Submitted:
27 August 2025
Posted:
28 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- 1.
- Quintessence : This describes a controlled accelerating universe expansion where energy conditions are always satisfied, i.e., [70,71,72,73,74,75,76,77,78,79,80,81,82]. This usual DE form has been significantly studied in the literature in recent decades for the fascination it provokes and the realism of the models.
- 2.
- 3.
- Cosmological constant : This is an intermediate limit between the quintessence and phantom DE states, where . A constant SF source added by a positive scalar potential will directly lead to this primary DE state. Note that a negative scalar potential (i.e., ) will not lead to a positive cosmological constant and/or a DE solution.
- 4.
2. Summary of Teleparallel Gravity and Field Equations
2.1. Teleparallel -Gravity Theory Field Equations and Torsional Quantities
2.2. Teleparallel Robertson-Walker Spacetime Geometry
- 1.
- : ,
- 2.
- : and ,
- 3.
- : and .
2.3. Conservation Laws and Field Equations of Cosmological Perfect Fluids
- 1.
-
flat or non-curved:The pure vacuum solution ( and ) to Equations (19)–(20) is . However for any , we can set as cosmological scale and as solution ansatz, and we find the unified FE by merging Equations (19)–(20):Equation (21) is the general unified FE to solve for any EoS and CL. This is an easy-to-solve and the solution will be some easy-to-compute integral equation.
- 2.
-
negative curved:From Equation (24) and using ansatz, we find a characteristic equation yielding to solutions:The possible solutions of Equation (25) are:
- (a)
- (slow expansion):
- (b)
- (linear expansion):
- (c)
- (fast expansion):
- (d)
- (very fast expansion limit):
The unified FE from Equations (30)–(31) is: - 3.
-
positive curved:From Equation (35) and using ansatz, we find the characteristic equation for :The possible solutions of Equation (36) are:
- (a)
- (slow expansion):
- (b)
- (linear expansion):
- (c)
- (fast expansion):
- (d)
- (very fast expansion limit):
The unified FE from Equations (41)–(42) is:
2.4. Energy Conditions and Thermodynamic Laws in Teleparallel Gravity
- Weak Energy Condition (WEC): , and .
- Strong Energy Condition (SEC): , and .
- Null Energy Condition (NEC): and .
- Dominant Energy Condition (DEC): and .
3. Pure Chaplygin Gas Teleparallel Field Equation Solutions
3.1. Conservation Law Solutions and Energy Conditions
3.2. Cosmological Solutions
3.3. Cosmological Solutions
3.4. Cosmological Solutions
- 1.
- 2.
- 3.
-
: By using the approximation and setting the − root, Equation (59) simplifies under the approximation as:where . The solution of Equation (64) is Equation (52) with roots:Under the limit: and . Then Equation (52) becomes .
- 4.
- : Once again for , we find under this limit the same differential equation and solution as Equation (58), i.e. .
4. General Polytropic Gas Teleparallel Field Equation Solutions
4.1. Conservation Law Solutions and Energy Conditions
4.2. Cosmological Solutions
4.3. Cosmological Solutions
4.4. Cosmological Solutions
- 1.
- 2.
- : With the approximation , we find that:where . We find the Equation (52) as solution with the roots and
- 3.
-
: By using , and − root, Equation (75) simplifies as:We find the Equation (52) as solution with the roots and .
- 4.
- limit: Here again for , we obtain the Equation (58) with as solution.
5. Comparison Between Chaplygin and Polytropic Gases in Teleparallel Gravity
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Lucas, T.G.; Obukhov, Y.; Pereira, J.G. Regularizing role of teleparallelism. Physical Review D 2009, 80, 064043. [arXiv:0909.2418 [gr-qc]]. [CrossRef]
- Krššák, M., van den Hoogen, R. J., Pereira, J. G., Boehmer, C. G. & Coley, A. A. , Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach, Classical and Quantum Gravity 2019, 36, 183001 , [arXiv:1810.12932 [gr-qc]]. [CrossRef]
- Bahamonde, S., Dialektopoulos, K.F., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J.L., Mifsud, J. & Di Valentino, E., Teleparallel Gravity: From Theory to Cosmology, Report of Progress in Physics 2023, 86, 026901, [arXiv:2106.13793 [gr-qc]]. [CrossRef]
- Krssak, M.; Pereira, J.G. Spin Connection and Renormalization of Teleparallel Action. The European Physical Journal C 2015, 75, 519. [arXiv:1504.07683 [gr-qc]]. [CrossRef]
- Coley, A. A., van den Hoogen, R. J. & McNutt, D.D., Symmetry and Equivalence in Teleparallel Gravity, Journal of Mathematical Physics 2020, 61, 072503, [arXiv:1911.03893 [gr-qc]]. [CrossRef]
- McNutt, D.D., Coley, A.A. & van den Hoogen, R.J., A frame based approach to computing symmetries with non-trivial isotropy groups, Journal of Mathematical Physics 2023, 64, 032503, [arXiv:2302.11493 [gr-qc]]. [CrossRef]
- Aldrovandi, R. & Pereira, J.G. Teleparallel Gravity, An Introduction, Springer, 2013.
