Submitted:
14 December 2024
Posted:
17 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Summary of Teleparallel Gravity and Scalar field Kantowski-Sachs Field Equations
2.1. Teleparallel Gravity Theory
2.2. Teleparallel Kantowski-Sachs Geometry and Antisymmetric Field Equations
2.3. Scalar Field Source Conservation Laws
2.4. Symmetric and Unified Field Equations
3. Power-Law Scalar Field Solutions
3.1. Power-Law Ansatz Solutions
-
Then eqn (38) simplifies to . The scalar field will be and we will use this expression for the subcases:
- (a)
- (b)
- (c)
-
The potentials and solutions are for the subcases:
- (a)
- (b)
- (c)
-
: Eqn (36) becomes [47]:where . The eqn (38) for eqn (56) is:where and . The scalar field for eqn (56) is:The potentials and solutions are for the subcases:
- (a)
-
General: Eqn (25) becomes:where and . Eqn (59) will be constant for . By substituting eqns (57) and (59) into eqn (39), we find as solution:Eqn (60) is difficult to solve under this current form. However, the following special case solutions are possible:
- ( and ) and :
-
and ( and ): There are three possible solutions:
- -
- :
- -
- and :
- -
- and :
- : By setting where , we find:
- (b)
-
Eqn (27) potential: This equation in terms of eqns (58) is ():where . By substituting eqns (57) and (66) into eqn (39), we find as solution:Once again, eqn (67) do not yield to a general solution. But there are specific case leading to analytical solutions:
- ( and ) and :
- ( and ):
- : By setting where , we find:
- (c)
-
Eqn (29) potential: This equation in terms of eqns (58) is ():where and . By substituting eqns (57) and (71) into eqn (39), we find as solution:
- ( and ) and :
- ( and ):
- : By setting where , we find:
-
: Eqn (36) becomes [47]:where . The eqn (38) for eqn (76) is:where and and . The scalar field for eqn (76) is:The potentials and solutions are for the subcases:
- (a)
-
General: Eqn (25) becomes:where and . Eqn (79) will be constant for . By substituting eqns (77) and (79) into eqn (39), we find as solution:There is no general solution for this eqn (80). However, there are solutions for the specific cases:
- and :
- and :
-
:Eqn (83) solutions are possible only for the subcases:
- -
- and :
- -
- and :
- -
- and :
- -
- and :
- (b)
-
Eqn (27) potential: This equation in terms of eqns (78) is ():where . By substituting eqns (76), (77) and (88) into eqn (39), we find as solution:There is no general solution for this eqn (89). There are solutions for the cases:
- and :
- and :
-
:Eqn (92) solutions are possible only for the subcases:
- -
- and :
- -
- and :
- -
- and :
- -
- and :
- (c)
-
Eqn (29) potential: This equation in terms of eqns (78) is ():where and . By substituting eqns (76), (77) and (97) into eqn (39), we find as solution:There is no general solution for this eqn (98). There are solutions for the cases:
-
:The simplest solutions of eqn (98) are:
- -
- :
- -
- :
-
3.2. Exponential Ansatz Solutions
-
: and eqn (102) simplifies:where . Then eqn (103) simplifies to , the scalar field will be . The potentials and solutions are for the subcases:
- (a)
- General: Eqn (32) becomes:where and . By substituting and eqn (105) into eqn (39), we find as solution:where is an integration constant, and is new special function class defined as:Table 1. Some values of eqn (107) special functions.Table 1. Some values of eqn (107) special functions.
k 0 1 2 3 4 5 6 - (b)
- (c)
-
(General case): From eqn (102), we find that the scalar field is:For potentials and solutions, we find for the subcases:
4. Exponential Scalar Field Solutions
-
Exponential: This is the most simple and naturally adapted ansatz for an pure exponential scalar field. By substituting eqn (31) into eqn (120), the conservation law becomes:and then eqn (20) will be:
-
: Eqn (123) is a simple harmonic oscillator (SHO) potential of angular frequency . In a such case, the scalar field will be:The eqn (125) is an oscillating scalar field, but it is not really relevant as a scalar field source for usual cosmological solutions. Beyond that, there are two situations leading to this case:
- -
- and .
