.0122 | 0.28 |
| Mo | 42 | 56 | 98 | 4.4091 | 0.0018 | 4.3803 | 0.0288 | 0.65 |
| Mo | 42 | 58 | 100 | 4.4468 | 0.0025 | 4.3890 | 0.0578 | 1.30 |
| Mo | 42 | 60 | 102 | 4.4914 | 0.0038 | 4.3974 | 0.0940 | 2.09 |
| Mo | 42 | 61 | 103 | 4.5145 | 0.0046 | 4.4015 | 0.1130 | 2.50 |
| Mo | 42 | 62 | 104 | 4.5249 | 0.0051 | 4.4056 | 0.1193 | 2.64 |
| Mo | 42 | 63 | 105 | 4.5389 | 0.0057 | 4.4096 | 0.1293 | 2.85 |
| Mo | 42 | 64 | 106 | 4.549 | 0.0058 | 4.4135 | 0.1355 | 2.98 |
| Mo | 42 | 66 | 108 | 4.5602 | 0.0067 | 4.4213 | 0.1389 | 3.05 |
| Ru | 44 | 52 | 96 | 4.3908 | 0.0047 | 4.4186 | -0.0278 | -0.63 |
| Ru | 44 | 54 | 98 | 4.4229 | 0.0055 | 4.4280 | -0.0051 | -0.12 |
| Ru | 44 | 55 | 99 | 4.4338 | 0.0042 | 4.4326 | 0.0012 | 0.03 |
| Ru | 44 | 56 | 100 | 4.4531 | 0.0031 | 4.4371 | 0.0160 | 0.36 |
| Ru | 44 | 57 | 101 | 4.4606 | 0.002 | 4.4415 | 0.0191 | 0.43 |
| Ru | 44 | 58 | 102 | 4.4809 | 0.0018 | 4.4459 | 0.0350 | 0.78 |
| Ru | 44 | 60 | 104 | 4.5098 | 0.002 | 4.4544 | 0.0554 | 1.23 |
| Rh | 45 | 58 | 103 | 4.4945 | 0.0023 | 4.4736 | 0.0209 | 0.46 |
| Pd | 46 | 56 | 102 | 4.4827 | 0.0044 | 4.4921 | -0.0094 | -0.21 |
| Pd | 46 | 58 | 104 | 4.5078 | 0.0027 | 4.5009 | 0.0069 | 0.15 |
| Pd | 46 | 59 | 105 | 4.515 | 0.003 | 4.5053 | 0.0097 | 0.22 |
| Pd | 46 | 60 | 106 | 4.5318 | 0.0029 | 4.5095 | 0.0223 | 0.49 |
| Pd | 46 | 62 | 108 | 4.5563 | 0.0027 | 4.5179 | 0.0384 | 0.84 |
| Pd | 46 | 64 | 110 | 4.5782 | 0.003 | 4.5260 | 0.0522 | 1.14 |
| Ag | 47 | 54 | 101 | 4.4799 | 0.0088 | 4.5097 | -0.0298 | -0.67 |
| Ag | 47 | 56 | 103 | 4.5036 | 0.0065 | 4.5189 | -0.0153 | -0.34 |
| Ag | 47 | 57 | 104 | 4.5119 | 0.0058 | 4.5234 | -0.0115 | -0.26 |
| Ag | 47 | 58 | 105 | 4.5269 | 0.0045 | 4.5278 | -0.0009 | -0.02 |
| Ag | 47 | 60 | 107 | 4.5454 | 0.0031 | 4.5365 | 0.0089 | 0.20 |
| Ag | 47 | 62 | 109 | 4.5638 | 0.0025 | 4.5449 | 0.0189 | 0.41 |
| Cd | 48 | 54 | 102 | 4.481 | 0.0122 | 4.5361 | -0.0551 | -1.23 |
| Cd | 48 | 55 | 103 | 4.4951 | 0.0105 | 4.5408 | -0.0457 | -1.02 |
| Cd | 48 | 56 | 104 | 4.5122 | 0.0083 | 4.5454 | -0.0332 | -0.74 |
| Cd | 48 | 57 | 105 | 4.5216 | 0.007 | 4.5499 | -0.0283 | -0.63 |
| Cd | 48 | 58 | 106 | 4.5383 | 0.0036 | 4.5543 | -0.0160 | -0.35 |
| Cd | 48 | 59 | 107 | 4.5466 | 0.0039 | 4.5587 | -0.0121 | -0.27 |
| Cd | 48 | 60 | 108 | 4.5577 | 0.0031 | 4.5630 | -0.0053 | -0.12 |
| Cd | 48 | 61 | 109 | 4.5601 | 0.0035 | 4.5673 | -0.0072 | -0.16 |
| Cd | 48 | 62 | 110 | 4.5765 | 0.0026 | 4.5715 | 0.0050 | 0.11 |
| Cd | 48 | 63 | 111 | 4.5845 | 0.0058 | 4.5756 | 0.0089 | 0.19 |
| Cd | 48 | 64 | 112 | 4.5944 | 0.0024 | 4.5796 | 0.0148 | 0.32 |
| Cd | 48 | 65 | 113 | 4.6012 | 0.0028 | 4.5837 | 0.0175 | 0.38 |
| Cd | 48 | 66 | 114 | 4.6087 | 0.0023 | 4.5876 | 0.0211 | 0.46 |
| Cd | 48 | 67 | 115 | 4.6114 | 0.0046 | 4.5915 | 0.0199 | 0.43 |
| Cd | 48 | 68 | 116 | 4.6203 | 0.0059 | 4.5954 | 0.0249 | 0.54 |
| Cd | 48 | 69 | 117 | 4.6136 | 0.0025 | 4.5992 | 0.0144 | 0.31 |
| Cd | 48 | 70 | 118 | 4.6246 | 0.006 | 4.6029 | 0.0217 | 0.47 |
| Cd | 48 | 72 | 120 | 4.63 | 0.0069 | 4.6103 | 0.0197 | 0.43 |
| In | 49 | 55 | 104 | 4.5184 | 0.0117 | 4.5668 | -0.0484 | -1.07 |
| In | 49 | 56 | 105 | 4.5311 | 0.0103 | 4.5715 | -0.0404 | -0.89 |
| In | 49 | 57 | 106 | 4.5375 | 0.0095 | 4.5760 | -0.0385 | -0.85 |
| In | 49 | 58 | 107 | 4.5494 | 0.0082 | 4.5804 | -0.0310 | -0.68 |
| In | 49 | 59 | 108 | 4.5571 | 0.0071 | 4.5848 | -0.0277 | -0.61 |
| In | 49 | 60 | 109 | 4.5685 | 0.0061 | 4.5892 | -0.0207 | -0.45 |
| In | 49 | 61 | 110 | 4.5742 | 0.0056 | 4.5934 | -0.0192 | -0.42 |
| In | 49 | 62 | 111 | 4.5856 | 0.0044 | 4.5976 | -0.0120 | -0.26 |
| In | 49 | 63 | 112 | 4.5907 | 0.0041 | 4.6018 | -0.0111 | -0.24 |
| In | 49 | 64 | 113 | 4.601 | 0.0031 | 4.6059 | -0.0049 | -0.11 |
| In | 49 | 65 | 114 | 4.6056 | 0.0029 | 4.6099 | -0.0043 | -0.09 |
| In | 49 | 66 | 115 | 4.6156 | 0.0026 | 4.6139 | 0.0017 | 0.04 |
| In | 49 | 67 | 116 | 4.6211 | 0.0027 | 4.6178 | 0.0033 | 0.07 |
| In | 49 | 68 | 117 | 4.6292 | 0.0032 | 4.6217 | 0.0075 | 0.16 |
| In | 49 | 69 | 118 | 4.6335 | 0.0033 | 4.6255 | 0.0080 | 0.17 |
| In | 49 | 70 | 119 | 4.6407 | 0.004 | 4.6293 | 0.0114 | 0.25 |
| In | 49 | 71 | 120 | 4.6443 | 0.0042 | 4.6330 | 0.0113 | 0.24 |
| In | 49 | 72 | 121 | 4.6505 | 0.0047 | 4.6367 | 0.0138 | 0.30 |
| In | 49 | 73 | 122 | 4.6534 | 0.0051 | 4.6403 | 0.0131 | 0.28 |
| In | 49 | 74 | 123 | 4.6594 | 0.0056 | 4.6439 | 0.0155 | 0.33 |
| In | 49 | 75 | 124 | 4.6625 | 0.006 | 4.6474 | 0.0151 | 0.32 |
| In | 49 | 76 | 125 | 4.667 | 0.0064 | 4.6509 | 0.0161 | 0.34 |
| In | 49 | 77 | 126 | 4.6702 | 0.0068 | 4.6544 | 0.0158 | 0.34 |
| In | 49 | 78 | 127 | 4.6733 | 0.0071 | 4.6578 | 0.0155 | 0.33 |
| Sn | 50 | 58 | 108 | 4.5605 | 0.0029 | 4.6062 | -0.0457 | -1.00 |
| Sn | 50 | 59 | 109 | 4.5679 | 0.0027 | 4.6106 | -0.0427 | -0.93 |
| Sn | 50 | 60 | 110 | 4.5785 | 0.0025 | 4.6149 | -0.0364 | -0.80 |
| Sn | 50 | 61 | 111 | 4.5836 | 0.0024 | 4.6192 | -0.0356 | -0.78 |
| Sn | 50 | 62 | 112 | 4.5948 | 0.0022 | 4.6234 | -0.0286 | -0.62 |
| Sn | 50 | 63 | 113 | 4.6015 | 0.0021 | 4.6276 | -0.0261 | -0.57 |
| Sn | 50 | 64 | 114 | 4.6099 | 0.002 | 4.6317 | -0.0218 | -0.47 |
| Sn | 50 | 65 | 115 | 4.6148 | 0.0019 | 4.6358 | -0.0210 | -0.45 |
| Sn | 50 | 66 | 116 | 4.625 | 0.0019 | 4.6398 | -0.0148 | -0.32 |
| Sn | 50 | 67 | 117 | 4.6302 | 0.0019 | 4.6437 | -0.0135 | -0.29 |
