Submitted:
05 February 2025
Posted:
10 February 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- Cosmological constant: This is an intermediate limit between the two previous and main types of DE, where . A constant scalar field source will directly lead to this case.
- Quintom models: This is a mixture of previous DE types, usually described by some double scalar field models [87,88,89,90,91,92]. This type of model is more complete to study and solve in general. Several types of models are in principle possible and these physical processes need further studies in the future.
2. Summary Of Teleparallel Gravity And Field Equations
2.1. Summary Of Teleparallel Field Equations
2.2. Static Spherically Symmetric Coframe And Spin-Connection Components
2.3. Static Scalar Field Energy-Momentum Source
2.4. Static Scalar Field Source Field Equations
3. Power-Law Scalar Field Solutions
-
General:
-
:
-
:
3.1. Power-Law Ansatz for
3.2. Power-law ansatz for
-
: Equation (36) becomes:The scalar field will be from Equation (22) definition:By substituting Equation (38) and (39) into Equation (37), we find that:where is for the following cases:
- (a)
- General:
- (b)
- : constant. Equation (40) will be a power-law like solution.
- (c)
- :
If we set , the Equation (39) simplifies as:where is:- (a)
- General:
- (b)
- : constant. Equation (43) will be a GR (TEGR-like) solution.
- (c)
- :
-
- (a)
- General:
- (b)
- :
- (c)
- :
-
and : Equation (36) will be:
-
By substituting Equation (55) and (56) into Equation (37), we find that:where is the Equation (55) and are:
- (a)
- General:
- (b)
- :
- (c)
- :
-
and : Equation (36) will be:
-
and : Equation (36) becomes:The scalar field defined by Equation (22) is:By substituting Equations (63) and (64) into Equation (37), we find that:where becomes for the cases:
- (a)
- General:
- (b)
- :
- (c)
- :
-
and : Equation (36) becomes:
-
and : Equation (36) becomes:
-
and : Equation (36) becomes:
-
and : Equation (36) becomes:
-
For all and cases: Equation (37) will simplify as:where are defined by:
-
and : Equation (36) becomes more simple as:
-
and : Equation (36) becomes:
-
and : Equation (36) becomes:
-
and : Equation (36) becomes:
-
and case: Equation (36) becomes:
-
and : Equation (36) becomes:
-
and : Equation (36) becomes:
3.3. Other Ansatzes And Possible Comparisons With The Literature
4. Other Scalar Field Source Solutions
4.1. Exponential Scalar Field Solutions
- Power-law ansatz with : We find the same solution form as Equation (32) in Section 3.1, but the potential will be the Equation (119) with defined by Equation (30). The Equation (119) becomes:
-
Power-law ansatz with : We find the same solution forms as in Section 3.2, but only the potential expressions change by replacing Equations (25), (27) and (29) by the Equation (119) for each subcases treated in this section. The Equation (119) will be for the simplest cases:
- (a)
- : The potential in Equation (40) is:
- (b)
- and : The expression in Equation (48) is:
- (c)
- and : The expression in Equation (57) is:
- (d)
- and : The expression in Equation (65) is:
- (e)
- and : The expression in Equation (80) is:
- (f)
- and : The expression in Equation (90) is:
- (g)
- and : The expression in Equation (100) is:
The other subcases of Section 3.2 can be computed by the same manner as in the previous simple examples.
4.2. Logarithmic Scalar Field Solutions
- Power-law ansatz with : As in Section 4.1, the solution is under the same form as Equation (32) in Section 3.1. The potential will be the Equation (130) with defined by Equation (30) as:
-
Power-law ansatz with : As in Section 4.1, we find the same solution forms than Section 3.2, but only the potential expressions change for the Equation (130) form for each subcases treated in this section. The Equation (130) will be for the simplest cases:
- (a)
- : The potential in Equation (40) is:
- (b)
- and : The expression in Equation (48) is:
- (c)
- and : The expression in Equation (57) is:
- (d)
- and : The expression in Equation (65) is:
- (e)
- and : The expression in Equation (80) is:
- (f)
- and : The expression in Equation (90) is:
- (g)
- and : The expression in Equation (100) is:
As in Section 4.1, the other subcases of Section 3.2 can be computed by the same manner as in the current section examples.
5. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AL | Alexandre Landry | BH | Black Hole |
| DE | Dark Energy | DoF | Degree of Freedom |
| EoS | Equation of State | FE | Field Equation |
| GR | General Relativity | KS | Kantowski-Sachs |
| KV | Killing Vector | NGR | New General Relativity |
| NS | Neutron star | TEGR | Teleparallel Equivalent of General Relativity |
| TRW | Teleparallel Robertson-Walker | WD | White Dwarf |
Appendix A. Field Equation Components
Appendix A.1. General components
Appendix A.2. A3 = c0 = constant power-law components
Appendix A.3. A3 = r power-law components
References
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity, An Introduction, Springer, 2013.
- Bahamonde, S., Dialektopoulos, K., Escamilla-Rivera, C., Farrugia, G., Gakis, V., Hendry, M., Hohmann, M., Said, J.L., Mifsud, J.; Di Valentino, E., Teleparallel Gravity: From Theory to Cosmology, Report Progress Physics 2023, 86, 026901 [arXiv:2106.13793 [gr-qc]].
- Krssak, M., van den Hoogen, R., Pereira, J., Boehmer, C.; Coley, A., Teleparallel Theories of Gravity: Illuminating a Fully Invariant Approach, Classical And Quantum Gravity 2019, 36, 183001, [arXiv:1810.12932 [gr-qc]].
- McNutt, D.D., Coley, A.A.; van den Hoogen, R.J., A frame based approach to computing symmetries with non-trivial isotropy groups, Journal of Mathematical Physics 2023, 64, 032503, [arXiv:2302.11493 [gr-qc]].
- Coley, A.A.; van den Hoogen, R.J.; McNutt, D.D. Symmetry and Equivalence in Teleparallel Gravity. Journal of Mathematical Physics 2020, 61, 072503. [arXiv:1911.03893 [gr-qc]]. [CrossRef]
- Lucas, T.G., Obukhov, Y.; Pereira, J.G., Regularizing role of teleparallelism, Physical Review D 2009, 80, 064043, [arXiv:0909.2418 [gr-qc]].
- Krssak, M.; Pereira, J.G., Spin Connection and Renormalization of Teleparallel Action, European Physical Journal C 2015, 75, 519, [arXiv:1504.07683 [gr-qc]].
- Chinea, F., Symmetries in tetrad theories, Classical and Quantum Gravity 1988, 5, 135.
- Estabrook, F.; Wahlquist, H., Moving frame formulations of 4-geometries having isometries, Classical and Quantum Gravity 1996, 13, 1333.
- Papadopoulos, G.; Grammenos, T., Locally homogeneous spaces, induced Killing vector fields and applications to Bianchi prototypes, Journal of Mathematical Physics 2012, 53, 072502 , [arXiv:1106.3897 [gr-qc]].
- Olver, P. Equivalence, invariants and symmetry, Cambridge University Press, 1995.
- Ferraro, R.; Fiorini, F., Modified teleparallel gravity: Inflation without an inflation, Physical Review D 2007, 75, 084031, [arXiv:gr-qc/0610067].
- Ferraro, R.; Fiorini, F. On Born-Infeld Gravity in Weitzenbock spacetime, Physical Review D 2008, 78, 124019, [arXiv:0812.1981 [gr-qc]].
- Linder, E., Einstein’s Other Gravity and the Acceleration of the Universe, Physical Review D 2010, 81, 127301, [Erratum: Physical Review D, 2010, 82, 109902], [arXiv:1005.3039 [gr-qc]].