- -
- and .
- and/or : Eqn (123) leads to a constant scalar field .
4.1. Power-Law Ansatz Solutions
-
: By using eqn (48) and substituting eqn (47), we find that:and eqn (121) potential becomes:where . By substituting eqn (131) into eqn (39), we find that:Eqn (132) solutions are possible only for specific values of C () as for example:
- :
- :
- :
- :
There are several possible values of C yielding to analytical solutions.As for eqn (132), there is no general solution, but we can solve some cases for :- :
- :
- :
- :
There are several other possible solutions arising from eqn (138). -
As in sect Section 3.1, there is no general solution for eqn (145). However, there are specific cases yielding to analytical solutions:
- Other values of and/or : No analytical and/or closed form of solution.
-
There is no general solution for eqn (153). However, there are analytical solutions for the subcases:
-
:There are solutions for specific values of b such as:
- -
- :
- -
- :
- -
- :
There are other values of b yielding to analytical solutions. -
:There are solutions for specific values of and b:
- -
- :
- -
- :
There are other values of b yielding to analytical solutions.There is no general solution for eqn (162). However, there are analytical solution for the subcases:-
:There are solutions for specific values of b:
- -
- :
- -
- :
- -
- :
-
:There are solutions for specific values of and b:
- -
- :
- -
- :
-
4.2. Exponential Ansatz Solutions
-
: By using and eqn (104), we find that and the eqn (123) potential is:where . By substituting eqn (170) into eqn (39), the solution is:: Under this limit, the eqn (27) becomes:
-
(General case): From eqns (102) and (103), we find that:and eqn (123) potential becomes:where . By substituting eqn (175) into eqn (39), the solution is:There is no general solution to eqn (176), but there are solutions for the following cases:
- :
- :
- :
- :
There are several other possible solutions for .: Under this limit, the eqn (27) becomes:There is no general solution to eqn (182), but there are solution for the following cases:
5. Discussion and Conclusions
Acknowledgments
Abbreviations
| AL | Alexandre Landry |
| CK | Cartan-Karlhede |
| DE | Differential Equation |
| EoS | Equation of State |
| Eqn | Equation |
| FE | Field Equation |
| GR | General Relativity |
| KV | Killing Vector |
| NGR | New General Relativity |
| SHO | Simple Harmonic Oscillator |
| TEGR | Teleparallel Equivalent of General Relativity |
References
- Aldrovandi, R. & Pereira, J.G. Teleparallel Gravity, An Introduction, Springer, 2013.
- Bahamonde, S., Dialektopoulos, K., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J.L., Mifsud, J. & Di Valentino, E., Teleparallel Gravity: From Theory to Cosmology, Report Progress Physics 2023, 86, 026901 [arXiv:2106.13793 [gr-qc]].
- Krssak, M., van den Hoogen, R., Pereira, J., Boehmer, C. & Coley, A., Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach, Classical And Quantum Gravity 2019, 36, 183001, [arXiv:1810.12932 [gr-qc]].
- Chinea, F., Symmetries in tetrad theories, Classical and Quantum Gravity 1988, 5, 135.
- Estabrook, F. & Wahlquist, H., Moving frame formulations of 4-geometries having isometries, Classical and Quantum Gravity 1996, 13, 1333.
- Papadopoulos, G. & Grammenos, T., Locally homogeneous spaces, induced Killing vector fields and applications to Bianchi prototypes, Journal of Mathematical Physics 2012, 53, 072502 , [arXiv:1106.3897 [gr-qc]].
- McNutt, D.D., Coley, A.A. & van den Hoogen, R.J., A frame based approach to computing symmetries with non-trivial isotropy groups, Journal of Mathematical Physics 2023, 64, 032503, [arXiv:2302.11493 [gr-qc]].
- Coley, A. A., van den Hoogen, R. J. & McNutt, D.D., Symmetry and Equivalence in Teleparallel Gravity, Journal of Mathematical Physics 2020, 61, 072503, [arXiv:1911.03893 [gr-qc]].
- Olver, P. Equivalence, invariants and symmetry, Cambridge University Press, 1995.