- Olver, P. Equivalence, Invariants and Symmetry; Cambridge University Press: Cambridge, UK, 1995.
- Krššák, M. & Saridakis, E. N., The covariant formulation of f(T) gravity, Classical and Quantum Gravity 2016, 33, 115009, [arXiv:1510.08432 [gr-qc]]. [CrossRef]
- Ferraro, R. & Fiorini, F. Modified teleparallel gravity: Inflation without an inflation. Physical Review D 2007, 75, 084031. [arXiv:gr-qc/0610067]. [CrossRef]
- Ferraro, R. & Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime. Physical Review D 2008, 78, 124019. [arXiv:0812.1981 [gr-qc]]. [CrossRef]
- Linder, E. Einstein’s Other Gravity and the Acceleration of the Universe. Physical Review D 2010, 81, 127301; Erratum in Physical Review D 2010, 82, 109902. [arXiv:1005.3039 [gr-qc]].
- Hayashi, K. & Shirafuji, T. New general relativity. Physical Review D 1979, 19, 3524. [CrossRef]
- Jimenez, J.B. & Dialektopoulos, K.F. Non-Linear Obstructions for Consistent New General Relativity. Journal of Cosmological and Atroparticle Physics 2020, 2020, 018. [arXiv:1907.10038 [gr-qc]]. [CrossRef]
- Bahamonde, S., Blixt, D., Dialektopoulos, K.F. & Hell A., Revisiting Stability in New General Relativity, Physical Review D 2024 111, 064080, [arXiv:2404.02972 [gr-qc]]. [CrossRef]
- Heisenberg, L. Review on f(Q) Gravit, Physics Reports 2023, 1-78. [arXiv:2309.15958 [gr-qc]]. [CrossRef]
- Heisenberg, L.; Hohmann, M. & Kuhn, S., Cosmological teleparallel perturbations, Journal of Cosmology and Astroparticle Physics 2024, 03, 063, [arXiv:2311.05495 [gr-qc]]. [CrossRef]
- Flathmann, K. & Hohmann, M. Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity. Physical Review D 2022, 105, 044002, [arXiv:2111.02806 [gr-qc]]. [CrossRef]
- Hohmann, M. General covariant symmetric teleparallel cosmology. Physical Review D 2021, 104, 124077. [arXiv:2109.01525 [gr-qc]]. [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; & Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173. [arXiv:1903.06830 [gr-qc]]. [CrossRef]
- Nakayama, Y. Geometrical trinity of unimodular gravity. Classical and Quantum Gravity 2023, 40, 125005. [arXiv:2209.09462 [gr-qc]]. [CrossRef]
- Xu, Y.; Li, G.; Harko, T. & Liang, S.-D., f(Q,T) gravity. The European Physical Journal C 2019, 79, 708. [arXiv:1908.04760 [gr-qc]]. [CrossRef]
- Maurya, D.C. & Myrzakulov, R., Exact Cosmology in Myrzakulov Gravity, The European Physical Journal C 2024, 84, 625, [arXiv:2402.02123 [gr-qc]]. [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S. & Odintsov, S.D., f(R,T) gravity. Physical Review D 2011, 84, 024020.[arXiv:1104.2669 [gr-qc]]. [CrossRef]
- Momeni, D. & Myrzakulov, R., Myrzakulov Gravity in Vielbein Formalism: A Study in Weitzenböck Spacetime, Nuclear Physics B 2025, 1015, 116903, [arXiv:2412.04524 [gr-qc]]. [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R. & Nugmanova, G., Myrzakulov F(T,Q) gravity: Cosmological implications and constraints. Physica Scripta 2024, 99, 10. [arXiv:2404.09698 [gr-qc]]. [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R. & Nugmanova, G., FLRW Cosmology in Metric-Affine F(R,Q) Gravity. Chin. Phys. C 2024, 48, 125101, [arXiv:2403.11604 [gr-qc]]. [CrossRef]