| Sn | 50 | 68 | 118 | 4.6393 | 0.0019 | 4.6476 | -0.0083 | -0.18 |
| Sn | 50 | 69 | 119 | 4.6438 | 0.002 | 4.6514 | -0.0076 | -0.16 |
| Sn | 50 | 70 | 120 | 4.6519 | 0.0021 | 4.6552 | -0.0033 | -0.07 |
| Sn | 50 | 71 | 121 | 4.6566 | 0.0021 | 4.6589 | -0.0023 | -0.05 |
| Sn | 50 | 72 | 122 | 4.6634 | 0.0022 | 4.6626 | 0.0008 | 0.02 |
| Sn | 50 | 73 | 123 | 4.6665 | 0.0023 | 4.6663 | 0.0002 | 0.00 |
| Sn | 50 | 74 | 124 | 4.6735 | 0.0023 | 4.6699 | 0.0036 | 0.08 |
| Sn | 50 | 75 | 125 | 4.6765 | 0.0026 | 4.6735 | 0.0030 | 0.07 |
| Sn | 50 | 76 | 126 | 4.6833 | 0.0043 | 4.6770 | 0.0063 | 0.14 |
| Sn | 50 | 77 | 127 | 4.6867 | 0.0048 | 4.6805 | 0.0062 | 0.13 |
| Sn | 50 | 78 | 128 | 4.6921 | 0.0054 | 4.6839 | 0.0082 | 0.17 |
| Sn | 50 | 79 | 129 | 4.6934 | 0.0058 | 4.6873 | 0.0061 | 0.13 |
| Sn | 50 | 80 | 130 | 4.7019 | 0.0066 | 4.6907 | 0.0112 | 0.24 |
| Sn | 50 | 81 | 131 | 4.7078 | 0.0073 | 4.6940 | 0.0138 | 0.29 |
| Sn | 50 | 82 | 132 | 4.7093 | 0.0076 | 4.6973 | 0.0120 | 0.26 |
| Sb | 51 | 70 | 121 | 4.6802 | 0.0026 | 4.6808 | -0.0006 | -0.01 |
| Sb | 51 | 72 | 123 | 4.6879 | 0.0025 | 4.6883 | -0.0004 | -0.01 |
| Te | 52 | 64 | 116 | 4.6847 | 0.0128 | 4.6823 | 0.0024 | 0.05 |
| Te | 52 | 66 | 118 | 4.6956 | 0.0105 | 4.6904 | 0.0052 | 0.11 |
| Te | 52 | 68 | 120 | 4.7038 | 0.0088 | 4.6983 | 0.0055 | 0.12 |
| Te | 52 | 70 | 122 | 4.7095 | 0.0031 | 4.7060 | 0.0035 | 0.07 |
| Te | 52 | 71 | 123 | 4.7117 | 0.0035 | 4.7098 | 0.0019 | 0.04 |
| Te | 52 | 72 | 124 | 4.7183 | 0.0029 | 4.7135 | 0.0048 | 0.10 |
| Te | 52 | 73 | 125 | 4.7204 | 0.003 | 4.7172 | 0.0032 | 0.07 |
| Te | 52 | 74 | 126 | 4.7266 | 0.0032 | 4.7208 | 0.0058 | 0.12 |
| Te | 52 | 76 | 128 | 4.7346 | 0.0029 | 4.7280 | 0.0066 | 0.14 |
| Te | 52 | 78 | 130 | 4.7423 | 0.0025 | 4.7350 | 0.0073 | 0.15 |
| Te | 52 | 80 | 132 | 4.75 | 0.0031 | 4.7418 | 0.0082 | 0.17 |
| Te | 52 | 82 | 134 | 4.7569 | 0.0041 | 4.7484 | 0.0085 | 0.18 |
| Te | 52 | 84 | 136 | 4.7815 | 0.0089 | 4.7550 | 0.0265 | 0.55 |
| I | 53 | 74 | 127 | 4.75 | 0.0081 | 4.7458 | 0.0042 | 0.09 |
| Xe | 54 | 62 | 116 | 4.7211 | 0.0096 | 4.7232 | -0.0021 | -0.04 |
| Xe | 54 | 64 | 118 | 4.7387 | 0.007 | 4.7316 | 0.0071 | 0.15 |
| Xe | 54 | 66 | 120 | 4.7509 | 0.0063 | 4.7397 | 0.0112 | 0.23 |
| Xe | 54 | 68 | 122 | 4.759 | 0.0059 | 4.7477 | 0.0113 | 0.24 |
| Xe | 54 | 70 | 124 | 4.7661 | 0.0055 | 4.7555 | 0.0106 | 0.22 |
| Xe | 54 | 72 | 126 | 4.7722 | 0.0052 | 4.7630 | 0.0092 | 0.19 |
| Xe | 54 | 73 | 127 | 4.7747 | 0.0038 | 4.7667 | 0.0080 | 0.17 |
| Xe | 54 | 74 | 128 | 4.7774 | 0.005 | 4.7704 | 0.0070 | 0.15 |
| Xe | 54 | 75 | 129 | 4.7775 | 0.005 | 4.7740 | 0.0035 | 0.07 |
| Xe | 54 | 76 | 130 | 4.7818 | 0.0049 | 4.7776 | 0.0042 | 0.09 |
| Xe | 54 | 77 | 131 | 4.7808 | 0.0049 | 4.7811 | -0.0003 | -0.01 |
| Xe | 54 | 78 | 132 | 4.7859 | 0.0048 | 4.7846 | 0.0013 | 0.03 |
| Xe | 54 | 79 | 133 | 4.7831 | 0.0048 | 4.7881 | -0.0050 | -0.10 |
| Xe | 54 | 80 | 134 | 4.7899 | 0.0047 | 4.7915 | -0.0016 | -0.03 |
| Xe | 54 | 82 | 136 | 4.7964 | 0.0047 | 4.7982 | -0.0018 | -0.04 |
| Xe | 54 | 83 | 137 | 4.8094 | 0.0049 | 4.8015 | 0.0079 | 0.16 |
| Xe | 54 | 84 | 138 | 4.8279 | 0.0079 | 4.8048 | 0.0231 | 0.48 |
| Xe | 54 | 85 | 139 | 4.8409 | 0.01 | 4.8081 | 0.0328 | 0.68 |
| Xe | 54 | 86 | 140 | 4.8566 | 0.0125 | 4.8113 | 0.0453 | 0.93 |
| Xe | 54 | 87 | 141 | 4.8694 | 0.0147 | 4.8144 | 0.0550 | 1.13 |
| Xe | 54 | 88 | 142 | 4.8841 | 0.0169 | 4.8176 | 0.0665 | 1.36 |
| Xe | 54 | 89 | 143 | 4.8942 | 0.0187 | 4.8207 | 0.0735 | 1.50 |
| Xe | 54 | 90 | 144 | 4.9082 | 0.0208 | 4.8238 | 0.0844 | 1.72 |
| Xe | 54 | 92 | 146 | 4.9315 | 0.0245 | 4.8298 | 0.1017 | 2.06 |
| Cs | 55 | 63 | 118 | 4.7832 | 0.0092 | 4.7515 | 0.0317 | 0.66 |
| Cs | 55 | 64 | 119 | 4.7896 | 0.0089 | 4.7557 | 0.0339 | 0.71 |
| Cs | 55 | 65 | 120 | 4.7915 | 0.0075 | 4.7598 | 0.0317 | 0.66 |
| Cs | 55 | 66 | 121 | 4.7769 | 0.0078 | 4.7639 | 0.0130 | 0.27 |
| Cs | 55 | 67 | 122 | 4.7773 | 0.007 | 4.7679 | 0.0094 | 0.20 |
| Cs | 55 | 68 | 123 | 4.782 | 0.007 | 4.7719 | 0.0101 | 0.21 |
| Cs | 55 | 69 | 124 | 4.7828 | 0.0062 | 4.7758 | 0.0070 | 0.15 |
| Cs | 55 | 70 | 125 | 4.788 | 0.0062 | 4.7797 | 0.0083 | 0.17 |
| Cs | 55 | 71 | 126 | 4.7872 | 0.0056 | 4.7835 | 0.0037 | 0.08 |
| Cs | 55 | 72 | 127 | 4.7936 | 0.0055 | 4.7873 | 0.0063 | 0.13 |
| Cs | 55 | 73 | 128 | 4.7921 | 0.0052 | 4.7910 | 0.0011 | 0.02 |
| Cs | 55 | 74 | 129 | 4.7981 | 0.005 | 4.7947 | 0.0034 | 0.07 |
| Cs | 55 | 75 | 130 | 4.7992 | 0.0049 | 4.7983 | 0.0009 | 0.02 |
| Cs | 55 | 76 | 131 | 4.8026 | 0.0047 | 4.8019 | 0.0007 | 0.01 |
| Cs | 55 | 77 | 132 | 4.8002 | 0.0046 | 4.8055 | -0.0053 | -0.11 |
| Cs | 55 | 78 | 133 | 4.8041 | 0.0046 | 4.8090 | -0.0049 | -0.10 |
| Cs | 55 | 79 | 134 | 4.8031 | 0.0046 | 4.8125 | -0.0094 | -0.19 |
| Cs | 55 | 80 | 135 | 4.8067 | 0.0047 | 4.8159 | -0.0092 | -0.19 |
| Cs | 55 | 81 | 136 | 4.8059 | 0.0052 | 4.8193 | -0.0134 | -0.28 |
| Cs | 55 | 82 | 137 | 4.8128 | 0.005 | 4.8226 | -0.0098 | -0.20 |
| Cs | 55 | 83 | 138 | 4.8255 | 0.005 | 4.8260 | -0.0005 | -0.01 |
| Cs | 55 | 84 | 139 | 4.8422 | 0.0069 | 4.8293 | 0.0129 | 0.27 |
| Cs | 55 | 85 | 140 | 4.8554 | 0.0088 | 4.8325 | 0.0229 | 0.47 |
| Cs | 55 | 86 | 141 | 4.8689 | 0.0108 | 4.8357 | 0.0332 | 0.68 |
| Cs | 55 | 87 | 142 | 4.8825 | 0.0132 | 4.8389 | 0.0436 | 0.89 |
| Cs | 55 | 88 | 143 | 4.8965 | 0.0151 | 4.8421 | 0.0544 | 1.11 |