- Ferraro, R. & Fiorini, F., Modified teleparallel gravity: Inflation without an inflation, Physical Review D 2007, 75, 084031, [arXiv:gr-qc/0610067].
- Ferraro, R. & Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime, Physical Review D 2008, 78, 124019, [arXiv:0812.1981 [gr-qc]].
- Linder, E., Einstein’s Other Gravity and the Acceleration of the Universe, Physical Review D 2010, 81, 127301, [Erratum: Physical Review D, 2010, 82, 109902], [arXiv:1005.3039 [gr-qc]].
- Lucas, T.G., Obukhov, Y. & Pereira, J.G., Regularizing role of teleparallelism, Physical Review D 2009, 80, 064043, [arXiv:0909.2418 [gr-qc]].
- Krssak, M. & Pereira, J.G., Spin Connection and Renormalization of Teleparallel Action, The European Physical Journal C 2015, 75, 519, [arXiv:1504.07683 [gr-qc]].
- Hayashi, K. & Shirafuji, T., New general relativity, Physical Review D 1979, 19, 3524.
- Jimenez, J.B. & Dialektopoulos, K.F., Non-Linear Obstructions for Consistent New General Relativity, Journal of Cosmology and Astroparticle Physics 2020 01, 018, [arXiv:1907.10038 [gr-qc]].
- Bahamonde, S., Blixt, D., Dialektopoulos, K.F. & Hell A., Revisiting Stability in New General Relativity, 2024, preprint: [arXiv:2404.02972 [gr-qc]].
- Heisenberg, L., Review on f(Q) Gravity, 2023, preprint: [arXiv:2309.15958 [gr-qc]].
- Heisenberg, L., Hohmann, M. & Kuhn, S., Cosmological teleparallel perturbations, 2023, preprint: [arXiv:2311.05495 [gr-qc]].
- Flathmann, K. & Hohmann, M., Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity, Physical Review D 2022, 105, 044002, [arXiv:2311.02806 [gr-qc]].
- Hohmann, M., General covariant symmetric teleparallel cosmology, Physical Review D 2021, 104, 124077, [arXiv:2109.01525 [gr-qc]].
- Jimenez, J.B., Heisenberg, L. & Koivisto, T.S., The Geometrical Trinity of Gravity, Universe 2019, 5(7), 173, [arXiv:1903.06830 [gr-qc]].
- Nakayama, Y., Geometrical trinity of unimodular gravity, Classical and Quantum Gravity 2023, 40, 125005, [arXiv:2209.09462 [gr-qc]].
- Xu, Y., Li, G., Harko, T. & Liang, S.-D., f(Q,T) gravity, The European Physical Journal C 2019, 79, 708, [arXiv:1908.04760 [gr-qc]].
- Maurya, D.C., Yesmakhanova, K., Myrzakulov, R. & Nugmanova, G., Myrzakulov. F(T,Q) gravity: cosmological implications and constraints, 2024, preprint: [arXiv:2404.09698 [gr-qc]].
- Maurya, D.C., Yesmakhanova, K., Myrzakulov, R. & Nugmanova, G., Myrzakulov, FLRW Cosmology in Myrzakulov F(R,Q) Gravity, 2024, preprint: [arXiv:2403.11604 [gr-qc]].
- Maurya, D.C. & Myrzakulov, R., Exact Cosmology in Myrzakulov Gravity, 2024, preprint: [arXiv:2402.02123 [gr-qc]].
- Harko, T., Lobo, F.S.N., Nojiri, S. & Odintsov, S.D., f(R,T) gravity, Physical Review D 2011, 84, 024020, [arXiv:1104.2669 [gr-qc]].
- Golovnev, A. & Guzman, M.-J., Approaches to spherically symmetric solutions in f(T)-gravity, Universe 2021, 7 (5), 121, [arXiv:2103.16970 [gr-qc]].
- Golovnev, A., Issues of Lorentz-invariance in f(T)-gravity and calculations for spherically symmetric solutions, Classical and Quantum Gravity 2021, 38, 197001, [arXiv:2105.08586 [gr-qc]].
- Golovnev, A. & Guzman, M.-J., Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics, Physics Letter B 2020, 810, 135806, [arXiv:2006.08507 [gr-qc]].
