Submitted:
22 December 2024
Posted:
23 December 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Summary of Teleparallel Gravity and Field Equations
2.1. Teleparallel -Gravity Theory
2.2. Teleparallel Robertson-Walker Spacetime Geometry
- : ,
- : and ,
- : and .
2.3. Scalar Field Source Conservation Laws Solutions
- Cosmological constant : This is an intermediate limit between the two previous and main types of DE where . A constant scalar field source will directly lead to this case according to eqn (14).
3. Cosmological Solutions
- Power-law general: For and , we find:
- Power-law special: For , we find:
- Logarithmic: For a field defined as , we find:
- Exponential: For , we find:where is an exponential integral function.
4. Cosmological Solutions
-
Eqn (28) by setting and a power-law scalar field yields to new analytical solutions for the subcases:
- (a)
- :
- (b)
- :
There are several other possible solutions by setting other values of , p and/or other scalar field expressions inside eqn (28) general expression. However, we can expect that such cases will yield to more bigger expression of . -
: Eqn (26) becomes:Eqn (25) for solution becomes:Eqn (32) yields to a new analytical solutions for the cases:
- (a)
- General Power-law :
- (b)
- Special Power-law :
- (c)
- Logarithmic :
- (d)
-
Exponential :There is no general solution for eqn (36). However, there are specific solutions:
- :
- :
There are several possible new solutions for other values of and using eqn (36).
There are additional possible new solutions from eqn (32) integral with other types of scalar field sources. -
Eqn (40) by using a power-law scalar field and setting yields to a new analytical solutions for some subcases:
- (a)
- :
- (b)
- :
There are several other possible solutions by setting other values of , p and/or other scalar field expressions. However, we can expect that such cases will yield to more bigger expression of . -
: Eqn (26) becomes:Eqn (25) becomes for :where under the very large n limit. Eqn (44) yields to new analytical solutions for the cases:
- (a)
- General Power-law :
- (b)
- Special Power-law :
- (c)
- Logarithmic :
- (d)
- Exponential :
5. Cosmological Solutions
-
Eqn (55) by setting yields to new analytical solutions for the scalar field:
- (a)
- Linear Power-law :
- (b)
- Quadratic Power-law :
- (c)
- Exponential :
There are several other possible solutions by setting other values of , p and/or other scalar field expressions. However, we can expect that such cases will yield to more bigger expression of . -
: Eqn (53) becomes:Eqn (52) becomes:Eqn (60) yields to a new analytical solutions for the cases:
- (a)
- General Power-law :
- (b)
- Special Power-law :
- (c)
- Logarithmic :
- (d)
-
Exponential :There is no general solution, but for specific values of :
- :where under limit.
- :
There are several possible new solutions from eqn (60) integral with other scalar field sources.
-
Eqn (68) for the power-law scalar field and yields to new analytical solutions in subcases:
- :
- :
There are several other possible solutions by setting other values of , p and/or other scalar field expressions. However, we can expect that such cases will yield to more bigger expression of . -
: Eqn (53) becomes for large n:where . Eqn (52) becomes for :where under the very large n limit. Eqn (68) yields to a new analytical solutions for the cases:
- (a)
- General Power-law :
- (b)
- Special Power-law :
- (c)
- Logarithmic :
- (d)
- Exponential :
There are several possible new solutions from eqn (72) integral with other types of scalar field sources. Therefore eqns (73)–(76) for large n yield to almost identical solutions comparing to eqns (18)–(21) (case solutions) and eqns (45)–(48) (case solutions). We can conclude that the teleparallel solutions for will lead to flat cosmological () solutions as a general limit.
6. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AL | Alexandre Landry | KS | Kantowski-Sachs |
| CK | Cartan-Karlhede | KV | Killing Vector |
| DE | Dark Energy | NGR | New General Relativity |
| EoS | Equation of State | RW | Robertson-Walker |
| Eqn | Equation | TEGR | Teleparallel Equivalent of General Relativity |
| FE | Field Equation | TRW | Teleparallel Robertson-Walker |
| GR | General Relativity |
References
- Krššák, M.; van den Hoogen, R. J.; Pereira, J. G.; Boehmer, C. G.; Coley, A. A. Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach. Classical and Quantum Gravity 2019, 36, 183001. [Google Scholar] [CrossRef]
- Krššák, M.; Saridakis, E. N. The covariant formulation of f(T) gravity. Classical and Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Modified teleparallel theories of gravity in symmetric spacetimes. Physical Review D 2019, 100, 084002. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Krššák, M.; Pfeifer, C. Teleparallel theories of gravity as analogue of non-linear electrodynamics. Physical Review D 2018, 97, 104042. [Google Scholar] [CrossRef]
- Bahamonde, S. , Dialektopoulos, K. F., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J.L., Mifsud, J. & Di Valentino, E., Teleparallel Gravity: From Theory to Cosmology, Report of Progress in Physics 2023, 86, 026901. [Google Scholar]
- Cai, Y.-F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Report of Progress in Physics 2016, 79, 106901. [Google Scholar] [CrossRef] [PubMed]
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetric Teleparallel Geometries. \Classical and Quantum Gravity 2022, 39, 22LT01. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; Gholami, F. Teleparallel Robertson-Walker Geometries and Applications. Universe 2023, 9, 454. [Google Scholar] [CrossRef]
- Gholami, F.; Landry, A. Cosmological solutions in teleparallel F(T,B) gravity. arXiv 2024, arXiv:2411.18455. [Google Scholar] [CrossRef]
- McNutt, D.D.; Coley, A.A.; van den Hoogen, R.J. A frame based approach to computing symmetries with non-trivial isotropy groups. Journal of Mathematical Physics 2023, 64, 032503. [Google Scholar] [CrossRef]
- Coley, A. A.; van den Hoogen, R. J.; McNutt, D.D. Symmetry and Equivalence in Teleparallel Gravity. Journal of Mathematical Physics 2020, 61, 072503. [Google Scholar] [CrossRef]
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Spherically symmetric teleparallel geometries. The European Physical Journal C 2024, 84, 334. [Google Scholar] [CrossRef] [PubMed]
- Landry, A. Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity. Axioms 2024, 13, 333. [Google Scholar] [CrossRef]
- Landry, A. Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity. Symmetry 2024, 16, 953. [Google Scholar] [CrossRef]
- van den Hoogen, R.J.; Forance, H. Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames. Journal of Cosmology and Astrophysics 2024, 11, 033. [Google Scholar] [CrossRef]
- Landry, A. , Scalar field Kantowski-Sachs spacetime solutions in teleparallel F(T) gravity, in final preparation.
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D. Generalized Teleparallel de Sitter geometries. The European Physical Journal C 2023, 83, 977. [Google Scholar] [CrossRef] [PubMed]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, An Introduction; Springer, 2013. [Google Scholar]
- M. Hohmann, L. Järv and U. Ualikhanova, Covariant formulation of scalar-torsion gravity. Physical Review D 2018, 97, 104011. [CrossRef]
- Hohmann, M. Spacetime and observer space symmetries in the language of Cartan geometry. Journal of Mathematical Physics 2016, 57, 082502. [Google Scholar] [CrossRef]
- Coley, A.A. Dynamical systems and cosmology; Kluwer Academic: Dordrecht, 2003; ISBN 1-4020-1403-1. [Google Scholar]
- Bahamonde, S.; Bohmer, C.G.; Carloni, S.; Copeland, E.J.; Fang, W.; Tamanini, N. Dynamical systems applied to cosmology: dark energy and modified gravity. Physical Report 2018, 775-777, 1–122. [Google Scholar] [CrossRef]
- Kofinas, G.; Leon, G.; Saridakis, E.N. Dynamical behavior in f(T,TG) cosmology. Classical and Quantum Gravity 2014, 31, 175011. [Google Scholar] [CrossRef]
- Bohmer, C.G.; Jensko, E. Modified gravity: a unified approach to metric-affine models. Journal of Mathematical Physics 2023, 64, 082505. [Google Scholar] [CrossRef]
- Aldrovandi, R.; Cuzinatto, R.R.; Medeiros, L.G. Analytic solutions for the Λ-FRW Model. Foundations of Physics 2006, 36, 1736–1752. [Google Scholar] [CrossRef]
- Casalino, A.; Sanna, B.; Sebastiani, L.; Zerbini, S. Bounce Models within Teleparallel modified gravity. Physical Review D 2021, 103, 023514. [Google Scholar] [CrossRef]
- Capozziello, S.; Luongo, O.; Pincak, R.; Ravanpak, A. Cosmic acceleration in non-flat f(T) cosmology. General Relativity and Gravitation 2018, 50, 53. [Google Scholar] [CrossRef]
