Submitted:
01 August 2025
Posted:
04 August 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Classification of Perching Mechanisms for Aerial Robots
2.1. System Configuration
2.2. Gripper Material
2.3. Grasp Adaptability
2.4. Closing Actuation
2.5. Grasp Maintenance
2.6. Perching Configuration
2.7. Opening Actuation
3. Perching Mechanisms
3.1. Perching Mechanisms for FWAVs
3.2. Perching Mechanisms for Other Aerial Robots
Tendon-Driven Mechanisms
Other Perching Mechanism Designs
4. Discussion
5. Conclusions
Conflicts of Interest
Abbreviations
| ADFM | Automatic Digital Flexor Mechanism |
| APM | Automatic Perching Mechanism |
| DC | Direct Current |
| DTLM | Digital Tendon-Locking Mechanism |
| FiBa | Film-Balloon |
| FPV | First Person View |
| FWAVs | Flapping-Wing Aerial Vehicles |
| PLA | Polylactic Acid |
| SMA | Shape Memory Alloys |
| TPU | Thermoplastic Polyurethane |
| UAVs | Unmanned Aerial Vehicles |
| VTOL | Vertical Take-Off and Landing |
References
- Holle, A.A. Plane and the Like for Aeroplanes. Germany DE366693C, 1923. Priority date: October 15, 1915; Publication date: January 10, 1923. [Google Scholar]
- Kudva, J.N.; Sanders, B.; Pinkerton-Florance, J.; Garcia, E. The DARPA/AFRL/NASA Smart Wing Program-Final Overview. In Proceedings of the Proc. SPIE Conf. Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, March 2002. March 17–21. [Google Scholar]
- NASA. NASA Tests Revolutionary Shape-Changing Aircraft Flap for the First Time. http://www.nasa.gov/press/2014/november/nasa-tests-revolutionary-shape-changing-aircraft-flap-for-the-first-time, 2014. Release 14-308, November 7.
- Flanagan, J.S.; Strutzenberg, R.C.; Myers, R.B.; Rodrian, J.E. Development and Flight Testing of a Morphing Aircraft, the NextGen MFX-1. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, April 2007. April 23–26. [Google Scholar]
- Schenato, L.; Deng, X.; Sastry, S. Flight Control System for a Micromechanical Flying Insect: Architecture and Implementation. In Proceedings of the Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, 2001; Vol. 2, pp. 1641–1646. [CrossRef]
- de Croon, G.C.H.E.; de Clercq, K.M.E.; Ruijsink, R.; Remes, B.; de Wagter, C. Design, Aerodynamics, and Vision-Based Control of the DelFly. International Journal of Micro Air Vehicles 2009, 1, 71–97. [Google Scholar] [CrossRef]
- da Vinci, L. Codice sul volo degli uccelli, 1505. Biblioteca Reale di Torino, Italy.
- OrniHobby. Ornihobby - CarbonSail Ornithipter. https://www.ornihobby.com/. Accessed: 2025-07-13.
- BionicBird. X-Fly. https://www.bionicbird.com/world/shop/x-fly/. Accessed: 2025-07-13.
- Drones, F. Flapper Nimble+ - Bioinspired development platform. https://flapper-drones.eu/nimbleplus/, 2025. Accessed: 2025-07-13.
- Meng, J.; Buzzatto, J.; Liu, Y.; Liarokapis, M. On Aerial Robots with Grasping and Perching Capabilities: A Comprehensive Review. Frontiers in Robotics and AI, 2022, Volume 8 - 2021. [CrossRef]
- Nekoo, S.R.; Rashad, R.; Wagter, C.D.; Fuller, S.B.; de Croon, G.; Stramigioli, S.; Ollero, A. A review on flapping-wing robots: Recent progress and challenges. The International Journal of Robotics Research 0, 0, 02783649251343638. [CrossRef]
- Hammad, A.; Armanini, S.F. Landing and take-off capabilities of bioinspired aerial vehicles: a review. Bioinspiration & Biomimetics 2024, 19, 031001. [Google Scholar] [CrossRef]
- Song, F.; Yan, Y.; Sun, J. Review of insect-inspired wing micro air vehicle. Arthropod Structure & Development 2023, 72, 101225. [Google Scholar] [CrossRef]
- Ma, D.; Song, B.; Gao, S.; Xue, D.; Xuan, J. Designing efficient bird-like flapping-wing aerial vehicles: insights from aviation perspective. Bioinspiration & Biomimetics 2024, 19, 061001. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Qu, F. Bio-inspired flapping wing robots with foldable or deformable wings: a review. Bioinspiration & Biomimetics 2022, 18, 011002. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Han, Y.J.; Yang, H.H.; Lee, S.G.; Lee, E.H. A Review of Flapping Mechanisms for Avian-Inspired Flapping-Wing Air Vehicles. Aerospace 2023, 10. [Google Scholar] [CrossRef]