- DeBenedictis, A., Ilijić, S. & Sossich, M., On spherically symmetric vacuum solutions and horizons in covariant f(T) gravity theory, Physical Review D 2022, 105, 084020, [arXiv:2202.08958 [gr-qc]].
- Coley, A.A., Landry, A., van den Hoogen, R.J. & McNutt, D.D., Spherically symmetric teleparallel geometries, The European Physical Journal C 2024, 84, 334, [arXiv:2402.07238 [gr-qc]].
- Coley, A.A., Landry, A., van den Hoogen, R.J. & McNutt, D.D., Generalized Teleparallel de Sitter geometries, The European Physical Journal C 2023, 83, 977, [arXiv:2307.12930 [gr-qc]].
- Bahamonde, S. & Camci, U., Exact Spherically Symmetric Solutions in Modified Teleparallel gravity, Symmetry 2019, 11, 1462, [arXiv:1911.03965 [gr-qc]].
- Awad, A., Golovnev, A., Guzman, M.-J. & El Hanafy, W., Revisiting diagonal tetrads: New Black Hole solutions in f(T)-gravity, The European Physical Journal C 2022, 82, 972, [arXiv:2207.00059 [gr-qc]].
- Bahamonde, S., Golovnev, A., Guzmán, M.-J., Said, J.L. & Pfeifer, C., Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions, Journal of Cosmology and Astroparticle Physics 2022, 01 037, [arXiv:2110.04087 [gr-qc]].
- Bahamonde, S., Faraji, S., Hackmann, E. & Pfeifer, C., Thick accretion disk configurations in the Born-Infeld teleparallel gravity, Physical Review D 2022, 106, 084046, [arXiv:2209.00020 [gr-qc]].
- Nashed, G.G.L., Quadratic and cubic spherically symmetric black holes in the modified teleparallel equivalent of general relativity: Energy and thermodynamics, Classical and Quantum Gravity 2021, 38, 125004, [arXiv:2105.05688 [gr-qc]].
- Pfeifer, C. & Schuster, S., Static spherically symmetric black holes in weak f(T)-gravity, Universe 2021, 7, 153, [arXiv:2104.00116 [gr-qc]].
- El Hanafy, W. & Nashed, G.G.L., Exact Teleparallel Gravity of Binary Black Holes, Astrophysical Space Science 2016, 361, 68, [arXiv:1507.07377 [gr-qc]].
- Aftergood, J. & DeBenedictis, A., Matter Conditions for Regular Black Holes in f(T) Gravity, Physical Review D 2014, 90, 124006, [arXiv:1409.4084 [gr-qc]].
- Bahamonde, S., Doneva, D.D., Ducobu, L., Pfeifer, C. & Yazadjiev, S.S., Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity, Physical Review D 2023, 107, 10, 104013, [arXiv:2212.07653 [gr-qc]].
- Bahamonde, S., Ducobu, L. & Pfeifer, C., Scalarized Black Holes in Teleparallel Gravity, Journal of Cosmology and Astroparticle Physics 2022, 04(04), 018, [arXiv:2201.11445 [gr-qc]].
- Calza, M. & Sebastiani, L., A class of static spherically symmetric solutions in f(T)-gravity, The European Physical Journal C 2024, 84, 476, [arXiv:2309.04536 [gr-qc]].
- Landry, A., Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity, Axioms 2024, 13 (5), 333, [arXiv:2405.09257 [gr-qc]].
- Landry, A., Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity, Symmetry 2024 16 (8), 953, [arXiv:2406.18659 [gr-qc]].
- van den Hoogen, R.J. & Forance, H., Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames, Journal of Cosmology and Astrophysics 2024, 11, 033, [arXiv:2408.13342 [gr-qc]].
- Leon, G. & Roque, A.A., qualitative analysis of Kantowski-Sachs metric in a generic class of f(R) models,Journal of Cosmology and Astroparticle Physics, 2014, 05, 032, [arXiv:1308.5921 [gr-qc]].
- Shaikh, A.A. & Chakraborty, D., Curvature properties of Kantowski-Sachs metric, Journal of Geometry and Physics, 160, 2021, 103970.