| Cs | 55 | 89 | 144 | 4.9055 | 0.0161 | 4.8452 | 0.0603 | 1.23 |
| Cs | 55 | 90 | 145 | 4.9188 | 0.0191 | 4.8483 | 0.0705 | 1.43 |
| Cs | 55 | 91 | 146 | 4.9281 | 0.0193 | 4.8513 | 0.0768 | 1.56 |
| Ba | 56 | 64 | 120 | 4.8092 | 0.0058 | 4.7795 | 0.0297 | 0.62 |
| Ba | 56 | 65 | 121 | 4.8176 | 0.0052 | 4.7837 | 0.0339 | 0.70 |
| Ba | 56 | 66 | 122 | 4.8153 | 0.0054 | 4.7878 | 0.0275 | 0.57 |
| Ba | 56 | 67 | 123 | 4.8135 | 0.0055 | 4.7918 | 0.0217 | 0.45 |
| Ba | 56 | 68 | 124 | 4.8185 | 0.0052 | 4.7958 | 0.0227 | 0.47 |
| Ba | 56 | 69 | 125 | 4.8177 | 0.0052 | 4.7997 | 0.0180 | 0.37 |
| Ba | 56 | 70 | 126 | 4.8221 | 0.005 | 4.8036 | 0.0185 | 0.38 |
| Ba | 56 | 71 | 127 | 4.8204 | 0.0051 | 4.8075 | 0.0129 | 0.27 |
| Ba | 56 | 72 | 128 | 4.8255 | 0.0048 | 4.8112 | 0.0143 | 0.30 |
| Ba | 56 | 73 | 129 | 4.8248 | 0.0049 | 4.8150 | 0.0098 | 0.20 |
| Ba | 56 | 74 | 130 | 4.8283 | 0.0047 | 4.8187 | 0.0096 | 0.20 |
| Ba | 56 | 75 | 131 | 4.8276 | 0.0048 | 4.8223 | 0.0053 | 0.11 |
| Ba | 56 | 76 | 132 | 4.8303 | 0.0047 | 4.8259 | 0.0044 | 0.09 |
| Ba | 56 | 77 | 133 | 4.8286 | 0.0047 | 4.8295 | -0.0009 | -0.02 |
| Ba | 56 | 78 | 134 | 4.8322 | 0.0047 | 4.8330 | -0.0008 | -0.02 |
| Ba | 56 | 79 | 135 | 4.8294 | 0.0047 | 4.8365 | -0.0071 | -0.15 |
| Ba | 56 | 80 | 136 | 4.8334 | 0.0046 | 4.8400 | -0.0066 | -0.14 |
| Ba | 56 | 81 | 137 | 4.8314 | 0.0047 | 4.8434 | -0.0120 | -0.25 |
| Ba | 56 | 82 | 138 | 4.8378 | 0.0046 | 4.8467 | -0.0089 | -0.18 |
| Ba | 56 | 83 | 139 | 4.8513 | 0.0049 | 4.8501 | 0.0012 | 0.03 |
| Ba | 56 | 84 | 140 | 4.8684 | 0.0059 | 4.8534 | 0.0150 | 0.31 |
| Ba | 56 | 85 | 141 | 4.8807 | 0.0069 | 4.8566 | 0.0241 | 0.49 |
| Ba | 56 | 86 | 142 | 4.8953 | 0.0083 | 4.8599 | 0.0354 | 0.72 |
| Ba | 56 | 87 | 143 | 4.9087 | 0.0096 | 4.8631 | 0.0456 | 0.93 |
| Ba | 56 | 88 | 144 | 4.9236 | 0.0112 | 4.8662 | 0.0574 | 1.17 |
| Ba | 56 | 89 | 145 | 4.9345 | 0.0123 | 4.8694 | 0.0651 | 1.32 |
| Ba | 56 | 90 | 146 | 4.9479 | 0.0138 | 4.8725 | 0.0754 | 1.52 |
| Ba | 56 | 92 | 148 | 4.9731 | 0.0167 | 4.8786 | 0.0945 | 1.90 |
| La | 57 | 78 | 135 | 4.8488 | 0.006 | 4.8568 | -0.0080 | -0.16 |
| La | 57 | 80 | 137 | 4.8496 | 0.0053 | 4.8637 | -0.0141 | -0.29 |
| La | 57 | 81 | 138 | 4.8473 | 0.0051 | 4.8671 | -0.0198 | -0.41 |
| La | 57 | 82 | 139 | 4.855 | 0.0049 | 4.8705 | -0.0155 | -0.32 |
| Ce | 58 | 78 | 136 | 4.8739 | 0.0018 | 4.8802 | -0.0063 | -0.13 |
| Ce | 58 | 80 | 138 | 4.8737 | 0.0018 | 4.8872 | -0.0135 | -0.28 |
| Ce | 58 | 82 | 140 | 4.8771 | 0.0018 | 4.8940 | -0.0169 | -0.35 |
| Ce | 58 | 84 | 142 | 4.9063 | 0.002 | 4.9007 | 0.0056 | 0.11 |
| Ce | 58 | 86 | 144 | 4.9303 | 0.0024 | 4.9073 | 0.0230 | 0.47 |
| Ce | 58 | 88 | 146 | 4.959 | 0.0028 | 4.9137 | 0.0453 | 0.91 |
| Ce | 58 | 90 | 148 | 4.9893 | 0.0035 | 4.9200 | 0.0693 | 1.39 |
| Pr | 59 | 82 | 141 | 4.8919 | 0.005 | 4.9172 | -0.0253 | -0.52 |
| Nd | 60 | 72 | 132 | 4.9174 | 0.0026 | 4.9041 | 0.0133 | 0.27 |
| Nd | 60 | 74 | 134 | 4.9128 | 0.0026 | 4.9117 | 0.0011 | 0.02 |
| Nd | 60 | 75 | 135 | 4.9086 | 0.0026 | 4.9154 | -0.0068 | -0.14 |
| Nd | 60 | 76 | 136 | 4.9111 | 0.0026 | 4.9190 | -0.0079 | -0.16 |
| Nd | 60 | 77 | 137 | 4.908 | 0.0026 | 4.9227 | -0.0147 | -0.30 |
| Nd | 60 | 78 | 138 | 4.9123 | 0.0026 | 4.9262 | -0.0139 | -0.28 |
| Nd | 60 | 79 | 139 | 4.9076 | 0.0025 | 4.9298 | -0.0222 | -0.45 |
| Nd | 60 | 80 | 140 | 4.9101 | 0.0026 | 4.9333 | -0.0232 | -0.47 |
| Nd | 60 | 81 | 141 | 4.9057 | 0.0026 | 4.9367 | -0.0310 | -0.63 |
| Nd | 60 | 82 | 142 | 4.9123 | 0.0025 | 4.9402 | -0.0279 | -0.57 |
| Nd | 60 | 83 | 143 | 4.9254 | 0.0026 | 4.9435 | -0.0181 | -0.37 |
| Nd | 60 | 84 | 144 | 4.9421 | 0.0027 | 4.9469 | -0.0048 | -0.10 |
| Nd | 60 | 85 | 145 | 4.9535 | 0.0028 | 4.9502 | 0.0033 | 0.07 |
| Nd | 60 | 86 | 146 | 4.9696 | 0.003 | 4.9535 | 0.0161 | 0.32 |
| Nd | 60 | 88 | 148 | 4.9999 | 0.0036 | 4.9600 | 0.0399 | 0.80 |
| Nd | 60 | 90 | 150 | 5.04 | 0.0044 | 4.9663 | 0.0737 | 1.46 |
| Sm | 62 | 76 | 138 | 4.9599 | 0.0034 | 4.9639 | -0.0040 | -0.08 |
| Sm | 62 | 77 | 139 | 4.9556 | 0.0034 | 4.9676 | -0.0120 | -0.24 |
| Sm | 62 | 78 | 140 | 4.9565 | 0.0034 | 4.9712 | -0.0147 | -0.30 |
| Sm | 62 | 79 | 141 | 4.9517 | 0.0034 | 4.9748 | -0.0231 | -0.47 |
| Sm | 62 | 80 | 142 | 4.9518 | 0.0034 | 4.9783 | -0.0265 | -0.53 |
| Sm | 62 | 81 | 143 | 4.9479 | 0.0034 | 4.9818 | -0.0339 | -0.68 |
| Sm | 62 | 82 | 144 | 4.9524 | 0.0034 | 4.9852 | -0.0328 | -0.66 |
| Sm | 62 | 83 | 145 | 4.9651 | 0.0034 | 4.9886 | -0.0235 | -0.47 |
| Sm | 62 | 84 | 146 | 4.9808 | 0.0035 | 4.9920 | -0.0112 | -0.22 |
| Sm | 62 | 85 | 147 | 4.9892 | 0.0035 | 4.9953 | -0.0061 | -0.12 |
| Sm | 62 | 86 | 148 | 5.0042 | 0.0034 | 4.9986 | 0.0056 | 0.11 |
| Sm | 62 | 87 | 149 | 5.0134 | 0.0035 | 5.0019 | 0.0115 | 0.23 |
| Sm | 62 | 88 | 150 | 5.0387 | 0.0048 | 5.0052 | 0.0335 | 0.67 |
| Sm | 62 | 89 | 151 | 5.055 | 0.0057 | 5.0084 | 0.0466 | 0.92 |
| Sm | 62 | 90 | 152 | 5.0819 | 0.006 | 5.0115 | 0.0704 | 1.38 |
| Sm | 62 | 91 | 153 | 5.0925 | 0.0068 | 5.0147 | 0.0778 | 1.53 |
| Sm | 62 | 92 | 154 | 5.1053 | 0.0067 | 5.0178 | 0.0875 | 1.71 |
| Eu | 63 | 74 | 137 | 4.9762 | 0.0095 | 4.9785 | -0.0023 | -0.05 |
| Eu | 63 | 75 | 138 | 4.9779 | 0.0094 | 4.9823 | -0.0044 | -0.09 |
| Eu | 63 | 76 | 139 | 4.976 | 0.0093 | 4.9860 | -0.0100 | -0.20 |
| Eu | 63 | 77 | 140 | 4.9695 | 0.0091 | 4.9897 | -0.0202 | -0.41 |