- Hayashi, K.; Shirafuji, T. New general relativity. Physical Review D 1979, 19, 3524. [CrossRef]
- Jimenez, J.B.; Dialektopoulos, K.F. Non-Linear Obstructions for Consistent New General Relativity. Journal of Cosmology and Astroparticle Physics 2020, 2020, 018. [arXiv:1907.10038 [gr-qc]]. [CrossRef]
- Bahamonde, S.; Blixt, D.; Dialektopoulos, K.F.; Hell A. Revisiting Stability in New General Relativity. arXiv 2024, [arXiv:2404.02972 [gr-qc]].
- Heisenberg, L. Review on f(Q) Gravity. arXiv 2023, [arXiv:2309.15958 [gr-qc]]. [CrossRef]
- Heisenberg, L.; Hohmann, M.; Kuhn, S. Cosmological teleparallel perturbations. arXiv 2023, [arXiv:2311.05495 [gr-qc]]. [CrossRef]
- Flathmann, K.; Hohmann, M. Parametrized post-Newtonian limit of generalized scalar-nonmetricity theories of gravity. Physical Review D 2022, 105, 044002, [arXiv:2111.02806 [gr-qc]].
- Hohmann, M. General covariant symmetric teleparallel cosmology. Physical Review D 2021, 104, 124077, [arXiv:2109.01525 [gr-qc]]. [CrossRef]
- Jimenez, J.B.; Heisenberg, L.; Koivisto, T.S. The Geometrical Trinity of Gravity. Universe 2019, 5, 173, [arXiv:1903.06830 [gr-qc]]. [CrossRef]
- Nakayama, Y. Geometrical trinity of unimodular gravity. Classical and Quantum Gravity 2023, 40, 125005, [arXiv:2209.09462 [gr-qc]]. [CrossRef]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.-D. f(Q,T) gravity. European Physical Journal C 2019, 79, 708, [arXiv:1908.04760 [gr-qc]]. [CrossRef]
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. Myrzakulov F(T,Q) gravity: Cosmological implications and constraints. arXiv 2024, [arXiv:2404.09698 [gr-qc]].
- Maurya, D.C.; Yesmakhanova, K.; Myrzakulov, R.; Nugmanova, G. Myrzakulov, FLRW Cosmology in Myrzakulov F(R,Q) Gravity. arXiv 2024, [arXiv:2403.11604 [gr-qc]].
- Maurya, D.C.; Myrzakulov, R. Exact Cosmology in Myrzakulov Gravity. arXiv 2024, [arXiv:2402.02123 [gr-qc]].
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Physical Review D 2011, 84, 024020, [arXiv:1104.2669 [gr-qc]]. [CrossRef]
- Momeni, D., Myrzakulov, R., Myrzakulov Gravity in Vielbein Formalism: A Study in Weitzenböck Spacetime. arXiv 2024, [arXiv:2412.04524 [gr-qc]].
- Maurya, D.C., Yesmakhanova, K., Myrzakulov, R., Nugmanova, G., Myrzakulov F(T,Q) gravity: cosmological implications and constraints, Physica Scripta 2024, 99, 10, [arXiv:2404.09698 [gr-qc]].
- Maurya D.C., Yesmakhanova, K., Myrzakulov, R., Nugmanova, G., FLRW Cosmology in Metric-Affine F(R,Q) Gravity, Chinese Physics C 2024, 48, 125101, [arXiv:2403.11604 [gr-qc]].
- Maurya D.C., Myrzakulov, R., Transit cosmological models in Myrzakulov F(R,T) gravity theory, European Physical Journal C 2024, 84, 534, [arXiv:2401.00686 [gr-qc]].
- Mandal, S., Myrzakulov, N., Sahoo, P.K., Myrzakulov, R., Cosmological bouncing scenarios in symmetric teleparallel gravity, European Physical Journal Plus 2021, 136, 760, [arXiv:2107.02936 [gr-qc]].
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D., Generalized Teleparallel de Sitter geometries, European Physical Journal C 2023, 83, 977, [arXiv:2307.12930 [gr-qc]].