- Maurya D.C. & Myrzakulov, R., Transit cosmological models in Myrzakulov F(R,T) gravity theory. The European Physical Journal C 2024, 84, 534, [arXiv:2401.00686 [gr-qc]]. [CrossRef]
- Mandal, S.; Myrzakulov, N.; Sahoo, P.K. & Myrzakulov, R., Cosmological bouncing scenarios in symmetric teleparallel gravity. The European Physical Journal Plus 2021, 136, 760, [arXiv:2107.02936 [gr-qc]]. [CrossRef]
- Golovnev, A. & Guzman, M.-J., Approaches to spherically symmetric solutions in f(T)-gravity. Universe 2021, 7, 121, [arXiv:2103.16970 [gr-qc]]. [CrossRef]
- Golovnev, A., Issues of Lorentz-invariance in f(T)-gravity and calculations for spherically symmetric solutions. Classical and Quantum Gravity 2021, 38, 197001, [arXiv:2105.08586 [gr-qc]]. [CrossRef]
- DeBenedictis, A.; Ilijić, S. & Sossich, M., On spherically symmetric vacuum solutions and horizons in covariant f(T) gravity theory. Physical Review D 2022, 105, 084020, [arXiv:2202.08958 [gr-qc]]. [CrossRef]
- Bahamonde, S. & Camci, U., Exact Spherically Symmetric Solutions in Modified Teleparallel gravity. Symmetry 2019, 11, 1462, [arXiv:1911.03965 [gr-qc]]. [CrossRef]
- Awad, A.; Golovnev, A.; Guzman, M.-J. & El Hanafy, W., Revisiting diagonal tetrads: New Black Hole solutions in f(T)-gravity. The European Physical Journal C 2022, 82, 972, [arXiv:2207.00059 [gr-qc]]. [CrossRef]
- Bahamonde, S.; Golovnev, A.; Guzmán, M.-J.; Said, J.L. & Pfeifer, C., Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions. Journal of Cosmological and Atroparticle Physics 2022, 1, 037, [arXiv:2110.04087 [gr-qc]]. [CrossRef]
- Bahamonde, S.; Faraji, S.; Hackmann, E. & Pfeifer, C., Thick accretion disk configurations in the Born-Infeld teleparallel gravity. Physical Review D 2022, 106, 084046, [arXiv:2209.00020 [gr-qc]]. [CrossRef]
- Nashed, G.G.L. Quadratic and cubic spherically symmetric black holes in the modified teleparallel equivalent of general relativity: Energy and thermodynamics. Classical and Quantum Gravity 2021, 38, 125004, [arXiv:2105.05688 [gr-qc]]. [CrossRef]
- Pfeifer, C. & Schuster, S., Static spherically symmetric black holes in weak f(T)-gravity. Universe 2021, 7, 153, [arXiv:2104.00116 [gr-qc]]. [CrossRef]
- El Hanafy, W. & Nashed, G.G.L., Exact Teleparallel Gravity of Binary Black Holes. Astrophys. Space Sci. 2016, 361, 68, [arXiv:1507.07377 [gr-qc]]. [CrossRef]
- Aftergood, J. & DeBenedictis, A., Matter Conditions for Regular Black Holes in f(T) Gravity. Physical Review D 2014, 90, 124006, [arXiv:1409.4084 [gr-qc]]. [CrossRef]
- Bahamonde, S.; Doneva, D.D.; Ducobu, L.; Pfeifer, C. & Yazadjiev, S.S., Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity. Physical Review D 2023, 107, 104013, [arXiv:2212.07653 [gr-qc]]. [CrossRef]
- Bahamonde, S.; Ducobu, L. & Pfeifer, C., Scalarized Black Holes in Teleparallel Gravity. Journal of Cosmological and Atroparticle Physics 2022, 2022, 018, [arXiv:2201.11445 [gr-qc]]. [CrossRef]
- Iorio, L.; Radicella, N. & Ruggiero, M.L., Constraining f(T) gravity in the Solar System. Journal of Cosmological and Atroparticle Physics 2015, 2015, 021, [arXiv:1505.06996 [gr-qc]]. [CrossRef]
- Pradhan, S.; Bhar, P.; Mandal, S.; Sahoo, P.K. & Bamba, K., The Stability of Anisotropic Compact Stars Influenced by Dark Matter under Teleparallel Gravity: An Extended Gravitational Deformation Approach. The European Physical Journal C 2025, 85, 127, [arXiv:2408.03967 [gr-qc]]. [CrossRef]