| Eu | 63 | 78 | 141 | 4.9697 | 0.0091 | 4.9933 | -0.0236 | -0.47 |
| Eu | 63 | 79 | 142 | 4.9607 | 0.0091 | 4.9969 | -0.0362 | -0.73 |
| Eu | 63 | 80 | 143 | 4.9636 | 0.0091 | 5.0004 | -0.0368 | -0.74 |
| Eu | 63 | 81 | 144 | 4.9612 | 0.0091 | 5.0039 | -0.0427 | -0.86 |
| Eu | 63 | 82 | 145 | 4.9663 | 0.0091 | 5.0074 | -0.0411 | -0.83 |
| Eu | 63 | 83 | 146 | 4.9789 | 0.0092 | 5.0108 | -0.0319 | -0.64 |
| Eu | 63 | 84 | 147 | 4.9938 | 0.0094 | 5.0142 | -0.0204 | -0.41 |
| Eu | 63 | 85 | 148 | 5.0045 | 0.0097 | 5.0175 | -0.0130 | -0.26 |
| Eu | 63 | 86 | 149 | 5.0202 | 0.0103 | 5.0208 | -0.0006 | -0.01 |
| Eu | 63 | 87 | 150 | 5.0296 | 0.0108 | 5.0241 | 0.0055 | 0.11 |
| Eu | 63 | 88 | 151 | 5.0522 | 0.0046 | 5.0274 | 0.0248 | 0.49 |
| Eu | 63 | 89 | 152 | 5.1064 | 0.0066 | 5.0306 | 0.0758 | 1.48 |
| Eu | 63 | 90 | 153 | 5.1115 | 0.0062 | 5.0338 | 0.0777 | 1.52 |
| Eu | 63 | 91 | 154 | 5.1239 | 0.0079 | 5.0369 | 0.0870 | 1.70 |
| Eu | 63 | 92 | 155 | 5.1221 | 0.0069 | 5.0400 | 0.0821 | 1.60 |
| Eu | 63 | 93 | 156 | 5.1264 | 0.0071 | 5.0431 | 0.0833 | 1.62 |
| Eu | 63 | 94 | 157 | 5.1351 | 0.0075 | 5.0462 | 0.0889 | 1.73 |
| Eu | 63 | 95 | 158 | 5.1413 | 0.0078 | 5.0492 | 0.0921 | 1.79 |
| Eu | 63 | 96 | 159 | 5.1498 | 0.0084 | 5.0522 | 0.0976 | 1.89 |
| Gd | 64 | 81 | 145 | 4.9786 | 0.0077 | 5.0258 | -0.0472 | -0.95 |
| Gd | 64 | 82 | 146 | 4.9801 | 0.014 | 5.0292 | -0.0491 | -0.99 |
| Gd | 64 | 84 | 148 | 5.008 | 0.0171 | 5.0361 | -0.0281 | -0.56 |
| Gd | 64 | 86 | 150 | 5.0342 | 0.0159 | 5.0428 | -0.0086 | -0.17 |
| Gd | 64 | 88 | 152 | 5.0774 | 0.0048 | 5.0493 | 0.0281 | 0.55 |
| Gd | 64 | 90 | 154 | 5.1223 | 0.004 | 5.0557 | 0.0666 | 1.30 |
| Gd | 64 | 91 | 155 | 5.1319 | 0.0041 | 5.0589 | 0.0730 | 1.42 |
| Gd | 64 | 92 | 156 | 5.142 | 0.0042 | 5.0620 | 0.0800 | 1.55 |
| Gd | 64 | 93 | 157 | 5.1449 | 0.0042 | 5.0651 | 0.0798 | 1.55 |
| Gd | 64 | 94 | 158 | 5.1569 | 0.0043 | 5.0682 | 0.0887 | 1.72 |
| Gd | 64 | 96 | 160 | 5.1734 | 0.0044 | 5.0743 | 0.0991 | 1.92 |
| Tb | 65 | 82 | 147 | 4.9201 | 0.1508 | 5.0509 | -0.1308 | -2.66 |
| Tb | 65 | 83 | 148 | 4.9291 | 0.1507 | 5.0543 | -0.1252 | -2.54 |
| Tb | 65 | 84 | 149 | 4.9427 | 0.1506 | 5.0577 | -0.1150 | -2.33 |
| Tb | 65 | 85 | 150 | 4.9499 | 0.1505 | 5.0611 | -0.1112 | -2.25 |
| Tb | 65 | 86 | 151 | 4.963 | 0.1504 | 5.0645 | -0.1015 | -2.04 |
| Tb | 65 | 87 | 152 | 4.9689 | 0.1504 | 5.0678 | -0.0989 | -1.99 |
| Tb | 65 | 88 | 153 | 4.995 | 0.1502 | 5.0710 | -0.0760 | -1.52 |
| Tb | 65 | 89 | 154 | 5.0333 | 0.1501 | 5.0743 | -0.0410 | -0.81 |
| Tb | 65 | 90 | 155 | 5.0391 | 0.15 | 5.0775 | -0.0384 | -0.76 |
| Tb | 65 | 92 | 157 | 5.0489 | 0.15 | 5.0838 | -0.0349 | -0.69 |
| Tb | 65 | 94 | 159 | 5.06 | 0.15 | 5.0900 | -0.0300 | -0.59 |
| Dy | 66 | 80 | 146 | 5.0438 | 0.2389 | 5.0653 | -0.0215 | -0.43 |
| Dy | 66 | 82 | 148 | 5.0455 | 0.2389 | 5.0723 | -0.0268 | -0.53 |
| Dy | 66 | 83 | 149 | 5.0567 | 0.2394 | 5.0758 | -0.0191 | -0.38 |
| Dy | 66 | 84 | 150 | 5.0706 | 0.2413 | 5.0792 | -0.0086 | -0.17 |
| Dy | 66 | 85 | 151 | 5.0801 | 0.2435 | 5.0826 | -0.0025 | -0.05 |
| Dy | 66 | 86 | 152 | 5.095 | 0.2482 | 5.0859 | 0.0091 | 0.18 |
| Dy | 66 | 87 | 153 | 5.1035 | 0.2516 | 5.0892 | 0.0143 | 0.28 |
| Dy | 66 | 88 | 154 | 5.1241 | 0.2618 | 5.0925 | 0.0316 | 0.62 |
| Dy | 66 | 89 | 155 | 5.1457 | 0.2751 | 5.0958 | 0.0499 | 0.97 |
| Dy | 66 | 90 | 156 | 5.1622 | 0.2869 | 5.0990 | 0.0632 | 1.22 |
| Dy | 66 | 91 | 157 | 5.1709 | 0.2936 | 5.1022 | 0.0687 | 1.33 |
| Dy | 66 | 92 | 158 | 5.1815 | 0.3023 | 5.1053 | 0.0762 | 1.47 |
| Dy | 66 | 93 | 159 | 5.1825 | 0.3031 | 5.1085 | 0.0740 | 1.43 |
| Dy | 66 | 94 | 160 | 5.1951 | 0.3139 | 5.1115 | 0.0836 | 1.61 |
| Dy | 66 | 95 | 161 | 5.1962 | 0.0459 | 5.1146 | 0.0816 | 1.57 |
| Dy | 66 | 96 | 162 | 5.2074 | 0.0172 | 5.1177 | 0.0897 | 1.72 |
| Dy | 66 | 97 | 163 | 5.2099 | 0.012 | 5.1207 | 0.0892 | 1.71 |
| Dy | 66 | 98 | 164 | 5.2218 | 0.0106 | 5.1236 | 0.0982 | 1.88 |
| Ho | 67 | 84 | 151 | 5.0398 | 0.0354 | 5.1004 | -0.0606 | -1.20 |
| Ho | 67 | 85 | 152 | 5.0614 | 0.0343 | 5.1038 | -0.0424 | -0.84 |
| Ho | 67 | 86 | 153 | 5.076 | 0.0339 | 5.1071 | -0.0311 | -0.61 |
| Ho | 67 | 87 | 154 | 5.0856 | 0.0333 | 5.1105 | -0.0249 | -0.49 |
| Ho | 67 | 88 | 155 | 5.1076 | 0.0326 | 5.1138 | -0.0062 | -0.12 |
| Ho | 67 | 89 | 156 | 5.1156 | 0.0326 | 5.1170 | -0.0014 | -0.03 |
| Ho | 67 | 90 | 157 | 5.1535 | 0.0316 | 5.1203 | 0.0332 | 0.64 |
| Ho | 67 | 91 | 158 | 5.1571 | 0.0316 | 5.1235 | 0.0336 | 0.65 |
| Ho | 67 | 92 | 159 | 5.1675 | 0.0314 | 5.1266 | 0.0409 | 0.79 |
| Ho | 67 | 93 | 160 | 5.1662 | 0.0315 | 5.1298 | 0.0364 | 0.71 |
| Ho | 67 | 94 | 161 | 5.1785 | 0.0313 | 5.1329 | 0.0456 | 0.88 |
| Ho | 67 | 95 | 162 | 5.1817 | 0.0313 | 5.1359 | 0.0458 | 0.88 |
| Ho | 67 | 96 | 163 | 5.1907 | 0.0313 | 5.1390 | 0.0517 | 1.00 |
| Ho | 67 | 98 | 165 | 5.2022 | 0.0312 | 5.1450 | 0.0572 | 1.10 |
| Er | 68 | 82 | 150 | 5.0548 | 0.0254 | 5.1144 | -0.0596 | -1.18 |
| Er | 68 | 84 | 152 | 5.0843 | 0.0257 | 5.1214 | -0.0371 | -0.73 |
| Er | 68 | 86 | 154 | 5.1129 | 0.0268 | 5.1282 | -0.0153 | -0.30 |
| Er | 68 | 88 | 156 | 5.1429 | 0.0285 | 5.1348 | 0.0081 | 0.16 |
| Er | 68 | 90 | 158 | 5.1761 | 0.0312 | 5.1413 | 0.0348 | 0.67 |
| Er | 68 | 92 | 160 | 5.2045 | 0.0336 | 5.1477 | 0.0568 | 1.09 |
| Er | 68 | 94 | 162 | 5.2246 | 0.004 | 5.1540 | 0.0706 | 1.35 |