- Coley, A.A.; Landry, A.; van den Hoogen, R.J.; McNutt, D.D., Spherically symmetric teleparallel geometries, European Physical Journal C 2024, 84, 334, [arXiv:2402.07238 [gr-qc]].
- Landry, A., Static spherically symmetric perfect fluid solutions in teleparallel F(T) gravity, Axioms 2024, 13 (5), 333, [arXiv:2405.09257 [gr-qc]].
- Landry, A., Kantowski-Sachs spherically symmetric solutions in teleparallel F(T) gravity, Symmetry 2024, 16 (8), 953, [arXiv:2406.18659 [gr-qc]].
- van den Hoogen, R.J.; Forance, H., Teleparallel Geometry with Spherical Symmetry: The diagonal and proper frames, Journal of Cosmology and Astrophysics 2024, 11, 033, [arXiv:2408.13342 [gr-qc]].
- Landry, A., Scalar field Kantowski-Sachs spacetime solutions in teleparallel F(T) gravity, Universe 2025, 11 (1), 26, [arXiv:2501.11160 [gr-qc]].
- Landry, A. Scalar field sources Teleparallel Robertson-Walker F(T)-gravity solutions. Mathematics 2025, 13 (3), 374[arXiv:2501.13895 [gr-qc]]. [CrossRef]
- Coley, A.A., Landry, A. and Gholami, F., Teleparallel Robertson-Walker Geometries and Applications, Universe 2023, 9, 454, [arXiv:2310.14378 [gr-qc]].
- Golovnev, A.; Guzman, M.-J., Approaches to spherically symmetric solutions in f(T)-gravity, Universe 2021, 7 (5), 121, [arXiv:2103.16970 [gr-qc]].
- Golovnev, A., Issues of Lorentz-invariance in f(T)-gravity and calculations for spherically symmetric solutions, Classical and Quantum Gravity 2021, 38, 197001, [arXiv:2105.08586 [gr-qc]].
- Golovnev, A.; Guzman, M.-J., Bianchi identities in f(T)-gravity: Paving the way to confrontation with astrophysics, Physics Letters B 2020, 810, 135806, [arXiv:2006.08507 [gr-qc]].
- DeBenedictis, A., Ilijić, S.; Sossich, M., On spherically symmetric vacuum solutions and horizons in covariant f(T) gravity theory, Physical Review D 2022, 105, 084020, [arXiv:2202.08958 [gr-qc]].
- Bahamonde, S.; Camci, U., Exact Spherically Symmetric Solutions in Modified Teleparallel gravity, Symmetry 2019, 11, 1462, [arXiv:1911.03965 [gr-qc]].
- Awad, A., Golovnev, A., Guzman, M.-J.; El Hanafy, W., Revisiting diagonal tetrads: New Black Hole solutions in f(T)-gravity, European Physical Journal C 2022, 82, 972, [arXiv:2207.00059 [gr-qc]].
- Bahamonde, S., Golovnev, A., Guzmán, M.-J., Said, J.L.; Pfeifer, C., Black Holes in f(T,B) Gravity: Exact and Perturbed Solutions, Journal of Cosmology and Astroparticle Physics 2022, 01 037, [arXiv:2110.04087 [gr-qc]].
- Bahamonde, S., Faraji, S., Hackmann, E.; Pfeifer, C., Thick accretion disk configurations in the Born-Infeld teleparallel gravity, Physical Review D 2022, 106, 084046, [arXiv:2209.00020 [gr-qc]].
- Nashed, G.G.L., Quadratic and cubic spherically symmetric black holes in the modified teleparallel equivalent of general relativity: Energy and thermodynamics, Classical and Quantum Gravity 2021, 38, 125004, [arXiv:2105.05688 [gr-qc]].
- Pfeifer, C.; Schuster, S., Static spherically symmetric black holes in weak f(T)-gravity, Universe 2021, 7, 153, [arXiv:2104.00116 [gr-qc]].