- Mohanty, D.; Ghosh, S. & Sahoo, P.K., Charged gravastar model in noncommutative geometry under f(T) gravity. Physics of the Dark Universe 2025, 46, 101692, [arXiv:2410.05679 [gr-qc]]. [CrossRef]
- Calza, M. & Sebastiani, L., A class of static spherically symmetric solutions in f(T)-gravity. The European Physical Journal C 2024, 84, 476, [arXiv:2309.04536 [gr-qc]]. [CrossRef]
- Coley, A.A., Landry, A., van den Hoogen, R.J. & McNutt, D.D., Spherically symmetric teleparallel geometries, The European Physical Journal C 2024, 84, 334, [arXiv:2402.07238 [gr-qc]]. [CrossRef]
- Landry, A., Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity, Axioms 2024, 13 (5), 333, [arXiv:2405.09257 [gr-qc]]. [CrossRef]
- Landry, A., Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity, Symmetry 2024 16 (8), 953, [arXiv:2406.18659 [gr-qc]]. [CrossRef]
- van den Hoogen, R.J. & Forance, H., Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames, Journal of Cosmology and Astrophysics 2024, 11, 033, [arXiv:2408.13342 [gr-qc]]. [CrossRef]
- Landry, A., Scalar field Kantowski-Sachs spacetime solutions in teleparallel F(T) gravity, Universe 2025, 11(1), 26, [arXiv:2501.11160 [gr-qc]]. [CrossRef]
- Landry, A., Scalar Field Static Spherically Symmetric Solutions in Teleparallel F(T) Gravity, Mathematics 2025, 13(6), 1003, [arXiv:2503.14465 [gr-qc]]. [CrossRef]
- Coley, A.A., Landry, A., van den Hoogen, R.J. & McNutt, D.D., Generalized Teleparallel de Sitter geometries, The European Physical Journal C 2023, 83, 977, [arXiv:2307.12930 [gr-qc]]. [CrossRef]
- Golovnev, A. & Guzman, M.-J., Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics, Physics Letter B 2020, 810, 135806, [arXiv:2006.08507 [gr-qc]]. [CrossRef]
- Landry, A., Scalar field source Teleparallel Robertson-Walker F(T)-gravity solutions, Mathematics 2025, 13(3), 374, [arXiv:2501.13895 [gr-qc]]. [CrossRef]
- Coley, A.A., Landry, A. & Gholami, F., Teleparallel Robertson-Walker Geometries and Applications, Universe 2023, 9, 454, [arXiv:2310.14378 [gr-qc]]. [CrossRef]
- Coley, A.A., van den Hoogen, R.J. & McNutt, D.D., Symmetric Teleparallel Geometries, Classical and Quantum Gravity 2022, 39, 22LT01, [arXiv:2205.10719 [gr-qc]]. [CrossRef]
- Aldrovandi, R., Cuzinatto, R.R. & Medeiros, L.G., Analytic solutions for the Λ-FRW Model, Foundations of Physics 2006, 36, 1736-1752, [arXiv:gr-qc/0508073 [gr-qc]]. [CrossRef]
- Casalino, A., Sanna, B., Sebastiani, L. & Zerbini, S., Bounce Models within Teleparallel modified gravity, Physical Review D 2021, 103, 023514, [arXiv:2010.07609 [gr-qc]]. [CrossRef]
- Capozziello, S., Luongo, O., Pincak, R. & Ravanpak, A., Cosmic acceleration in non-flat f(T) cosmology, General Relativity and Gravitation 2018, 50, 53, [arXiv:1804.03649 [gr-qc]]. [CrossRef]
- Bahamonde, S., Dialektopoulos, K.F., Hohmann, M., Said, J.L., Pfeifer, C. & Saridakis, E.N., Perturbations in Non-Flat Cosmology for f(T) gravity, European Physical Journal C 2023, 83, 193, [arXiv:2203.00619 [gr-qc]]. [CrossRef]
- Gholami, F. & Landry, A., Cosmological solutions in teleparallel F(T,B) gravity, Symmetry 2025, 17 (1), 060, [arXiv:2411.18455 [gr-qc]]. [CrossRef]