- Oliveira-Neto, G., Canedo, D.L. & Monerat, G.A., An anisotropic Kantowski-Sachs universe with radiation, dust and a phantom fluid, Brazilian Journal of Physics 2022, 52, 130, [arXiv:2109.12229 [gr-qc]].
- Rodrigues, M. E., Kpadonou, A.V., Rahaman, F., Oliveira, P.J. & Houndjo, M.J.S., Bianchi type-I, type-III and Kantowski-Sachs solutions in f(T) gravity, Astrophysics and Space Science 2015, 357, 129, [arXiv:1408.2689 [gr-qc]].
- Amir, M.J. & Yussouf, M., Kantowski-Sachs Universe Models in f(T) Theory of Gravity, International Journal of Theoretical Physics 2015, 54, 2798, [arXiv:1502.00777 [gr-qc]].
- Leon, G. & Paliathanasis, A., Anisotropic spacetimes in f(T,B) theory II: Kantowski-Sachs Universe, The European Physical Journal Plus 2022, 137, 855, [arXiv:2207.08570 [gr-qc]].
- Leon, G. & Paliathanasis, A., Anisotropic spacetimes in f(T,B) theory III: LRS Bianchi III Universe, The European Physical Journal Plus 2022, 137, 927, [arXiv:2207.08571 [gr-qc]].
- Vinutha, T., Niharika, K. & Sri Kavya, K., The Study of Kantowski-Sachs Perfect Fluid Cosmological Model in Modified Gravity, Astrophysics 2023, 66, 64, [arXiv:2301.01163 [gr-qc]].
- Samanta, G.C., Kantowski-Sachs Universe Filled with Perfect Fluid in f(R,T) Theory of Gravity, International Journal of Theoretical Physics 2013, 52, 2647.
- Dimakis, N., Roumeliotis, M., Paliathanasis, A. & Christodoulakis, T., Anisotropic Solutions in Symmetric Teleparallel f(Q)-theory: Kantowski-Sachs and Bianchi III LRS Cosmologies, The European Physical Journal C 2023, 83, 794, [arXiv:2304.04419 [gr-qc]].
- Millano, A.D., Dialektopoulos, K., Dimakis, N., Giacomini, A., Shababi, H., Halder, A. & Paliathanasis, A., Kantowski-Sachs and Bianchi III dynamics in f(Q)-gravity, Physical Review D 2024, 109, 124044, [arXiv:2403.06922 [gr-qc]].
- Paliathanasis, A., Classical and Quantum Cosmological Solutions in Teleparallel Dark Energy with Anisotropic Background Geometry, Symmetry 2022, 14 (10), 1974, [arXiv:2209.08817 [gr-qc]].
- Paliathanasis, A., Kantowski-Sachs cosmology in scalar-torsion theory, The European Physical Journal C 2023, 83, 213, [arXiv:2302.09608 [gr-qc]].
- Zlatev, I., Wang, L. & Steinhardt, P., Quintessence, Cosmic Coincidence, and the Cosmological Constant, Physical Review Letters, 1999, 82 (5), 896, [arXiv:astro-ph/9807002 [astro-ph]].
- Steinhardt, P., Wang, L. & Zlatev, I., Cosmological tracking solutions, Physical Review D, 1999, 59 (12), 123504, [arXiv:astro-ph/9812313 [astro-ph]].
- Caldwell, R.R., Dave, R. & Steinhardt, P., Cosmological Imprint of an Energy Component with General Equation of State, Physical Review Letters, 1998, 80, 1582, [arXiv:astro-ph/9708069 [astro-ph]].
- Carroll, S.M., Quintessence and the Rest of the World, Physical Review Letters, 1998, 81, 3067, [arXiv:astro-ph/9806099 [astro-ph]].
- Doran, M., Lilley, M., Schwindt, J. & Wetterich, C., Quintessence and the Separation of CMB Peaks, Astrophysical Journal, 2001, 559, 501, [arXiv:astro-ph/0012139v2 [astro-ph]].