| Er | 68 | 96 | 164 | 5.2389 | 0.0035 | 5.1601 | 0.0788 | 1.50 |
| Er | 68 | 98 | 166 | 5.2516 | 0.0031 | 5.1661 | 0.0855 | 1.63 |
| Er | 68 | 99 | 167 | 5.256 | 0.0031 | 5.1691 | 0.0869 | 1.65 |
| Er | 68 | 100 | 168 | 5.2644 | 0.0035 | 5.1721 | 0.0923 | 1.75 |
| Er | 68 | 102 | 170 | 5.2789 | 0.0041 | 5.1779 | 0.1010 | 1.91 |
| Tm | 69 | 84 | 153 | 5.0643 | 0.019 | 5.1421 | -0.0778 | -1.54 |
| Tm | 69 | 85 | 154 | 5.0755 | 0.0166 | 5.1456 | -0.0701 | -1.38 |
| Tm | 69 | 87 | 156 | 5.0976 | 0.0135 | 5.1523 | -0.0547 | -1.07 |
| Tm | 69 | 88 | 157 | 5.114 | 0.0074 | 5.1556 | -0.0416 | -0.81 |
| Tm | 69 | 89 | 158 | 5.1235 | 0.0069 | 5.1589 | -0.0354 | -0.69 |
| Tm | 69 | 90 | 159 | 5.1392 | 0.006 | 5.1621 | -0.0229 | -0.45 |
| Tm | 69 | 91 | 160 | 5.1504 | 0.0055 | 5.1654 | -0.0150 | -0.29 |
| Tm | 69 | 92 | 161 | 5.1616 | 0.005 | 5.1685 | -0.0069 | -0.13 |
| Tm | 69 | 93 | 162 | 5.1713 | 0.0048 | 5.1717 | -0.0004 | -0.01 |
| Tm | 69 | 94 | 163 | 5.1849 | 0.0042 | 5.1748 | 0.0101 | 0.19 |
| Tm | 69 | 95 | 164 | 5.1906 | 0.0042 | 5.1779 | 0.0127 | 0.24 |
| Tm | 69 | 96 | 165 | 5.2004 | 0.0038 | 5.1810 | 0.0194 | 0.37 |
| Tm | 69 | 97 | 166 | 5.2046 | 0.0038 | 5.1840 | 0.0206 | 0.40 |
| Tm | 69 | 98 | 167 | 5.2129 | 0.0036 | 5.1870 | 0.0259 | 0.50 |
| Tm | 69 | 99 | 168 | 5.217 | 0.0036 | 5.1900 | 0.0270 | 0.52 |
| Tm | 69 | 100 | 169 | 5.2256 | 0.0035 | 5.1930 | 0.0326 | 0.62 |
| Tm | 69 | 101 | 170 | 5.2303 | 0.0036 | 5.1959 | 0.0344 | 0.66 |
| Tm | 69 | 102 | 171 | 5.2388 | 0.0037 | 5.1988 | 0.0400 | 0.76 |
| Tm | 69 | 103 | 172 | 5.2411 | 0.0052 | 5.2017 | 0.0394 | 0.75 |
| Yb | 70 | 82 | 152 | 5.0423 | 0.0146 | 5.1557 | -0.1134 | -2.25 |
| Yb | 70 | 84 | 154 | 5.0875 | 0.0105 | 5.1627 | -0.0752 | -1.48 |
| Yb | 70 | 85 | 155 | 5.104 | 0.011 | 5.1661 | -0.0621 | -1.22 |
| Yb | 70 | 86 | 156 | 5.1219 | 0.0103 | 5.1695 | -0.0476 | -0.93 |
| Yb | 70 | 87 | 157 | 5.1324 | 0.01 | 5.1729 | -0.0405 | -0.79 |
| Yb | 70 | 88 | 158 | 5.1498 | 0.0088 | 5.1762 | -0.0264 | -0.51 |
| Yb | 70 | 89 | 159 | 5.1629 | 0.0084 | 5.1795 | -0.0166 | -0.32 |
| Yb | 70 | 90 | 160 | 5.1781 | 0.0076 | 5.1828 | -0.0047 | -0.09 |
| Yb | 70 | 91 | 161 | 5.1889 | 0.0072 | 5.1860 | 0.0029 | 0.06 |
| Yb | 70 | 92 | 162 | 5.2054 | 0.0067 | 5.1892 | 0.0162 | 0.31 |
| Yb | 70 | 93 | 163 | 5.2157 | 0.0064 | 5.1923 | 0.0234 | 0.45 |
| Yb | 70 | 94 | 164 | 5.2307 | 0.006 | 5.1955 | 0.0352 | 0.67 |
| Yb | 70 | 95 | 165 | 5.2399 | 0.0058 | 5.1986 | 0.0413 | 0.79 |
| Yb | 70 | 96 | 166 | 5.2525 | 0.0057 | 5.2017 | 0.0508 | 0.97 |
| Yb | 70 | 97 | 167 | 5.2621 | 0.0056 | 5.2047 | 0.0574 | 1.09 |
| Yb | 70 | 98 | 168 | 5.2702 | 0.0056 | 5.2077 | 0.0625 | 1.19 |
| Yb | 70 | 99 | 169 | 5.2771 | 0.0056 | 5.2107 | 0.0664 | 1.26 |
| Yb | 70 | 100 | 170 | 5.2853 | 0.0056 | 5.2137 | 0.0716 | 1.35 |
| Yb | 70 | 101 | 171 | 5.2906 | 0.0057 | 5.2166 | 0.0740 | 1.40 |
| Yb | 70 | 102 | 172 | 5.2995 | 0.0058 | 5.2195 | 0.0800 | 1.51 |
| Yb | 70 | 103 | 173 | 5.3046 | 0.0059 | 5.2224 | 0.0822 | 1.55 |
| Yb | 70 | 104 | 174 | 5.3108 | 0.006 | 5.2253 | 0.0855 | 1.61 |
| Yb | 70 | 105 | 175 | 5.3135 | 0.0061 | 5.2281 | 0.0854 | 1.61 |
| Yb | 70 | 106 | 176 | 5.3215 | 0.0062 | 5.2310 | 0.0905 | 1.70 |
| Lu | 71 | 90 | 161 | 5.2293 | 0.032 | 5.2032 | 0.0261 | 0.50 |
| Lu | 71 | 91 | 162 | 5.2398 | 0.0317 | 5.2064 | 0.0334 | 0.64 |
| Lu | 71 | 92 | 163 | 5.2567 | 0.0312 | 5.2096 | 0.0471 | 0.90 |
| Lu | 71 | 93 | 164 | 5.2677 | 0.031 | 5.2128 | 0.0549 | 1.04 |
| Lu | 71 | 94 | 165 | 5.283 | 0.0307 | 5.2159 | 0.0671 | 1.27 |
| Lu | 71 | 95 | 166 | 5.2972 | 0.0305 | 5.2190 | 0.0782 | 1.48 |
| Lu | 71 | 96 | 167 | 5.3108 | 0.0303 | 5.2221 | 0.0887 | 1.67 |
| Lu | 71 | 97 | 168 | 5.3227 | 0.0302 | 5.2252 | 0.0975 | 1.83 |
| Lu | 71 | 98 | 169 | 5.329 | 0.0302 | 5.2282 | 0.1008 | 1.89 |
| Lu | 71 | 99 | 170 | 5.3364 | 0.0302 | 5.2312 | 0.1052 | 1.97 |
| Lu | 71 | 100 | 171 | 5.3436 | 0.0302 | 5.2342 | 0.1094 | 2.05 |
| Lu | 71 | 101 | 172 | 5.3486 | 0.0302 | 5.2371 | 0.1115 | 2.08 |
| Lu | 71 | 102 | 173 | 5.3577 | 0.0303 | 5.2401 | 0.1176 | 2.20 |
| Lu | 71 | 103 | 174 | 5.3634 | 0.0303 | 5.2430 | 0.1204 | 2.25 |
| Lu | 71 | 104 | 175 | 5.37 | 0.0304 | 5.2458 | 0.1242 | 2.31 |
| Lu | 71 | 105 | 176 | 5.3739 | 0.0304 | 5.2487 | 0.1252 | 2.33 |
| Lu | 71 | 106 | 177 | 5.3815 | 0.0305 | 5.2515 | 0.1300 | 2.42 |
| Lu | 71 | 107 | 178 | 5.3857 | 0.0306 | 5.2543 | 0.1314 | 2.44 |
| Lu | 71 | 108 | 179 | 5.3917 | 0.0307 | 5.2571 | 0.1346 | 2.50 |
| Hf | 72 | 98 | 170 | 5.2898 | 0.0055 | 5.2485 | 0.0413 | 0.78 |
| Hf | 72 | 99 | 171 | 5.3041 | 0.0049 | 5.2515 | 0.0526 | 0.99 |
| Hf | 72 | 100 | 172 | 5.3065 | 0.0043 | 5.2545 | 0.0520 | 0.98 |
| Hf | 72 | 101 | 173 | 5.314 | 0.0038 | 5.2575 | 0.0565 | 1.06 |
| Hf | 72 | 102 | 174 | 5.3201 | 0.0035 | 5.2604 | 0.0597 | 1.12 |
| Hf | 72 | 103 | 175 | 5.3191 | 0.0036 | 5.2633 | 0.0558 | 1.05 |
| Hf | 72 | 104 | 176 | 5.3286 | 0.0032 | 5.2662 | 0.0624 | 1.17 |
| Hf | 72 | 105 | 177 | 5.3309 | 0.0031 | 5.2690 | 0.0619 | 1.16 |
| Hf | 72 | 106 | 178 | 5.3371 | 0.0031 | 5.2719 | 0.0652 | 1.22 |
| Hf | 72 | 107 | 179 | 5.3408 | 0.0031 | 5.2747 | 0.0661 | 1.24 |
| Hf | 72 | 108 | 180 | 5.347 | 0.0032 | 5.2775 | 0.0695 | 1.30 |
| Hf | 72 | 110 | 182 | 5.3516 | 0.0036 | 5.2830 | 0.0686 | 1.28 |
| Ta | 73 | 108 | 181 | 5.3507 | 0.0034 | 5.2976 | 0.0531 | 0.99 |
| W | 74 | 106 | 180 | 5.3491 | 0.0022 | 5.3120 | 0.0371 | 0.69 |