- Hohmann, M., Järv, L., Krššák, M., & Pfeifer, C., Modified teleparallel theories of gravity in symmetric spacetimes, Physical Review D 2019 100, 084002, [arXiv:1901.05472 [gr-qc]]. [CrossRef]
- Cai, Y.-F., Capozziello, S., De Laurentis, M. & Saridakis, E.N., f(T) teleparallel gravity and cosmology, Report of Progress in Physics 2016, 79, 106901, [arXiv:1511.07586 [gr-qc]]. [CrossRef]
- Dixit, A. &; Pradhan, A., Bulk Viscous Flat FLRW Model with Observational Constraints in f(T,B) Gravity. Universe 2022, 8, 650. [CrossRef]
- Chokyi, K.K. & Chattopadhyay, S., Cosmological Models within f(T,B) Gravity in a Holographic Framework. Particles 2024, 7, 856. [CrossRef]
- Hawking, S.W. & Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge University Press, 2010.
- Bohmer, C.G. & d’Alfonso del Sordo, A., Cosmological fluids with boundary term couplings, General Relativity and Gravitation 2024, 56, 75, [arXiv:2404.05301 [gr-qc]]. [CrossRef]
- Bahamonde, S., Bohmer, C.G., Carloni, S., Copeland, E.J., Fang, W. & Tamanini, N., Dynamical systems applied to cosmology: dark energy and modified gravity, Physical Reports 2018, 775-777, 1-122, [arXiv:1712.03107 [gr-qc]]. [CrossRef]
- Zlatev, I., Wang, L. & Steinhardt, P., Quintessence, Cosmic Coincidence, and the Cosmological Constant, Physical Review Letters, 1999, 82 (5), 896, [arXiv:astro-ph/9807002 [astro-ph]]. [CrossRef]
- Steinhardt, P., Wang, L. & Zlatev, I., Cosmological tracking solutions, Physical Review D, 1999, 59 (12), 123504, [arXiv:astro-ph/9812313 [astro-ph]]. [CrossRef]
- Caldwell, R.R., Dave, R. & Steinhardt, P., Cosmological Imprint of an Energy Component with General Equation of State, Physical Review Letters, 1998, 80, 1582, [arXiv:astro-ph/9708069 [astro-ph]]. [CrossRef]
- Carroll, S.M., Quintessence and the Rest of the World, Physical Review Letters, 1998, 81, 3067, [arXiv:astro-ph/9806099 [astro-ph]]. [CrossRef]
- Doran, M., Lilley, M., Schwindt, J. & Wetterich, C., Quintessence and the Separation of CMB Peaks, Astrophysical Journal, 2001, 559, 501, [arXiv:astro-ph/0012139v2 [astro-ph]]. [CrossRef]
- Zeng, X.-X., Chen, D.-Y., Li, L.-F., Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy, Physical Review D, 2015, 91, 046005, [arXiv:1408.6632 [hep-th]]. [CrossRef]
- Chakraborty, S., Mishra, S. & Chakraborty, S., Dynamical system analysis of quintessence dark energy model, International Journal of Geometric Methods in Modern Physics, 2025, 22, 2450250, [arXiv:2406.10692 [gr-qc]]. [CrossRef]
- Shlivko, D., & Steinhardt, P.J., Assessing observational constraints on dark energy, Physics Letters B, 2024, 855, 138826, [arXiv:2405.03933 [astro-ph]]. [CrossRef]
- Ratra, B. & Peebles, P.J.E., Cosmological consequences of a rolling homogeneous scalar field. Physical Review D 1988, 37, 3406. [CrossRef]
- Wolf, W.J. & Ferreira, P.G., Underdetermination of dark energy. Physical Review D 2023, 108, 103519, [arXiv:2310.07482 [gr-qc]]. [CrossRef]
- Wolf, W.J.; García-García, C.; Bartlett, D.J. & Ferreira, P.G., Scant evidence for thawing quintessence. Physical Review D 2024, 110, 083528, [arXiv:2408.17318 [gr-qc]]. [CrossRef]
- Wolf, W.J.; Ferreira, P.G. & García-García, C., Matching current observational constraints with nonminimally coupled dark energy, Physical Review D 2025, 111, L041303, [arXiv:2409.17019 [gr-qc]]. [CrossRef]