- Fang, X.; Wen, Y.; Gao, Z.; Gao, K.; Luo, Q.; Peng, H.; Du, R. Review of the Flight Control Method of a Bird-like Flapping-Wing Air Vehicle. Micromachines 2023, 14. [Google Scholar] [CrossRef]
- Long, Z.; Jiang, Q.; Shuai, T.; Wen, F.; Liang, C. A Systematic Review and Meta-analysis of Robotic Gripper. IOP Conference Series: Materials Science and Engineering 2020, 782, 042055. [Google Scholar] [CrossRef]
- Gómez-Tamm, A.E.; Pérez-Sánchez, V.; Arrue, B.C.; Ollero, A. SMA Actuated Low-Weight Bio-Inspired Claws for Grasping and Perching Using Flapping Wing Aerial Systems. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE Press; 2020; pp. 8807–8814. [Google Scholar] [CrossRef]
- Pérez-Sánchez, V.; Nekoo, S.R.; Arrue, B.; Ollero, A. A Finite-Time State-Dependent Differential Riccati Equation Control Design for Closed-Loop SMA-Actuated Hip Joint. In Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2023; pp. 6441–6448. [Google Scholar] [CrossRef]
- Broers, K.C.V.; Armanini, S.F. Design and Testing of a Bioinspired Lightweight Perching Mechanism for Flapping-Wing MAVs Using Soft Grippers. IEEE Robotics and Automation Letters 2022, 7, 7526–7533. [Google Scholar] [CrossRef]
- Pfaff, O.; Simeonov, S.; Cirovic, I.; Stano, P.; et al. Application of fin ray effect approach for production process automation. Annals of DAAAM & Proceedings 2011, 22, 1247–1249. [Google Scholar]
- Crooks, W.; Vukasin, G.; O’Sullivan, M.; Messner, W.; Rogers, C. Fin ray® effect inspired soft robotic gripper: From the robosoft grand challenge toward optimization. Frontiers in Robotics and AI 2016, 3, 70. [Google Scholar] [CrossRef]
- Crooks, W.; Rozen-Levy, S.; Trimmer, B.; Rogers, C.; Messner, W. Passive gripper inspired by Manduca sexta and the Fin Ray Effect. International Journal of Advanced Robotic Systems 2017, 14, 1729881417721155. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.G.; Kim, D.I.; Yoon, H.S. A universal soft gripper with the optimized fin ray finger. International Journal of Precision Engineering and Manufacturing-Green Technology 2021, 8, 889–899. [Google Scholar] [CrossRef]
- Broers, K.C.V.; Armanini, S.F. Repeatable Energy-Efficient Perching for Flapping-Wing Robots Using Soft Grippers, 2024, [arXiv:cs.RO/2409.11921].
- Zufferey, R.; Tormo-Barbero, J.; Feliu-Talegón, D.; Nekoo, S.R.; Acosta, J.A.; Ollero, A. How ornithopters can perch autonomously on a branch. Nature Communications 2022, 13. [Google Scholar] [CrossRef]
- Nekoo, S.R.; Sanchez-Laulhe, E.; Durán, R.G.; Hernandez, M.; Ollero, A. Increasing Repeatability of the Perching on Branch for Flapping-Wing Flying Robot. In Proceedings of the 2024 International Conference on Unmanned Aircraft Systems (ICUAS); 2024; pp. 618–623. [Google Scholar] [CrossRef]
- Hammad, A.; Süer, M.; Armanini, S.F. A Lightweight Bioinspired SMA-Based Grasping Mechanism for Flapping Wing MAVs. Biomimetics 2025, 10. [Google Scholar] [CrossRef] [PubMed]
- Doyle, C.E.; Bird, J.J.; Isom, T.A.; Kallman, J.C.; Bareiss, D.F.; Dunlop, D.J.; King, R.J.; Abbott, J.J.; Minor, M.A. An Avian-Inspired Passive Mechanism for Quadrotor Perching. IEEE/ASME Transactions on Mechatronics 2013, 18, 506–517. [Google Scholar] [CrossRef]
- Watson, M. The Mechanism of Perching in Birds. Journal of Anatomy and Physiology 1869, 3, 379–384. [Google Scholar]
- Quinn, T.H.; Baumel, J.J. The digital tendon locking mechanism of the avian foot (Aves). Zoomorphology 1990, 109, 281–293. [Google Scholar] [CrossRef]
- Galton, P.M.; Shepherd, J.D. Experimental Analysis of Perching in the European Starling (Sturnus vulgaris: Passeriformes; Passeres), and the Automatic Perching Mechanism of Birds. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 2012, 317, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Nadan, P.M.; Anthony, T.M.; Michael, D.M.; Pflueger, J.B.; Sethi, M.S.; Shimazu, K.N.; Tieu, M.; Lee, C.L. A Bird-Inspired Perching Landing Gear System. Journal of Mechanisms and Robotics 2019, 11, 061002. [Google Scholar] [CrossRef]