| W | 74 | 108 | 182 | 5.3559 | 0.0017 | 5.3176 | 0.0383 | 0.71 |
| W | 74 | 109 | 183 | 5.3611 | 0.002 | 5.3204 | 0.0407 | 0.76 |
| W | 74 | 110 | 184 | 5.3658 | 0.0023 | 5.3232 | 0.0426 | 0.79 |
| W | 74 | 112 | 186 | 5.3743 | 0.0026 | 5.3286 | 0.0457 | 0.85 |
| Re | 75 | 110 | 185 | 5.3596 | 0.0172 | 5.3429 | 0.0167 | 0.31 |
| Re | 75 | 112 | 187 | 5.3698 | 0.0173 | 5.3484 | 0.0214 | 0.40 |
| Os | 76 | 108 | 184 | 5.3823 | 0.0022 | 5.3570 | 0.0253 | 0.47 |
| Os | 76 | 110 | 186 | 5.3909 | 0.0017 | 5.3626 | 0.0283 | 0.53 |
| Os | 76 | 111 | 187 | 5.3933 | 0.0018 | 5.3653 | 0.0280 | 0.52 |
| Os | 76 | 112 | 188 | 5.3993 | 0.0011 | 5.3680 | 0.0313 | 0.58 |
| Os | 76 | 113 | 189 | 5.4016 | 0.0012 | 5.3708 | 0.0308 | 0.57 |
| Os | 76 | 114 | 190 | 5.4062 | 0.0013 | 5.3734 | 0.0328 | 0.61 |
| Os | 76 | 116 | 192 | 5.4126 | 0.0015 | 5.3788 | 0.0338 | 0.63 |
| Ir | 77 | 105 | 182 | 5.3705 | 0.1061 | 5.3678 | 0.0027 | 0.05 |
| Ir | 77 | 106 | 183 | 5.378 | 0.1061 | 5.3707 | 0.0073 | 0.14 |
| Ir | 77 | 107 | 184 | 5.3805 | 0.1061 | 5.3736 | 0.0069 | 0.13 |
| Ir | 77 | 108 | 185 | 5.3854 | 0.1061 | 5.3764 | 0.0090 | 0.17 |
| Ir | 77 | 109 | 186 | 5.39 | 0.1061 | 5.3792 | 0.0108 | 0.20 |
| Ir | 77 | 110 | 187 | 5.3812 | 0.1061 | 5.3820 | -0.0008 | -0.01 |
| Ir | 77 | 111 | 188 | 5.3838 | 0.1061 | 5.3848 | -0.0010 | -0.02 |
| Ir | 77 | 112 | 189 | 5.3898 | 0.1061 | 5.3875 | 0.0023 | 0.04 |
| Ir | 77 | 114 | 191 | 5.3968 | 0.1061 | 5.3929 | 0.0039 | 0.07 |
| Ir | 77 | 116 | 193 | 5.4032 | 0.1061 | 5.3982 | 0.0050 | 0.09 |
| Pt | 78 | 100 | 178 | 5.3728 | 0.0066 | 5.3722 | 0.0006 | 0.01 |
| Pt | 78 | 101 | 179 | 5.3915 | 0.005 | 5.3753 | 0.0162 | 0.30 |
| Pt | 78 | 102 | 180 | 5.3891 | 0.0049 | 5.3782 | 0.0109 | 0.20 |
| Pt | 78 | 103 | 181 | 5.3996 | 0.0041 | 5.3812 | 0.0184 | 0.34 |
| Pt | 78 | 104 | 182 | 5.3969 | 0.0041 | 5.3841 | 0.0128 | 0.24 |
| Pt | 78 | 105 | 183 | 5.4038 | 0.0036 | 5.3871 | 0.0167 | 0.31 |
| Pt | 78 | 106 | 184 | 5.4015 | 0.0036 | 5.3899 | 0.0116 | 0.21 |
| Pt | 78 | 107 | 185 | 5.4148 | 0.0028 | 5.3928 | 0.0220 | 0.41 |
| Pt | 78 | 108 | 186 | 5.4037 | 0.0036 | 5.3956 | 0.0081 | 0.15 |
| Pt | 78 | 109 | 187 | 5.4063 | 0.0037 | 5.3984 | 0.0079 | 0.15 |
| Pt | 78 | 110 | 188 | 5.4053 | 0.0034 | 5.4012 | 0.0041 | 0.08 |
| Pt | 78 | 111 | 189 | 5.406 | 0.0035 | 5.4040 | 0.0020 | 0.04 |
| Pt | 78 | 112 | 190 | 5.4108 | 0.003 | 5.4068 | 0.0040 | 0.07 |
| Pt | 78 | 113 | 191 | 5.4102 | 0.0031 | 5.4095 | 0.0007 | 0.01 |
| Pt | 78 | 114 | 192 | 5.4169 | 0.0028 | 5.4122 | 0.0047 | 0.09 |
| Pt | 78 | 115 | 193 | 5.4191 | 0.0027 | 5.4149 | 0.0042 | 0.08 |
| Pt | 78 | 116 | 194 | 5.4236 | 0.0025 | 5.4175 | 0.0061 | 0.11 |
| Pt | 78 | 117 | 195 | 5.427 | 0.0026 | 5.4202 | 0.0068 | 0.13 |
| Pt | 78 | 118 | 196 | 5.4307 | 0.0027 | 5.4228 | 0.0079 | 0.15 |
| Pt | 78 | 120 | 198 | 5.4383 | 0.0032 | 5.4280 | 0.0103 | 0.19 |
| Au | 79 | 104 | 183 | 5.4247 | 0.0043 | 5.4032 | 0.0215 | 0.40 |
| Au | 79 | 105 | 184 | 5.4306 | 0.0041 | 5.4061 | 0.0245 | 0.45 |
| Au | 79 | 106 | 185 | 5.4296 | 0.0041 | 5.4090 | 0.0206 | 0.38 |
| Au | 79 | 107 | 186 | 5.4354 | 0.0039 | 5.4118 | 0.0236 | 0.43 |
| Au | 79 | 108 | 187 | 5.4018 | 0.0058 | 5.4147 | -0.0129 | -0.24 |
| Au | 79 | 109 | 188 | 5.4049 | 0.0055 | 5.4175 | -0.0126 | -0.23 |
| Au | 79 | 110 | 189 | 5.4084 | 0.0052 | 5.4203 | -0.0119 | -0.22 |
| Au | 79 | 111 | 190 | 5.4109 | 0.0049 | 5.4231 | -0.0122 | -0.23 |
| Au | 79 | 112 | 191 | 5.4147 | 0.0046 | 5.4258 | -0.0111 | -0.21 |
| Au | 79 | 113 | 192 | 5.4179 | 0.0044 | 5.4286 | -0.0107 | -0.20 |
| Au | 79 | 114 | 193 | 5.4221 | 0.0042 | 5.4313 | -0.0092 | -0.17 |
| Au | 79 | 115 | 194 | 5.4252 | 0.004 | 5.4340 | -0.0088 | -0.16 |
| Au | 79 | 116 | 195 | 5.4298 | 0.004 | 5.4366 | -0.0068 | -0.13 |
| Au | 79 | 117 | 196 | 5.4332 | 0.0039 | 5.4393 | -0.0061 | -0.11 |
| Au | 79 | 118 | 197 | 5.4371 | 0.0038 | 5.4419 | -0.0048 | -0.09 |
| Au | 79 | 119 | 198 | 5.44 | 0.0038 | 5.4445 | -0.0045 | -0.08 |
| Au | 79 | 120 | 199 | 5.4454 | 0.0039 | 5.4471 | -0.0017 | -0.03 |
| Hg | 80 | 101 | 181 | 5.4364 | 0.0032 | 5.4131 | 0.0233 | 0.43 |
| Hg | 80 | 102 | 182 | 5.3833 | 0.0052 | 5.4161 | -0.0328 | -0.61 |
| Hg | 80 | 103 | 183 | 5.4405 | 0.0031 | 5.4191 | 0.0214 | 0.39 |
| Hg | 80 | 104 | 184 | 5.3949 | 0.0047 | 5.4220 | -0.0271 | -0.50 |
| Hg | 80 | 105 | 185 | 5.4397 | 0.0031 | 5.4249 | 0.0148 | 0.27 |
| Hg | 80 | 106 | 186 | 5.4017 | 0.0043 | 5.4279 | -0.0262 | -0.48 |
| Hg | 80 | 107 | 187 | 5.4046 | 0.0042 | 5.4307 | -0.0261 | -0.48 |
| Hg | 80 | 108 | 188 | 5.4085 | 0.004 | 5.4336 | -0.0251 | -0.46 |
| Hg | 80 | 109 | 189 | 5.41 | 0.004 | 5.4364 | -0.0264 | -0.49 |
| Hg | 80 | 110 | 190 | 5.4158 | 0.0037 | 5.4392 | -0.0234 | -0.43 |
| Hg | 80 | 111 | 191 | 5.4171 | 0.0037 | 5.4420 | -0.0249 | -0.46 |
| Hg | 80 | 112 | 192 | 5.4232 | 0.0035 | 5.4448 | -0.0216 | -0.40 |
| Hg | 80 | 113 | 193 | 5.4238 | 0.0035 | 5.4475 | -0.0237 | -0.44 |
| Hg | 80 | 114 | 194 | 5.4309 | 0.0033 | 5.4502 | -0.0193 | -0.36 |
| Hg | 80 | 115 | 195 | 5.4345 | 0.0032 | 5.4529 | -0.0184 | -0.34 |
| Hg | 80 | 116 | 196 | 5.4385 | 0.0031 | 5.4556 | -0.0171 | -0.31 |
| Hg | 80 | 117 | 197 | 5.4412 | 0.0031 | 5.4583 | -0.0171 | -0.31 |
| Hg | 80 | 118 | 198 | 5.4463 | 0.0031 | 5.4609 | -0.0146 | -0.27 |
| Hg | 80 | 119 | 199 | 5.4474 | 0.0031 | 5.4635 | -0.0161 | -0.30 |
