Submitted:
28 July 2025
Posted:
29 July 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Experimental
Materials and methods
Synthesis of SnO2-Se composites

Material Characterizations
Indocyanine Green Assay
Terephthalic Acid Assay
Photodegradation Experiments of Rhodamine B
Results and Discussion
Conclusions
Author Contributions
Funding
Data Availability
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [CrossRef]
- S. Mura; G. Greppi; P. Innocenzi; M. Piccinini; C. Figus; M.L., Marongiu; C. Guo; J. Irudayaraj; Nanostructured thin films as surface-enhanced Raman scattering substrates. J. Raman Spectrosc. 2013, 44, 35-40. [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature 1991, 353, 737–740. [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [CrossRef]
- Y., R.; Liu, C., J.; He, R., K.; Li, X.; Xu, Y.-H. BiVO4/TiO2 heterojunction with enhanced photocatalytic activities and photoelectrochemical performances under visible light illumination. Mater. Res. Bull. 2019, 117, 35–40. [CrossRef]
- Özdal, T.; Kavak, H. Fabrication and characterization of ZnO/Cu2O heterostructures for solar cells applications. Superlattices Microstruct. 2020, 146, 106679. [CrossRef]
- Abdi, F.F.; van de Krol, R. Nature and light dependence of bulk recombination in Co–Pi–catalyzed BiVO₄ photoanodes. J. Phys. Chem. C 2012, 116, 9398–9404.
- Cheng, L.; Quanjun, X.; Liao, Y.; Zhang, H. CdS-Based photocatalysts. Energy Environ. Sci. 2018, 11, 1754–1765. [CrossRef]
- Akhtar, N.; Choi, C.; Ateeq, M.; Fazil, P.; Shah, N. S.; Khan, J. A.; Al-Sehemi, A. G.; Zada, A.; Shah, M. I. A.; Ikram, R.; Han, C. Visible light active CdS/CuO nanocomposites for photocatalytic degradation of ciprofloxacin, H2 production and antimicrobial activity. Chem. Eng. J. 2025, 507, 160336. [CrossRef]
- Rahman, A.; Jennings, J. R.; Tan, A. L.; Khan, M. M. Molybdenum disulfide-based nanomaterials for visible-light-induced photocatalysis. ACS Omega 2022, 7, 22089–22110. [CrossRef]
- Muslih, E. Y.; Munir, B.; Khan, M. M. Advances in chalcogenides and chalcogenide-based nanomaterials such as sulfides, selenides, and tellurides. Micro and Nano Technologies: Chalcogenide-Based Nanomaterials as Photocatalysts. 2021; 7–31. [CrossRef]
- Yang, Y.; Chen, J.; Mao, Z.; An, N.; Wang, D.; Fahlman, B. D. Ultrathin g-C3N4 nanosheets with an extended visible-light-responsive range for significant enhancement of photocatalysis. RSC Adv. 2017, 7, 2333. [CrossRef]
- Alaya, Y.; Chouchene, B.; Medjahdi, G.; Balan, L.; Bouguila, N.; et al. Heterostructured S-TiO2/g-C3N4 photocatalysts with high visible light photocatalytic activity. Catalysts 2024, 14, 226. [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: What is the actual active structure? Angew. Chem. 2012, 51, 68–89. [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [CrossRef]
- Kim, J.H., Kim, M., Kim, SJ. et al. Understanding the electrochemical processes of SeS2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries. Nat. Commun. 2024, 15, 7669. [CrossRef]
- Su, MY., Li, XY. & Zhang, JT. Telluride semiconductor nanocrystals: progress on their liquid-phase synthesis and applications. Rare Met. 2022, 41, 2527–2551. [CrossRef]
- Dutta, D.P.; Tyagi, A.K.; Raj, B. MoS₂ as a new efficient visible-light driven photocatalyst. Catal. Today 2011, 161, 276–280. [CrossRef]
- Hu, H.; Zhang, W. Synthesis and properties of transition metals and rare-earth metals doped ZnS nanoparticles. Opt. Mater. 2006, 28, 536–550. [CrossRef]
- Liu, G.; Wang, L.; Yang, H.G.; Cheng, H.-M.; Lu, G.Q. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612. [CrossRef]
- Li, X.; Ge, W.; Wang, P.; Han, K.; Zhao, H.; Zhang, Q.; Diwu, H.; Liu, Z. Near-infrared enhanced SnO2/SnSe2 heterostructures for room-temperature NO2 detection: Experiments and DFT calculations. Sens. Actuators B Chem. 2023, 397, 134643. [CrossRef]
- Huang, Y.; Su, E.; Ren, J.; Qu, X. The recent biological applications of selenium-based nanomaterials. Nano Today 2021, 38, 101205. [CrossRef]
- Li, W.; Zhang, X.; Qiu, Y.; Zhou, M.; Huang, Y. Selenium-modified SnO2 nanocomposites for improved photocatalytic activity. J. Mater. Sci. Technol. 2021, 74, 103–110.