- Roderick, W.R.T.; Cutkosky, M.R.; Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Science Robotics 2021, 6, eabj7562. [Google Scholar] [CrossRef]
- Wang, B.; Yin, H.; Zi, P.; Xu, K.; Tian, Y.; Lyu, S.; Ding, X. Bionic Bird Claw Design for Grabbing and Perching Inspired by Tendon-Locking Mechanism. IEEE Robotics and Automation Letters 2024, 9, 8090–8097. [Google Scholar] [CrossRef]
- Firouzeh, A.; Lee, J.; Yang, H.; Lee, D.; Cho, K.J. Perching and Grasping Using a Passive Dynamic Bioinspired Gripper. IEEE Transactions on Robotics 2024, 40, 213–225. [Google Scholar] [CrossRef]
- Popek, K.M.; Johannes, M.S.; Wolfe, K.C.; Hegeman, R.A.; Hatch, J.M.; Moore, J.L.; Katyal, K.D.; Yeh, B.Y.; Bamberger, R.J. Autonomous Grasping Robotic Aerial System for Perching (AGRASP). In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Ma, R.R.; Odhner, L.U.; Dollar, A.M. A modular, open-source 3D printed underactuated hand. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation; 2013; pp. 2737–2743. [Google Scholar] [CrossRef]
- Iida, H.; Sugihara, J.; Sugihara, K.; Kozuka, H.; Li, J.; Nagato, K.; Zhao, M. Adaptive Perching and Grasping by Aerial Robot with Light-weight and High Grip-force Tendon-driven Three-fingered Hand using Single Actuator, 2025, [arXiv:cs.RO/2503.17711].
- McLaren, A.; Fitzgerald, Z.; Gao, G.; Liarokapis, M. A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2019; pp. 5602–5607. [Google Scholar] [CrossRef]
- Stewart, W.; Guarino, L.; Piskarev, Y.; Floreano, D. Passive Perching with Energy Storage for Winged Aerial Robots. Advanced Intelligent Systems 2023, 5, 2100150. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Wu, Z.; Potdar, P.; Tran, L.; Karasahin, A.T.; Windsor, S.; Burrow, S.G.; Kocer, B.B. Tendon-driven Grasper Design for Aerial Robot Perching on Tree Branches, 2025, [arXiv:cs.RO/2503.00214].
- Nguyen, P.H.; Patnaik, K.; Mishra, S.; Polygerinos, P.; Zhang, W. A Soft-Bodied Aerial Robot for Collision Resilience and Contact-Reactive Perching. Soft Robotics 2023, 10, 838–851. [Google Scholar] [CrossRef]
- Zheng, L.; Hamaza, S. ALBERO: Agile Landing on Branches for Environmental Robotics Operations. IEEE Robotics and Automation Letters 2024, 9, 2845–2852. [Google Scholar] [CrossRef]
- Chi, W.; Low, K.H.; Hoon, K.H.; Tang, J.; Go, T.H. A Bio-Inspired Adaptive Perching Mechanism for Unmanned Aerial Vehicles. Journal of Robotics and Mechatronics 2012, 24, 642–648. [Google Scholar] [CrossRef]
- Culler, E.; Thomas, G.; Lee, C. A perching landing gear for a quadcopter. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA; 2012; p. 1722. [Google Scholar]
- Askari, M.; Shin, W.D.; Lenherr, D.; Stewart, W.; Floreano, D. Avian-Inspired Claws Enable Robot Perching or Walking. IEEE/ASME Transactions on Mechatronics 2024, 29, 1856–1866. [Google Scholar] [CrossRef]
- Lee, S.M.; Liu, J.; Chien, J.L.; Ng, W.H.; Lim, M.; Foong, S. Rapid Resistography with Passive Overhead-perching Mechanism in an Unmanned Aerial System for Wood Structure Inspection. In Proceedings of the 2024 IEEE International Conference on Robotics and Automation (ICRA); 2024; pp. 1554–1560. [Google Scholar] [CrossRef]
- Ching, T.; Lee, J.Z.W.; Win, S.K.H.; Win, L.S.T.; Sufiyan, D.; Lim, C.P.X.; Nagaraju, N.; Toh, Y.C.; Foong, S.; Hashimoto, M. Crawling, climbing, perching, and flying by FiBa soft robots. Science Robotics 2024, 9, eadk4533. [Google Scholar] [CrossRef]
- Bai, L.; Wang, H.; Chen, X.; Zheng, J.; Xin, L.; Deng, Y.; Sun, Y. Design and Experiment of a Deformable Bird-inspired UAV Perching Mechanism. Journal of Bionic Engineering 2021, 18. [Google Scholar] [CrossRef]