- El Hanafy, W.; Nashed, G.G.L., Exact Teleparallel Gravity of Binary Black Holes, Astrophysical Space Science 2016, 361, 68, [arXiv:1507.07377 [gr-qc]].
- Aftergood, J.; DeBenedictis, A., Matter Conditions for Regular Black Holes in f(T) Gravity, Physical Review D 2014, 90, 124006, [arXiv:1409.4084 [gr-qc]].
- Bahamonde, S., Doneva, D.D., Ducobu, L., Pfeifer, C.; Yazadjiev, S.S., Spontaneous Scalarization of Black Holes in Gauss-Bonnet Teleparallel Gravity, Physical Review D 2023, 107 10, 104013, [arXiv:2212.07653 [gr-qc]].
- Bahamonde, S., Ducobu, L.; Pfeifer, C., Scalarized Black Holes in Teleparallel Gravity, Journal of Cosmology and Astroparticle Physics 2022, 04 04, 018, [arXiv:2201.11445 [gr-qc]].
- Iorio, L.; Radicella, N.; Ruggiero, M.L., Constraining f(T) gravity in the Solar System, Journal of Cosmology and Astroparticle Physics 2015, 08, 021 ,[arXiv:1505.06996 [gr-qc]].
- Pradhan, S.; Bhar, P.; Mandal, S.; Sahoo, P.K.; Bamba, K., The Stability of Anisotropic Compact Stars Influenced by Dark Matter under Teleparallel Gravity: An Extended Gravitational Deformation Approach, European Physical Journal C 2025, 85, 127, [arXiv:2408.03967 [gr-qc]].
- Mohanty, D.; Ghosh, S.; Sahoo, P.K., Charged gravastar model in noncommutative geometry under f(T) gravity, Physics of Dark Universe 2025, 46, 101692, [arXiv:2410.05679 [gr-qc]].
- Calza, M.; Sebastiani, L. A class of static spherically symmetric solutions in f(T)-gravity. European Physical Journal C 2024, 84, 476. [arXiv:2309.04536 [gr-qc]]. [CrossRef]
- Gholami, F.; Landry, A., Cosmological solutions in teleparallel F(T,B) gravity, Symmetry 2025, 17(1), 060, [arXiv:2411.18455 [gr-qc]].
- Zlatev, I.; Wang, L.; Steinhardt, P. Quintessence, Cosmic Coincidence, and the Cosmological Constant. Physical Review Letters 1999, 82, 896, [arXiv:astro-ph/9807002 [astro-ph]]. [CrossRef]
- Steinhardt, P.; Wang, L.; Zlatev, I. Cosmological tracking solutions. Physical Review D 1999, 59, 123504, [arXiv:astro-ph/9812313 [astro-ph]]. [CrossRef]
- Caldwell, R.R.; Dave, R.; Steinhardt, P. Cosmological Imprint of an Energy Component with General Equation of State. Physical Review Letters 1998, 80, 1582, [arXiv:astro-ph/9708069 [astro-ph]]. [CrossRef]
- Carroll, S.M.; Quintessence and the Rest of the World; Physical Review Letters 1998, 81, 3067, [arXiv:astro-ph/9806099 [astro-ph]].