- Zeng, X.-X., Chen, D.-Y., Li, L.-F., Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy, Physical Review D, 2015, 91, 046005, [arXiv:1408.6632 [hep-th]].
- Chakraborty, S., Mishra, S. & Chakraborty, S., Dynamical system analysis of quintessence dark energy model, International Journal of Geometric Methods in Modern Physics, 2025, 22, 2450250, [arXiv:2406.10692 [gr-qc]].
- Shlivko, D., Steinhardt, P.J., Assessing observational constraints on dark energy, Physics Letters B, 2024, 855, 138826, [arXiv:2405.03933 [astro-ph]].
- Wetterich, C., Cosmology and the Fate of Dilatation Symmetry, Nuclear Physics B, 1988, 302, 668, [arXiv:1711.03844 [hep-th]].
- Ratra, B. & Peebles, P.J.E., Cosmological consequences of a rolling homogeneous scalar field, Physical Review D, 1988, 37, 3406.
- Duchaniya, L.K., Gandhi, K. & Mishra, B., Attractor behavior of f(T) modified gravity and the cosmic acceleration, Physics of the Dark Universe 2024, 44, 101464, [arXiv:2303.09076 [gr-qc]].
- Hohmann, M., Teleparallel gravity, Modified and Quantum Gravity, 2022, 145, Springer, [arXiv:2207.06438 [gr-qc]].
- Hohmann, M., Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants, Physical Review D 2018, 98, 064004, [arXiv:1801.06531 [gr-qc]].
- Zubair, M., Waheed, S., Fayyaz, M.A. & Ahmad, I., Energy Constraints and Phenomenon of Cosmic Evolution in f(T,B) Framework, European Physical Journal Plus 2018, 133, 452, [arXiv:1807.07399 [gr-qc]].
- Bhattacharjee, S., Constraining f(T,B) teleparallel gravity from energy conditions, New Astronomy 2021, 83, 101495, [arXiv:2004.12060 [gr-qc]].
- Trivedi, O., Khlopov, M., Said, J.L. & Nunes, R., Cosmological singularities in f(T,ϕ) gravity, European Physical Journal C 2023, 83, 1017, [arXiv:2310.20222 [gr-qc]].
- Paliathanasis, A. & Leon, G., f(T,B) gravity in a Friedmann–Lemaître–Robertson–Walker universe with nonzero spatial curvature, Mathematical Methods of Applied Science 2023, 46, 3905, [arXiv:2201.12189 [gr-qc]].
- Paliathanasis, A. & Leon, G., Cosmological evolution in f(T,B) gravity, European Physical Journal Plus 2021, 136, 1092, [arXiv:2106.01137 [gr-qc]].
- Kofinas, G., Leon, G. & Saridakis, E.N., Dynamical behavior in f(T,TG) cosmology, Classical and Quantum Gravity 2014, 31, 175011, [arXiv:1404.7100 [gr-qc]].
- Farrugia, G., Said, J.L. & Finch, A., Gravitoelectromagnetism, Solar System Test and Weak-Field Solutions in f(T,B) Gravity with Observational Constraints, Universe 2020, 6 (2), 34, [arXiv:2002.08183 [gr-qc]].
- Coley, A.A., Landry, A. and Gholami, F., Teleparallel Robertson-Walker Geometries and Applications, Universe 2023, 9, 454, [arXiv:2310.14378 [gr-qc]].
- Gholami, F. & Landry, A., Cosmological solutions in teleparallel F(T,B) gravity, 2024, preprint: [arXiv:2411.18455 [gr-qc]].
- Chiba, T., Okabe, T., Yamaguchi, M., Kinetically Driven Quintessence, Physical Review D, 2000, 62, 023511, [arXiv:astro-ph/9912463 [astro-ph]].
- Carroll, S.M., Hoffman, M., Trodden, M., Can the dark energy equation-of-state parameter w be less than -1?, Physical Review D, 2003, 68, 023509, [arXiv:astro-ph/0301273 [astro-ph]].
- Caldwell, R.R., A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state, Physics Letters B, 2002, 545, 23, [arXiv:astro-ph/9908168 [astro-ph]].
- Farnes, J.S., A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework, Astronomy & Astrophysics, 2018, 620, A92, [arXiv:1712.07962 [physics.gen-ph]].