| Hg | 80 | 120 | 200 | 5.4551 | 0.0031 | 5.4661 | -0.0110 | -0.20 |
| Hg | 80 | 121 | 201 | 5.4581 | 0.0032 | 5.4687 | -0.0106 | -0.19 |
| Hg | 80 | 122 | 202 | 5.4648 | 0.0033 | 5.4712 | -0.0064 | -0.12 |
| Hg | 80 | 123 | 203 | 5.4679 | 0.0035 | 5.4738 | -0.0059 | -0.11 |
| Hg | 80 | 124 | 204 | 5.4744 | 0.0036 | 5.4763 | -0.0019 | -0.03 |
| Hg | 80 | 125 | 205 | 5.4776 | 0.0038 | 5.4788 | -0.0012 | -0.02 |
| Hg | 80 | 126 | 206 | 5.4837 | 0.004 | 5.4813 | 0.0024 | 0.04 |
| Tl | 81 | 107 | 188 | 5.4017 | 0.0072 | 5.4494 | -0.0477 | -0.88 |
| Tl | 81 | 109 | 190 | 5.4121 | 0.0056 | 5.4551 | -0.0430 | -0.80 |
| Tl | 81 | 110 | 191 | 5.4169 | 0.0048 | 5.4580 | -0.0411 | -0.76 |
| Tl | 81 | 111 | 192 | 5.4191 | 0.0051 | 5.4607 | -0.0416 | -0.77 |
| Tl | 81 | 112 | 193 | 5.4243 | 0.0042 | 5.4635 | -0.0392 | -0.72 |
| Tl | 81 | 113 | 194 | 5.4259 | 0.0046 | 5.4663 | -0.0404 | -0.74 |
| Tl | 81 | 114 | 195 | 5.4325 | 0.0039 | 5.4690 | -0.0365 | -0.67 |
| Tl | 81 | 115 | 196 | 5.4327 | 0.0042 | 5.4717 | -0.0390 | -0.72 |
| Tl | 81 | 116 | 197 | 5.4388 | 0.0036 | 5.4744 | -0.0356 | -0.65 |
| Tl | 81 | 117 | 198 | 5.4396 | 0.0036 | 5.4770 | -0.0374 | -0.69 |
| Tl | 81 | 118 | 199 | 5.4479 | 0.0031 | 5.4797 | -0.0318 | -0.58 |
| Tl | 81 | 119 | 200 | 5.4491 | 0.0031 | 5.4823 | -0.0332 | -0.61 |
| Tl | 81 | 120 | 201 | 5.4573 | 0.0029 | 5.4849 | -0.0276 | -0.51 |
| Tl | 81 | 121 | 202 | 5.4595 | 0.0027 | 5.4875 | -0.0280 | -0.51 |
| Tl | 81 | 122 | 203 | 5.4666 | 0.0027 | 5.4901 | -0.0235 | -0.43 |
| Tl | 81 | 123 | 204 | 5.4704 | 0.0028 | 5.4926 | -0.0222 | -0.41 |
| Tl | 81 | 124 | 205 | 5.4759 | 0.0026 | 5.4951 | -0.0192 | -0.35 |
| Tl | 81 | 126 | 207 | 5.4853 | 0.0027 | 5.5001 | -0.0148 | -0.27 |
| Tl | 81 | 127 | 208 | 5.4946 | 0.0028 | 5.5026 | -0.0080 | -0.15 |
| Pb | 82 | 100 | 182 | 5.3788 | 0.0035 | 5.4472 | -0.0684 | -1.27 |
| Pb | 82 | 101 | 183 | 5.3869 | 0.003 | 5.4503 | -0.0634 | -1.18 |
| Pb | 82 | 102 | 184 | 5.393 | 0.0029 | 5.4533 | -0.0603 | -1.12 |
| Pb | 82 | 103 | 185 | 5.3984 | 0.0028 | 5.4563 | -0.0579 | -1.07 |
| Pb | 82 | 104 | 186 | 5.4027 | 0.0027 | 5.4592 | -0.0565 | -1.05 |
| Pb | 82 | 105 | 187 | 5.4079 | 0.0026 | 5.4622 | -0.0543 | -1.00 |
| Pb | 82 | 106 | 188 | 5.4139 | 0.0025 | 5.4651 | -0.0512 | -0.95 |
| Pb | 82 | 107 | 189 | 5.4177 | 0.0024 | 5.4680 | -0.0503 | -0.93 |
| Pb | 82 | 108 | 190 | 5.4222 | 0.0023 | 5.4709 | -0.0487 | -0.90 |
| Pb | 82 | 109 | 191 | 5.4229 | 0.0026 | 5.4737 | -0.0508 | -0.94 |
| Pb | 82 | 110 | 192 | 5.43 | 0.0025 | 5.4765 | -0.0465 | -0.86 |
| Pb | 82 | 111 | 193 | 5.431 | 0.0023 | 5.4793 | -0.0483 | -0.89 |
| Pb | 82 | 112 | 194 | 5.4372 | 0.0023 | 5.4821 | -0.0449 | -0.83 |
| Pb | 82 | 113 | 195 | 5.4389 | 0.0045 | 5.4849 | -0.0460 | -0.85 |
| Pb | 82 | 114 | 196 | 5.4444 | 0.0024 | 5.4876 | -0.0432 | -0.79 |
| Pb | 82 | 115 | 197 | 5.4446 | 0.0024 | 5.4903 | -0.0457 | -0.84 |
| Pb | 82 | 116 | 198 | 5.4524 | 0.0022 | 5.4930 | -0.0406 | -0.74 |
| Pb | 82 | 117 | 199 | 5.4529 | 0.0022 | 5.4957 | -0.0428 | -0.78 |
| Pb | 82 | 118 | 200 | 5.4611 | 0.002 | 5.4983 | -0.0372 | -0.68 |
| Pb | 82 | 119 | 201 | 5.4629 | 0.0019 | 5.5010 | -0.0381 | -0.70 |
| Pb | 82 | 120 | 202 | 5.4705 | 0.0017 | 5.5036 | -0.0331 | -0.60 |
| Pb | 82 | 121 | 203 | 5.4727 | 0.0017 | 5.5062 | -0.0335 | -0.61 |
| Pb | 82 | 122 | 204 | 5.4803 | 0.0014 | 5.5087 | -0.0284 | -0.52 |
| Pb | 82 | 123 | 205 | 5.4828 | 0.0015 | 5.5113 | -0.0285 | -0.52 |
| Pb | 82 | 124 | 206 | 5.4902 | 0.0014 | 5.5138 | -0.0236 | -0.43 |
| Pb | 82 | 125 | 207 | 5.4943 | 0.0014 | 5.5163 | -0.0220 | -0.40 |
| Pb | 82 | 126 | 208 | 5.5012 | 0.0013 | 5.5188 | -0.0176 | -0.32 |
| Pb | 82 | 127 | 209 | 5.51 | 0.0014 | 5.5213 | -0.0113 | -0.21 |
| Pb | 82 | 128 | 210 | 5.5208 | 0.0016 | 5.5238 | -0.0030 | -0.05 |
| Pb | 82 | 129 | 211 | 5.529 | 0.0017 | 5.5262 | 0.0028 | 0.05 |
| Pb | 82 | 130 | 212 | 5.5396 | 0.0019 | 5.5287 | 0.0109 | 0.20 |
| Pb | 82 | 132 | 214 | 5.5577 | 0.0023 | 5.5335 | 0.0242 | 0.44 |
| Bi | 83 | 119 | 202 | 5.484 | 0.0912 | 5.5194 | -0.0354 | -0.65 |
| Bi | 83 | 120 | 203 | 5.4911 | 0.0911 | 5.5220 | -0.0309 | -0.56 |
| Bi | 83 | 121 | 204 | 5.4934 | 0.091 | 5.5246 | -0.0312 | -0.57 |
| Bi | 83 | 122 | 205 | 5.5008 | 0.0909 | 5.5272 | -0.0264 | -0.48 |
| Bi | 83 | 123 | 206 | 5.5034 | 0.0909 | 5.5298 | -0.0264 | -0.48 |
| Bi | 83 | 124 | 207 | 5.5103 | 0.0907 | 5.5323 | -0.0220 | -0.40 |
| Bi | 83 | 125 | 208 | 5.5147 | 0.0907 | 5.5349 | -0.0202 | -0.37 |
| Bi | 83 | 126 | 209 | 5.5211 | 0.0906 | 5.5374 | -0.0163 | -0.29 |
| Bi | 83 | 127 | 210 | 5.53 | 0.0904 | 5.5399 | -0.0099 | -0.18 |
| Bi | 83 | 129 | 212 | 5.5489 | 0.0901 | 5.5448 | 0.0041 | 0.07 |
| Bi | 83 | 130 | 213 | 5.5586 | 0.09 | 5.5472 | 0.0114 | 0.20 |
| Po | 84 | 108 | 192 | 5.522 | 0.0178 | 5.5075 | 0.0145 | 0.26 |
| Po | 84 | 110 | 194 | 5.5167 | 0.0178 | 5.5132 | 0.0035 | 0.06 |
| Po | 84 | 112 | 196 | 5.5136 | 0.0178 | 5.5188 | -0.0052 | -0.09 |
| Po | 84 | 114 | 198 | 5.5146 | 0.0178 | 5.5243 | -0.0097 | -0.18 |
| Po | 84 | 116 | 200 | 5.5199 | 0.0178 | 5.5298 | -0.0099 | -0.18 |
| Po | 84 | 118 | 202 | 5.5281 | 0.0177 | 5.5351 | -0.0070 | -0.13 |
| Po | 84 | 120 | 204 | 5.5378 | 0.0177 | 5.5404 | -0.0026 | -0.05 |
| Po | 84 | 121 | 205 | 5.5389 | 0.0177 | 5.5430 | -0.0041 | -0.07 |
| Po | 84 | 122 | 206 | 5.548 | 0.0177 | 5.5456 | 0.0024 | 0.04 |