- Doran, M.; Lilley, M.; Schwindt, J.; Wetterich, C.; Quintessence and the Separation of CMB Peaks. Astrophysical Journal 2001, 559, 501, [arXiv:astro-ph/0012139v2 [astro-ph]]. [CrossRef]
- Zeng, X.-X.; Chen, D.-Y.; Li, L.-F.; Holographic thermalization and gravitational collapse in the spacetime dominated by quintessence dark energy. Physical Review D 2015, 91, 046005, [arXiv:1408.6632 [gr-qc]]. [CrossRef]
- Chakraborty, S.; Mishra, S.; Chakraborty, S.; Dynamical system analysis of quintessence dark energy model. International Journal of Geometrical Methods in Modern Physics 2025, 22, 2450250, [arXiv:2406.10692 [gr-qc]]. [CrossRef]
- Shlivko, D.; Steinhardt, P.J.; Assessing observational constraints on dark energy. Physics Letters B 2024, 855, 138826, [arXiv:2405.03933 [gr-qc]]. [CrossRef]
- Wetterich, C. Cosmology and the Fate of Dilatation Symmetry. Nuclear Physics B 1988, 302, 668, [arXiv:1711.03844 [gr-qc]]. [CrossRef]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Physical Review D 1988, 37, 3406. [CrossRef]
- Wolf, W.J.; Ferreira, P.G., Underdetermination of dark energy. Physical Review D 2023, 108, 103519, [arXiv:2310.07482 [gr-qc]]. [CrossRef]
- Wolf, W.J., García-García, C., Bartlett, D.J., Ferreira, P.G., Scant evidence for thawing quintessence. Physical Review D 2024, 110, 083528, [arXiv:2408.17318 [gr-qc]]. [CrossRef]
- Wolf, W.J., Ferreira, P.G., García-García, C., Matching current observational constraints with nonminimally coupled dark energy. 2024, arXiv, [arXiv:2409.17019 [gr-qc]].
- Chiba, T.; Okabe, T.; Yamaguchi, M. Kinetically Driven Quintessence. Physical Review D 2000, 62, 023511, [arXiv:astro-ph/9912463 [astro-ph]]. [CrossRef]
- Carroll, S.M.; Hoffman, M.; Trodden, M. Can the dark energy equation-of-state parameter w be less than -1? Physical Review D 2003, 68, 023509, [arXiv:astro-ph/0301273 [astro-ph]]. [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Physics Letters B 2002, 545, 23, [arXiv:astro-ph/9908168 [astro-ph]]. [CrossRef]
- Farnes, J.S. A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation within a Modified ΛCDM Framework. Astronomy and Astrophysics 2018, 620, A92, [arXiv:1712.07962 [physics.gen-ph]]. [CrossRef]
- Baum, L.; Frampton, P.H. Turnaround in Cyclic Cosmology. Physical Review Letters 2007, 98, 071301, [arXiv:hep-th/0610213 [hep-th]]. [CrossRef]
- Hu, W. Crossing the Phantom Divide: Dark Energy Internal Degrees of Freedom. Physical Review D 2005, 71, 047301, [arXiv:astro-ph/0410680v2 [astro-ph]]. [CrossRef]
- Karimzadeh, S.; Shojaee, R. Phantom-Like Behavior in Modified Teleparallel Gravity. Advances in High Energy Physics 2019, 2019, 4026856, [arXiv:1902.04406 [physics.gen-ph]]. [CrossRef]
- Pati, L.; Kadam, S.A.; Tripathy, S.K.; Mishra, B. Rip cosmological models in extended symmetric teleparallel gravity. Physics of Dark Universe 2022, 35, 100925, [arXiv:2112.00271 [gr-qc]]. [CrossRef]
- Kucukakca, Y.; Akbarieh, A.R.; Ashrafi, S. Exact solutions in teleparallel dark energy model. Chinese Journal of Physics 2023, 82, 47. [CrossRef]
- Duchaniya, L.K., Gandhi, K.; Mishra, B., Attractor behavior of f(T) modified gravity and the cosmic acceleration, Physics of Dark Universe 2024, 44, 101464, [arXiv:2303.09076 [gr-qc]].
- Paliathanasis, A.; Leon, G., f(T,B) gravity in a Friedmann-Lemaitre-Robertson-Walker universe with nonzero spatial curvature, Mathematical Methods in Applied Science 2022, 1-18, [arXiv:2201.12189 [gr-qc]].