- Wetterich, C., Cosmology and the Fate of Dilatation Symmetry, Nuclear Physics B 1988, 302, 668, [arXiv:1711.03844 [hep-th]]. [CrossRef]
- Chiba, T., Okabe, T., Yamaguchi, M., Kinetically Driven Quintessence, Physical Review D 2000, 62, 023511, [arXiv:astro-ph/9912463 [astro-ph]]. [CrossRef]
- Carroll, S.M., Hoffman, M., Trodden, M., Can the dark energy equation-of-state parameter w be less than -1?, Physical Review D 2003, 68, 023509, [arXiv:astro-ph/0301273 [astro-ph]]. [CrossRef]
- Caldwell, R.R., A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state, Physics Letters B 2002, 545, 23, [arXiv:astro-ph/9908168 [astro-ph]]. [CrossRef]
- Farnes, J.S., A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework, Astronomy & Astrophysics 2018, 620, A92, [arXiv:1712.07962 [physics.gen-ph]]. [CrossRef]
- Baum, L. & Frampton, P.H., Turnaround in Cyclic Cosmology, Physical Review Letters 2007, 98, 071301, [arXiv:hep-th/0610213 [hep-th]]. [CrossRef]
- Hu, W., Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom, Physical Review D 2005, 71, 047301, [arXiv:astro-ph/0410680v2 [astro-ph]]. [CrossRef]
- Karimzadeh, S. & Shojaee, R., Phantom-Like Behavior in Modified Teleparallel Gravity, Advances in High Energy Physics, 2019, 4026856, [arXiv:1902.04406 [physics.gen-ph]]. [CrossRef]
- Pati, L., Kadam, S.A., Tripathy, S.K. & Mishra, B., Rip cosmological models in extended symmetric teleparallel gravity, Physics of the Dark Universe, 2022, 35, 100925, [arXiv:2112.00271 [gr-qc]]. [CrossRef]
- Kucukakca, Y., Akbarieh, A.R. & Ashrafi, S., Exact solutions in teleparallel dark energy model, Chinese Journal of Physics, 2023, 82, 47. [CrossRef]
- Cai, Y.-F., Saridakis, E.N., Setare, M.R. & Xia, J.-Q., Quintom Cosmology: Theoretical implications and observations, Physics Report, 2010, 493, 1, [arXiv:0909.2776 [hep-th]]. [CrossRef]
- Guo, Z.-K., Piao, Y.-S., Zhang, X. & Zhang, Y.-Z., Cosmological evolution of a quintom model of dark energy, Physics Letters B, 2005, 608, 177, [arXiv:astro-ph/0410654 [astro-ph]]. [CrossRef]
- Feng, B., Li, M., Piao, Y.-S., Zhang, X., Oscillating quintom and the recurrent universe, Physics Letters B, 2006, 634, 101, [arXiv:astro-ph/0407432 [astro-ph]]. [CrossRef]
- Mishra, S. & Chakraborty, S., Dynamical system analysis of quintom dark energy model, European Physical Journal C, 2018, 78, 917, [arXiv:1811.08279 [gr-qc]]. [CrossRef]
- Tot, J., Coley, A.A., Yildrim, B. & Leon, G., The dynamics of scalar-field Quintom cosmological models, Physics of the Dark Universe, 2023, 39, 101155, [arXiv:2204.06538 [gr-qc]]. [CrossRef]
- Bahamonde, S., Marciu, M. & Rudra, P., Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term, Journal of Cosmology and Astroparticle Physics, 2018, 04, 056, [arXiv:1802.09155 [gr-qc]]. [CrossRef]
- Gorini, V., Kamenshchik, A.Y., Moschella, U. & Pasquier, V., Chaplygin gas as a model for dark energy, The Tenth Marcel Grossmann Meeting 2006, 840, [arXiv:gr-qc/0403062 [gr-qc]]. [CrossRef]
- Bento, M.C., Bertolami, O. & Sen, A.A., Generalized Chaplygin Gas Model: Dark Energy-Dark Matter Unification and CMBR Constraints, General Relativity and Gravitation 2003, 35, 2063, [arXiv:gr-qc/0305086 [gr-qc]]. [CrossRef]