| Po | 84 | 123 | 207 | 5.5501 | 0.0177 | 5.5481 | 0.0020 | 0.04 |
| Po | 84 | 124 | 208 | 5.5584 | 0.0176 | 5.5507 | 0.0077 | 0.14 |
| Po | 84 | 125 | 209 | 5.5628 | 0.0176 | 5.5532 | 0.0096 | 0.17 |
| Po | 84 | 126 | 210 | 5.5704 | 0.0176 | 5.5557 | 0.0147 | 0.26 |
| Po | 84 | 132 | 216 | 5.6359 | 0.0174 | 5.5704 | 0.0655 | 1.16 |
| Po | 84 | 134 | 218 | 5.6558 | 0.0173 | 5.5752 | 0.0806 | 1.42 |
| Rn | 86 | 116 | 202 | 5.5521 | 0.0181 | 5.5659 | -0.0138 | -0.25 |
| Rn | 86 | 118 | 204 | 5.5568 | 0.018 | 5.5713 | -0.0145 | -0.26 |
| Rn | 86 | 119 | 205 | 5.5569 | 0.018 | 5.5739 | -0.0170 | -0.31 |
| Rn | 86 | 120 | 206 | 5.564 | 0.0178 | 5.5766 | -0.0126 | -0.23 |
| Rn | 86 | 121 | 207 | 5.5652 | 0.0178 | 5.5792 | -0.0140 | -0.25 |
| Rn | 86 | 122 | 208 | 5.5725 | 0.0177 | 5.5818 | -0.0093 | -0.17 |
| Rn | 86 | 123 | 209 | 5.5743 | 0.0177 | 5.5844 | -0.0101 | -0.18 |
| Rn | 86 | 124 | 210 | 5.5813 | 0.0177 | 5.5869 | -0.0056 | -0.10 |
| Rn | 86 | 125 | 211 | 5.585 | 0.0176 | 5.5895 | -0.0045 | -0.08 |
| Rn | 86 | 126 | 212 | 5.5915 | 0.0176 | 5.5920 | -0.0005 | -0.01 |
| Rn | 86 | 132 | 218 | 5.654 | 0.0187 | 5.6068 | 0.0472 | 0.83 |
| Rn | 86 | 133 | 219 | 5.6648 | 0.0191 | 5.6092 | 0.0556 | 0.98 |
| Rn | 86 | 134 | 220 | 5.6731 | 0.0194 | 5.6116 | 0.0615 | 1.08 |
| Rn | 86 | 135 | 221 | 5.6834 | 0.0199 | 5.6140 | 0.0694 | 1.22 |
| Rn | 86 | 136 | 222 | 5.6915 | 0.0203 | 5.6163 | 0.0752 | 1.32 |
| Fr | 87 | 120 | 207 | 5.572 | 0.0176 | 5.5944 | -0.0224 | -0.40 |
| Fr | 87 | 121 | 208 | 5.5729 | 0.0176 | 5.5971 | -0.0242 | -0.43 |
| Fr | 87 | 122 | 209 | 5.5799 | 0.0176 | 5.5997 | -0.0198 | -0.35 |
| Fr | 87 | 123 | 210 | 5.5818 | 0.0176 | 5.6023 | -0.0205 | -0.37 |
| Fr | 87 | 124 | 211 | 5.5882 | 0.0176 | 5.6048 | -0.0166 | -0.30 |
| Fr | 87 | 125 | 212 | 5.5915 | 0.0176 | 5.6074 | -0.0159 | -0.28 |
| Fr | 87 | 126 | 213 | 5.5977 | 0.0176 | 5.6099 | -0.0122 | -0.22 |
| Fr | 87 | 133 | 220 | 5.6688 | 0.0177 | 5.6272 | 0.0416 | 0.73 |
| Fr | 87 | 134 | 221 | 5.679 | 0.0177 | 5.6296 | 0.0494 | 0.87 |
| Fr | 87 | 135 | 222 | 5.689 | 0.0177 | 5.6319 | 0.0571 | 1.00 |
| Fr | 87 | 136 | 223 | 5.6951 | 0.0178 | 5.6343 | 0.0608 | 1.07 |
| Fr | 87 | 137 | 224 | 5.7061 | 0.0178 | 5.6367 | 0.0694 | 1.22 |
| Fr | 87 | 138 | 225 | 5.7112 | 0.0178 | 5.6390 | 0.0722 | 1.26 |
| Fr | 87 | 139 | 226 | 5.719 | 0.0178 | 5.6413 | 0.0777 | 1.36 |
| Fr | 87 | 140 | 227 | 5.7335 | 0.0179 | 5.6436 | 0.0899 | 1.57 |
| Fr | 87 | 141 | 228 | 5.7399 | 0.0179 | 5.6459 | 0.0940 | 1.64 |
| Ra | 88 | 120 | 208 | 5.585 | 0.0183 | 5.6122 | -0.0272 | -0.49 |
| Ra | 88 | 121 | 209 | 5.5853 | 0.0182 | 5.6148 | -0.0295 | -0.53 |
| Ra | 88 | 122 | 210 | 5.5917 | 0.018 | 5.6174 | -0.0257 | -0.46 |
| Ra | 88 | 123 | 211 | 5.5929 | 0.0179 | 5.6200 | -0.0271 | -0.48 |
| Ra | 88 | 124 | 212 | 5.5991 | 0.0177 | 5.6226 | -0.0235 | -0.42 |
| Ra | 88 | 125 | 213 | 5.602 | 0.0177 | 5.6251 | -0.0231 | -0.41 |
| Ra | 88 | 126 | 214 | 5.6079 | 0.0177 | 5.6277 | -0.0198 | -0.35 |
| Ra | 88 | 132 | 220 | 5.6683 | 0.0215 | 5.6426 | 0.0257 | 0.45 |
| Ra | 88 | 133 | 221 | 5.6795 | 0.0228 | 5.6450 | 0.0345 | 0.61 |
| Ra | 88 | 134 | 222 | 5.6874 | 0.0239 | 5.6474 | 0.0400 | 0.70 |
| Ra | 88 | 135 | 223 | 5.6973 | 0.0253 | 5.6498 | 0.0475 | 0.83 |
| Ra | 88 | 136 | 224 | 5.7046 | 0.0263 | 5.6521 | 0.0525 | 0.92 |
| Ra | 88 | 137 | 225 | 5.715 | 0.0279 | 5.6545 | 0.0605 | 1.06 |
| Ra | 88 | 138 | 226 | 5.7211 | 0.0288 | 5.6568 | 0.0643 | 1.12 |
| Ra | 88 | 139 | 227 | 5.7283 | 0.03 | 5.6592 | 0.0691 | 1.21 |
| Ra | 88 | 140 | 228 | 5.737 | 0.0315 | 5.6615 | 0.0755 | 1.32 |
| Ra | 88 | 141 | 229 | 5.7455 | 0.0329 | 5.6638 | 0.0817 | 1.42 |
| Ra | 88 | 142 | 230 | 5.7551 | 0.0346 | 5.6661 | 0.0890 | 1.55 |
| Ra | 88 | 144 | 232 | 5.7714 | 0.0375 | 5.6706 | 0.1008 | 1.75 |
| Th | 90 | 137 | 227 | 5.7404 | 0.0165 | 5.6897 | 0.0507 | 0.88 |
| Th | 90 | 138 | 228 | 5.7488 | 0.0152 | 5.6921 | 0.0567 | 0.99 |
| Th | 90 | 139 | 229 | 5.7557 | 0.0143 | 5.6944 | 0.0613 | 1.06 |
| Th | 90 | 140 | 230 | 5.767 | 0.0131 | 5.6967 | 0.0703 | 1.22 |
| Th | 90 | 142 | 232 | 5.7848 | 0.0124 | 5.7014 | 0.0834 | 1.44 |
| U | 92 | 141 | 233 | 5.8203 | 0.0049 | 5.7338 | 0.0865 | 1.49 |
| U | 92 | 142 | 234 | 5.8291 | 0.0052 | 5.7361 | 0.0930 | 1.60 |
| U | 92 | 143 | 235 | 5.8337 | 0.0041 | 5.7384 | 0.0953 | 1.63 |
| U | 92 | 144 | 236 | 5.8431 | 0.0038 | 5.7407 | 0.1024 | 1.75 |
| U | 92 | 146 | 238 | 5.8571 | 0.0033 | 5.7452 | 0.1119 | 1.91 |
| Pu | 94 | 144 | 238 | 5.8535 | 0.0378 | 5.7749 | 0.0786 | 1.34 |
| Pu | 94 | 145 | 239 | 5.8601 | 0.0378 | 5.7772 | 0.0829 | 1.42 |
| Pu | 94 | 146 | 240 | 5.8701 | 0.0379 | 5.7794 | 0.0907 | 1.54 |
| Pu | 94 | 147 | 241 | 5.8748 | 0.0379 | 5.7817 | 0.0931 | 1.59 |
| Pu | 94 | 148 | 242 | 5.8823 | 0.038 | 5.7839 | 0.0984 | 1.67 |
| Pu | 94 | 150 | 244 | 5.8948 | 0.0382 | 5.7883 | 0.1065 | 1.81 |
| Am | 95 | 146 | 241 | 5.8928 | 0.0042 | 5.7964 | 0.0964 | 1.64 |
| Am | 95 | 148 | 243 | 5.9048 | 0.0035 | 5.8008 | 0.1040 | 1.76 |
| Cm | 96 | 146 | 242 | 5.8285 | 0.0192 | 5.8132 | 0.0153 | 0.26 |
| Cm | 96 | 148 | 244 | 5.8429 | 0.0181 | 5.8177 | 0.0252 | 0.43 |
| Cm | 96 | 149 | 245 | 5.8475 | 0.0182 | 5.8199 | 0.0276 | 0.47 |
| Cm | 96 | 150 | 246 | 5.8562 | 0.0184 | 5.8221 | 0.0341 | 0.58 |
| Cm | 96 | 152 | 248 | 5.8687 | 0.0193 | 5.8265 | 0.0422 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