- Shen, A.; Shi, Z.; Zhang, W.; Zhai, Y.; Feng, Y.; Gong, W.; Xu, P.; Li, Q. Constructing SnO₂/SnSe₂ heterostructures anchored on reduced graphene oxide for advanced lithium-ion batteries. J. Colloid Interface Sci. 2025, 700, 138460. [CrossRef]
- Paolucci, V.; D’Olimpio, G.; Kuo, C. N.; Lue, C. S.; Boukhvalov, D. W.; Cantalini, C.; Politano, A. Self-assembled SnO₂/SnSe₂ heterostructures: a suitable platform for ultrasensitive NO₂ and H₂S sensing. ACS Appl. Mater. Interfaces 2020, 12, 34362–34369. [CrossRef]
- Alamo-Nole, L.; Bailon-Ruiz, S. J. Photocatalytic degradation of methylene blue by surface-modified SnO₂/Se-doped QDs. Micro 2024, 4, 721–733. [CrossRef]
- Zhou, Y.; Zhang, C.; Wang, Y.; Liang, Y. Photocatalytic performance of SnO₂/Se heterojunctions for dye degradation under visible light. Appl. Surf. Sci. 2020, 506, 144923. [CrossRef]
- Park, J. Y.; Lee, C. Y.; Choi, J. Y.; Kim, D. H. SnO2–Se composites for selective gas sensing applications at low temperatures. Sens. Actuators B Chem. 2019, 283, 100–107. [CrossRef]
- Yu, J.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2 reduction by TiO2/graphene composites: a review. J. Am. Chem. Soc. 2014, 136, 8839–8842.
- Swamy Reddy, K.; Veeralingam, S.; Borse, P. H.; Badhulika, S. A flexible, rapid response, hybrid inorganic–organic SnSe₂–PEDOT:PSS bulk heterojunction based high performance broadband photodetector. Mater. Chem. Front. 2022, 6, 341–351.
- Engel, E.; Schraml, R.; Maisch, T.; Kobuch, K.; König, B.; Szeimies, R.-M.; Hillenkamp, J.; Bäumler, W.; Vasold, R. Light-induced decomposition of indocyanine green. Invest. Ophthalmol. Vis. Sci. 2008, 49, 1777–1783. [CrossRef]
- Barreto, J. C.; Smith, G. S.; Strobel, N. H.; McQuillin, P. A.; Miller, T. A. Terephthalic acid: a dosimeter for the detection of hydroxyl radicals in vitro. Life Sci. 1995, 56, 89–96. [CrossRef]
- Sharma, J.; Singh, R.; Singh, H.; Singh, T.; Singh, P.; Thakur, A.; Tripathi, S. K. Synthesis of SnSe₂ thin films by thermally induced phase transition in SnSe. J. Alloys Comp. 2017, 724, 62–66. [CrossRef]
- Chen, H.; Shin, D.-W.; Nam, J.-G.; Kwon, K.-W.; Yoo, J.-B. Selenium nanowires and nanotubes synthesized via a facile template-free solution method. Mater. Res. Bull. 2010, 45, 699–704. [CrossRef]
- Dieguez, A.; Romano-Rodriguez, A.; Vilà, A.; Morante, J. The complete Raman spectrum of nanometric SnO₂ particles. J. Appl. Phys. 2001, 90, 1550–1557. [CrossRef]
- [1]Akram, M.; Wan, I.; Wan, A.; Awan, A.; Hussain, R. Continuous microwave flow synthesis (CMFS) of nano-sized tin oxide: effect of precursor concentration. Ceram. Int. 2016, 42, 8613. [CrossRef]
- Malik, R.; Rana, P.; Duhan, S.; Nehra, S. One-pot hydrothermal synthesis of porous SnO₂ nanostructures for photocatalytic degradation of organic pollutants. Energy Environ. Focus 2015, 4, 340–345. [CrossRef]
- Winyayong, A.; Wongsaprom, K. Nanostructures of tin oxide by a simple chemical route: synthesis and characterization. J. Phys.: Conf. Ser. 2019, 1380, 012002. [CrossRef]
- Daimon, T.; Hirakawa, T.; Nosaka, Y. Monitoring the formation and decay of singlet molecular oxygen in TiO₂ photocatalytic systems and the reaction with organic molecules. Electrochemistry 2008, 76, 136–139. [CrossRef]
- Tang, C. Y.; Wu, F. Y.; Yang, M. K.; Guo, Y. M.; Lu, G. H.; Yang, Y. H. A classic near-infrared probe indocyanine green for detecting singlet oxygen. Int. J. Mol. Sci. 2016, 17, 219. [CrossRef]
- Bhagwansingh, R.; Kale, R. Hydro/solvothermally synthesized visible light driven modified SnO₂ heterostructure as a photocatalyst for water remediation: a review. Environ. Adv. 2021, 5, 100081. [CrossRef]
- Carboni, D.; Marongiu, D.; Rassu, P.; Pinna, A.; Amenitsch, H.; Casula, M.; Marcelli, A.; Cibin, G.; Falcaro, P.; Malfatti, L.; Innocenzi, P. Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films. J. Phys. Chem. C 2014, 118, 12000–12009. [CrossRef]
- Charbouillot, T.; Brigante, M.; Mailhot, G.; Maddigapu, P. R.; Minero, C.; Vione, D. Performance and selectivity of the terephthalic acid probe for OH as a function of temperature, pH and composition of atmospherically relevant aqueous media. J. Photochem. Photobiol. A Chem. 2011, 222, 70–76. [CrossRef]
- Lesniewicz, A.; Lewandowska-Andralojc, A. Probing mechanism of Rhodamine B decolorization under homogeneous conditions via pH-controlled photocatalysis with anionic porphyrin. Sci. Rep. 2024, 14, 22600. [CrossRef]
- Franchi, D.; Zacharias, A. Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis. ACS Sustain. Chem. Eng. 2020, 8, 15405–15429. [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