- Burroughs, M.; Freckleton, K.; Abbott, J.; Minor, M. A Sarrus-Based Passive Mechanism For Rotorcraft Perching. Journal of Mechanisms and Robotics 2014, 8. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Zhao, J. Compliant Bistable Gripper for Aerial Perching and Grasping. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA); 2019; pp. 1248–1253. [Google Scholar] [CrossRef]
- Hang, K.; Lyu, X.; Song, H.; Stork, J.A.; Dollar, A.M.; Kragic, D.; Zhang, F. Perching and resting-A paradigm for UAV maneuvering with modularized landing gears. Science Robotics 2019, 4, eaau6637. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.; Sun, J.; Zhang, H.; Zhao, J. A Mechanically Intelligent and Passive Gripper for Aerial Perching and Grasping. IEEE/ASME Transactions on Mechatronics 2022, 27, 5243–5253. [Google Scholar] [CrossRef]
- Kirchgeorg, S.; Benist, B.; Mintchev, S. Soft Gripper with Adjustable Microspines for Adhering to Tree Branches. In Proceedings of the Robotics in Natural Settings. Springer, Vol. 530; 2022; pp. 61–14, 25th International Conference Series on Climbing andWalking Robots and the Support Technologies for Mobile Machines (CLAWAR 2022); Conference Location: Ponta Delgada, Portugal; Conference Date: September 12-14, 2022; Conference lecture held on September 12, 2022. [Google Scholar] [CrossRef]




| Ref. | Yr | Aerial Platform | System Config. | Material | Adaptive | Closing Actuation | Grasp Maint. | Perching Config. | Opening Actuation |
|---|---|---|---|---|---|---|---|---|---|
| [30] | 2025 | FWAV | Gripper-Only | Soft-Rigid | Y | Active | Active | Above-Rod | Active |
| [44] | 2025 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Passive | Below-Rod | Active |
| [41] | 2025 | Quadrotor | Gripper-Only | Rigid | Y | Active | Active | Below-Rod | Active |
| [27] | 2024 | FWAV | Gripper-Only | Soft | Y | Active | Passive | Above-Rod | Active |
| [51] | 2024 | Quadrotor | Gripper-Only | Soft | Y | Active | Active | Below-Rod | Active |
| [50] | 2024 | Quadrotor | Gripper-Only | Rigid | Y | Fully-Passive | Active | Below-Rod | Fully-Passive |
| [37] | 2024 | - | Leg-Gripper | Rigid | Y | Fully-Passive | Passive | Above-Rod | Active |
| [46] | 2024 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Hybrid | Passive | Above-Rod | Active |
| [38] | 2024 | Quadrotor | Gripper-Only | Soft-Rigid | N | Fully-Passive | Active | Below-Rod | Hybrid |
| [49] | 2024 | Quadrotor | Leg-Gripper | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Passive |
| [45] | 2023 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Active |
| [43] | 2023 | Fixed-Wing UAV | Gripper-Only | Rigid | Y | Fully-Passive | Passive | Below-Rod | Hybrid |
| [28] | 2022 | FWAV | Leg-Gripper* | Soft-Rigid | N | Fully-Passive | Passive | Above-Rod | Active |
| [56] | 2022 | Quadrotor | Gripper-Only | Soft-Rigid | N | Fully-Passive | Passive | Below-Rod | Fully-Passive |
| [57] | 2022 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Passive | Below-Rod | Active |
| [36] | 2021 | Quadrotor | Leg-Gripper* | Soft-Rigid | Y | Passive | Passive | Above-Rod | Hybrid |
| [52] | 2021 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Active | Below-Rod | Active |
| [20] | 2020 | FWAV | Leg-Gripper | Soft-Rigid | Y | Active | Passive | Above-Rod | Active |
| [42] | 2019 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Hybrid | Passive | Above-Rod | Active |
| [35] | 2019 | Hexa-copter | Leg-Gripper* | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Hybrid |
| [54] | 2019 | Quadrotor | Gripper-Only | Soft-Rigid | N | Fully-Passive | Passive | Below-Rod | Hybrid |
| [55] | 2019 | Quadrotor | Gripper-Only | Rigid | N | Active | Active | Below-Rod | Active |
| [39] | 2018 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Active | Passive | Above-Rod | Active |
| [31] | 2013 | Quadrotor | Leg-Gripper | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Fully-Passive |
| [48] | 2012 | Quadrotor | Gripper-Only | Soft-Rigid | Y | Fully-Passive | Passive | Above-Rod | Active |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