- Baum, L. & Frampton, P.H., Turnaround in Cyclic Cosmology, Physical Review Letters, 2007, 98, 071301, [arXiv:hep-th/0610213 [hep-th]].
- Hu, W., Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom, Physical Review D, 2005, 71, 047301, [arXiv:astro-ph/0410680v2 [astro-ph]].
- Karimzadeh, S. & Shojaee, R., Phantom-Like Behavior in Modified Teleparallel Gravity, Advances in High Energy Physics, 2019, 4026856, [arXiv:1902.04406 [physics.gen-ph]].
- Pati, L., Kadam, S.A., Tripathy, S.K. & Mishra, B., Rip cosmological models in extended symmetric teleparallel gravity, Physics of the Dark Universe, 2022, 35, 100925, [arXiv:2112.00271 [gr-qc]].
- Kucukakca, Y., Akbarieh, A.R. & Ashrafi, S., Exact solutions in teleparallel dark energy model, Chinese Journal of Physics, 2023, 82, 47.
- Cai, Y.-F., Saridakis, E.N., Setare, M.R. & Xia, J.-Q., Quintom Cosmology: Theoretical implications and observations, Physics Report, 2010, 493, 1, [arXiv:0909.2776 [hep-th]].
- Guo, Z.-K., Piao, Y.-S., Zhang, X. & Zhang, Y.-Z., Cosmological evolution of a quintom model of dark energy, Physics Letters B, 2005, 608, 177, [arXiv:astro-ph/0410654 [astro-ph]].
- Feng, B., Li, M., Piao, Y.-S., Zhang, X., Oscillating quintom and the recurrent universe, Physics Letters B, 2006, 634, 101, [arXiv:astro-ph/0407432 [astro-ph]].
- Mishra, S. & Chakraborty, S., Dynamical system analysis of quintom dark energy model, European Physical Journal C, 2018, 78, 917, [arXiv:1811.08279 [gr-qc]].
- Tot, J., Coley, A.A., Yildrim, B. & Leon, G., The dynamics of scalar-field Quintom cosmological models, Physics of the Dark Universe, 2023, 39, 101155, [arXiv:2204.06538 [gr-qc]].
- Bahamonde, S., Marciu, M. & Rudra, P., Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term, Journal of Cosmology and Astroparticle Physics, 2018, 04, 056, [arXiv:1802.09155 [gr-qc]].
- Tajahmad, B., Exact solutions of an anisotropic universe in a modified teleparallel gravity model via the Noether and B.N.S. approaches, International Journal of Geometric Methods in Modern Physics, 2024, 21, 2450230, [arXiv:1610.08707 [gr-qc]]. [CrossRef]
- Iosifidis, D., Cosmological Hyperfluids, Torsion and Non-metricity, European Physical Journal C 2020, 80, 1042, [arXiv:2003.07384 [gr-qc]].
- Heisenberg, L., Hohmann, M. & Kuhn, S., Homogeneous and isotropic cosmology in general teleparallel gravity, European Physical Journal C 2023, 83, 315, [arXiv:2212.14324 [gr-qc]].
- Heisenberg, L. & Hohmann, M., Gauge-invariant cosmological perturbations in general teleparallel gravity, European Physical Journal C 2024, 84, 462, [arXiv:2311.05597 [gr-qc]].
- Bohmer, C.G. & d’Alfonso del Sordo, A., Cosmological fluids with boundary term couplings, General Relativity and Gravitation 2024, 56, 75, [arXiv:2404.05301 [gr-qc]].
- Hawking, S.W. & Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge University Press, 2010.
- Coley, A.A., Dynamical systems and cosmology, Kluwer Academic, Dordrecht, 2003.
- Landry, A. & Hammad, F., Landau levels in a gravitational field: The Schwarzschild spacetime case, Universe 2021, 7, 144, [arXiv:1909.01827 [gr-qc]].
- Hammad, F. & Landry, A., Landau levels in a gravitational field: The Levi-Civita and Kerr spacetimes case, European Physical Journal Plus 2020, 135, 90, [arXiv:1910.01899 [gr-qc]].
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