- Bahamonde, S.; Dialektopoulos, K.F.; Hohmann, M.; Said, J.L.; Pfeifer, C.; Saridakis, E.N. Perturbations in Non-Flat Cosmology for f(T) gravity. European Physical Journal C 2023, 83, 193. [Google Scholar] [CrossRef]
- Zlatev, I.; Wang, L.; Steinhardt, P. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letters, 1999, 82, 896. [Google Scholar] [CrossRef]
- Steinhardt, P.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Physical Review D 1999, 59, 123504. [Google Scholar] [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters 1998, 80, 1582. [Google Scholar] [CrossRef]
- Carroll, S.M. Quintessence and the Rest of the World. Physical Review Letters 1998, 81, 3067. [Google Scholar] [CrossRef]
- Doran, M.; Lilley, M.; Schwindt, J.; Wetterich, C. Quintessence and the Separation of CMB Peaks. Astrophysical Journal, 2001, 559, 501. [Google Scholar] [CrossRef]
- Zeng, X.-X.; Chen, D.-Y.; Li, L.-F. Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy. Physical Review D, 2015, 91, 046005. [Google Scholar] [CrossRef]
- Chakraborty, S.; Mishra, S.; Chakraborty, S. Dynamical system analysis of quintessence dark energy model. International Journal of Geometric Methods in Modern Physics 2025, 22, 2450250. [Google Scholar] [CrossRef]
- Shlivko, D.; Steinhardt, P.J. Assessing observational constraints on dark energy. Physics Letters B 2024, 855, 138826. [Google Scholar] [CrossRef]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nuclear Physics B 1988, 302, 668. [Google Scholar] [CrossRef]
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically Driven Quintessence. Physical Review D 2000, 62, 023511. [Google Scholar] [CrossRef]
- Trivedi, O., Khlopov. Cosmological singularities in f(T,ϕ) gravity. European Physical Journal C 2023, 83, 1017. [Google Scholar] [CrossRef]
- Hohmann, M. Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants. Physical Review D 2018, 98, 064004. [Google Scholar] [CrossRef]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than -1? Physical Review D, 2003, 68, 023509. [Google Scholar] [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state, Physics Letters B, 2002, 545, 23. [Google Scholar]
- Farnes, J.S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astronomy & Astrophysics 2018, 620, A92. [Google Scholar]
- Baum, L.; Frampton, P.H. Turnaround in Cyclic Cosmology. Physical Review Letters, 2007, 98, 071301. [Google Scholar] [CrossRef] [PubMed]
- Hu, W. Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom. Physical Review D 2005, 71, 047301. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Shojaee, R. Phantom-Like Behavior in Modified Teleparallel Gravity. Advances in High Energy Physics 2019, 4026856. [Google Scholar] [CrossRef]
- Pati, L.; Kadam, S.A.; Tripathy, S.K.; Mishra, B. Rip cosmological models in extended symmetric teleparallel gravity. Physics of the Dark Universe, 2022, 35, 100925. [Google Scholar] [CrossRef]
- Kucukakca, Y.; Akbarieh, A.R.; Ashrafi, S. Exact solutions in teleparallel dark energy model. Chinese Journal of Physics, 2023, 82, 47. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom Cosmology: Theoretical implications and observations. Physics Report 2010, 493, 1. [Google Scholar] [CrossRef]
- Guo, Z.-K.; Piao, Y.-S.; Zhang, X.; Zhang, Y.-Z. Cosmological evolution of a quintom model of dark energy. Physics Letters B 2005, 608, 177. [Google Scholar] [CrossRef]
- Feng, B.; Li, M.; Piao, Y.-S.; Zhang, X. Oscillating quintom and the recurrent universe. Physics Letters B 2006, 634, 101. [Google Scholar] [CrossRef]
- Mishra, S.; Chakraborty, S. Dynamical system analysis of quintom dark energy model. European Physical Journal C 2018, 78, 917. [Google Scholar] [CrossRef]
- Tot, J.; Coley, A.A.; Yildrim, B.; Leon, G. The dynamics of scalar-field Quintom cosmological models. Physics of the Dark Universe, 2023, 39, 101155. [Google Scholar] [CrossRef]
- Bahamonde, S.; Marciu, M.; Rudra, P. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term. Journal of Cosmology and Astroparticle Physics 2018, 04, 056. [Google Scholar] [CrossRef]
- Golovnev, A.; Guzman, M.-J. Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics. Physics Letter B 2020, 810, 135806. [Google Scholar] [CrossRef]
- Iosifidis, D. Cosmological Hyperfluids, Torsion and Non-metricity. European Physical Journal C 2020, 80, 1042. [Google Scholar] [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Homogeneous and isotropic cosmology in general teleparallel gravity. European Physical Journal C 2023, 83, 315. [Google Scholar] [CrossRef] [PubMed]
- Heisenberg, L.; Hohmann, M. Gauge-invariant cosmological perturbations in general teleparallel gravity. European Physical Journal C 2024, 84, 462. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press, 2010. [Google Scholar]
- Bohmer, C.G.; d’Alfonso del Sordo, A. Cosmological fluids with boundary term couplings. General Relativity and Gravitation 2024, 56, 75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).