- Bilić, N., Tuppe, G.B. & Viollier, R.D., Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas, Physics Letters B 2002, 535, 17, [arXiv:astro-ph/0111325 [astro-ph]]. [CrossRef]
- Makler, M., de Oliveira, S.Q. & Waga, I., Observational constraints on Chaplygin quartessence: Background results, Physical Review D 2003, 68, 123521, [arXiv:astro-ph/0306507 [astro-ph]]. [CrossRef]
- Zhu, Z.-H., Generalized Chaplygin gas as a unified scenario of dark matter/energy: Observational constraints, Astronomy and Astrophysics 2004, 423, 421, [arXiv:astro-ph/0411039 [astro-ph]]. [CrossRef]
- Karami, K., Ghaffari, S. & Fehri, J., Interacting polytropic gas model of phantom dark energy in non-flat universe, The European Physical Journal C 2009, 64, 85, [arXiv:0911.4915 [gr-qc]]. [CrossRef]
- Karami, K., Safari, Z. & Asadzadeh, S., Cosmological constraints on polytropic gas model, International Journal Theoretical Physics 2014, 53, 1248, [arXiv:1209.6374 [astro-ph]]. [CrossRef]
- Karami, K. & Abdolmaleki, A., Reconstructing interacting new agegraphic polytropic gas model in non-flat FRW universe, Astrophysical and Space Science 2010, 330, 133, [arXiv:1010.4294 [hep-th]]. [CrossRef]
- Karami, K. & Khaledian, M.S., Polytropic and Chaplygin f(R)-gravity models, International Journal of Modern Physics D 2012, 21, 1250083, [arXiv:1010.2639 [physics]]. [CrossRef]
- Banerjee, S. & Paul, A., Effect of Accretion on the evolution of Primordial Black Holes in the context of Modified Gravity Theories, preprint (2024), arXiv:2406.04605. [CrossRef]
- Aboueisha, M.S., Nouh, M.I., Abdel-Salam, E.A-B., Kamel, T.M., Beheary, M.M. & Gadallah, K.A.K., Analysis of the Fractional Relativistic Polytropic Gas Sphere, Scientific Reports 2023, 13, 14304, [arXiv:2405.19467 [gr-qc]]. [CrossRef]
- Cardenas, V.H. & Cruz, M. , Emulating dark energy models with known equation of state via the created cold dark matter scenario, Physics of the Dark Universe 2024, 44, 101452, [arXiv:2401.16905 [gr-qc]]. [CrossRef]
- Jia, Y., He, T.-Y., Wang, W.-Q. , Han, Z.-W. & Yang, R.-J., Accretion of matter by a Charged dilaton black hole, The European Physical Journal C 2024, 84, 501, [arXiv:2401.15654 [gr-qc]]. [CrossRef]
- Arun, K., Gudennavar, S.B. & Sivaram, C., Dark matter, dark energy, and alternate models: A review, Advances in Space Research 2017, 60(1), 166, [arXiv:1704.06155 [physics]]. [CrossRef]
- Iosifidis, D., Cosmological Hyperfluids, Torsion and Non-metricity, European Physical Journal C 2020, 80, 1042, [arXiv:2003.07384 [gr-qc]]. [CrossRef]
- Heisenberg, L., Hohmann, M. & Kuhn, S., Homogeneous and isotropic cosmology in general teleparallel gravity, European Physical Journal C 2023, 83, 315, [arXiv:2212.14324 [gr-qc]]. [CrossRef]
- Heisenberg, L. & Hohmann, M., Gauge-invariant cosmological perturbations in general teleparallel gravity, European Physical Journal C 2024, 84, 462, [arXiv:2311.05597 [gr-qc]]. [CrossRef]
- Kontou, E.-A. & Sanders, K., Energy conditions in general relativity and quantum field theory, Classical and Quantum Gravity 2020 37, 193001, [arXiv:2003.01815 [gr-qc]]. [CrossRef]

| p | |
| 0 limit | |
| 3 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).