- Kofinas, G., Leon, G.; Saridakis, E.N., Dynamical behavior in f(T,TG) cosmology, Classical and Quantum Gravity 2014, 31, 175011, [arXiv:1404.7100 [gr-qc]]. [CrossRef]
- Leon, G.; Paliathanasis, A., Anisotropic spacetimes in f(T,B) theory III: LRS Bianchi III Universe, European Physical Journal Plus 2022, 137, 927, [arXiv:2207.08571 [gr-qc]].
- Cai, Y.-F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom Cosmology: Theoretical implications and observations. Physics Reports 2010, 493, 1, [arXiv:0909.2776 [hep-th]]. [CrossRef]
- Guo, Z.-K.; Piao, Y.-S.; Zhang, X.; Zhang, Y.-Z. Cosmological evolution of a quintom model of dark energy. Physics Letters B 2005, 608, 177, [arXiv:astro-ph/0410654 [astro-ph]]. [CrossRef]
- Feng, B.; Li, M.; Piao, Y.-S.; Zhang, X. Oscillating quintom and the recurrent universe. Physics Letters B 2006, 634, 101, [arXiv:astro-ph/0407432 [astro-ph]]. [CrossRef]
- Mishra, S.; Chakraborty, S. Dynamical system analysis of quintom dark energy model. European Physical Journal C 2018, 78, 917, [arXiv:1811.08279 [gr-qc]]. [CrossRef]
- Tot, J.; Coley, A.A.; Yildrim, B.; Leon, G. The dynamics of scalar-field Quintom cosmological models. Physics of Dark Universe 2023, 39, 101155, [arXiv:2204.06538 [gr-qc]]. [CrossRef]
- Bahamonde, S.; Marciu, M.; Rudra, P. Generalised teleparallel quintom dark energy non-minimally coupled with the scalar torsion and a boundary term. Journal of Cosmology and Astroparticle Physics 2018, 04, 056, [arXiv:1802.09155 [gr-qc]]. [CrossRef]
- Iosifidis, D., Cosmological Hyperfluids, Torsion and Non-metricity, European Physical Journal C 2020, 80, 1042, [arXiv:2003.07384 [gr-qc]].
- Heisenberg, L., Hohmann, M.; Kuhn, S., Homogeneous and isotropic cosmology in general teleparallel gravity, European Physical Journal C 2023, 83, 315, [arXiv:2212.14324 [gr-qc]].
- Heisenberg, L.; Hohmann, M., Gauge-invariant cosmological perturbations in general teleparallel gravity, European Physical Journal C 2024, 84, 462, [arXiv:2311.05597 [gr-qc]].
- Sharif, M.; Majeed, B., Teleparallel Killing Vectors of Spherically Symmetric Spacetimes, Communications In Theoretical Physics 2009, 52, 435, [arXiv:0905.3212 [gr-qc]].
- Hohmann, M., Jarv, L., Krssak, M.; Pfeifer, C., Modified teleparallel theories of gravity in symmetric spacetimes, Physical Review D 2019, 100, 084002, [arXiv:1901.05472 [gr-qc]].
- Pfeifer, C., A quick guide to spacetime symmetry and symmetric solutions in teleparallel gravity, 2022, [arXiv:2201.04691 [gr-qc]].
- Hohmann, M., Scalar-torsion theories of gravity III: analogue of scalar-tensor gravity and conformal invariants, Physical Review D 2018, 98, 064004, [arXiv:1801.06531 [gr-qc]].
- Hawking, S.W.; Ellis, G.F.R., The Large Scale Structure of Space-Time, Cambridge University Press, 2010.
- Coley, A.A., Dynamical systems and cosmology, Kluwer Academic, Dordrecht, 2003.
- Bohmer, C.G.; d’Alfonso del Sordo, A., Cosmological fluids with boundary term couplings, General Relativity and Gravitation 2024, 56, 75, [arXiv:2404.05301 [gr-qc]].
- Landry, A.; van den Hoogen, R.J., Teleparallel Minkowski Spacetime with Perturbative Approach for Teleparallel Theories on the Proper Frame, Universe 2013, 9, 232, [arXiv:2303.16089 [gr-qc]].
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).