Submitted:
11 July 2025
Posted:
14 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Plant Raw Materials
2.2. Extracts Preparation
2.3. Phytochemical Research
2.4. Pharmacological Research of the Extracts
2.4.1. Anti-Inflammatory Activity
2.4.2. Wound Healing and Haemostatic Activity
2.4.3. Antimicrobial and Antifungal Activity
2.5. Statistical Analysis
3. Results
3.1. Phytochemical Research
3.2. Preliminary Standardisation of the Extracts
3.3. Anti-Inflammatory Activity
3.5. Wound Healing and Hemostatic Activity
3.6. Antimicrobial and Antifungal Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melampyrum L. Sp. Pl.: 605 (1753). Plants of the World Online 2025.
- Melampyrum L. 2: 605 (1753). International Plant Names Index 2025.
- Zerova, D. Plant Identification Guide to Ukraine; Urozhay: Kyiv, 1965;
- Grodzinsky, A.M. Medicinal Plants: Encyclopedic Guide; Ukrainian encyclopedia named after M. P. Bazhana.; 1990;
- Munteanu, M.F.; Vlase, L. The Determination of the Iridoids from the Melampyrum Species by Modern Chromatographic Methods. Not Bot Hort Agrobot Cluj 2011, 39, 79. [CrossRef]
- Fási, L.; Wéber, E.; Czigle, S.; Sztojkov-Ivanov, A.; Liktor-Busa, E.; Blunden, G.; Hohmann, J.; Háznagy-Radnai, E. Isolation of Iridoids and Flavones from the Anti-Inflammatory, Antioxidative and Antimicrobial Extract of Melampyrum Barbatum. Planta Med 2015, 81, s-0035-1565684. [CrossRef]
- Korkotian, E.; Botalova, A.; Odegova, T.; Galishevskaya, E.; Skryabina, E.; Segal, M. Complex Effects of Aqueous Extract of Melampyrum Pratense and of Its Flavonoids on Activity of Primary Cultured Hippocampal Neurons. Journal of Ethnopharmacology 2015, 163, 220–228. [CrossRef]
- Háznagy-Radnai, E.; Wéber, E.; Czigle, S.; Berkecz, R.; Csedő, K.; Hohmann, J. Identification of Iridoids, Flavonoids and Triterpenes from the Methanolic Extract of Melampyrum Bihariense A. Kern. and the Antioxidant Activity of the Extract. Chromatographia 2014, 77, 1153–1159. [CrossRef]
- Vogl, S.; Atanasov, A.G.; Binder, M.; Bulusu, M.; Zehl, M.; Fakhrudin, N.; Heiss, E.H.; Picker, P.; Wawrosch, C.; Saukel, J.; et al. The Herbal Drug Melampyrum Pratense L. (Koch): Isolation and Identification of Its Bioactive Compounds Targeting Mediators of Inflammation. Evidence-Based Complementary and Alternative Medicine 2013, 2013, 1–10. [CrossRef]
- Galishevskaya, E.E.; Petrichenko, V.M. Phenolic Compounds from Two Melampyrum Species. Pharm Chem J 2010, 44, 497–500. [CrossRef]
- Pagani, F.; Romussi, G. [Flavonoids of Melampyrum nemorosum L. (Scrophulariaceae)]. Boll Chim Farm 1971, 110, 695–703.
- Kotov, M. Genus Melampyrum L. Flora URSR; AN URSR: Kyiv, 1960; Vol. 9;
- Háznagy-Radnaia, E.; Fásia, L.; Wéberb, E.; Pinkec, G.; Királyd, G.; Sztojkov-Ivanove, A.; Gáspáre, R.; Hohmanna, J. Anti-Inflammatory Activity of Melampyrum Barbatum and Isolation of Iridoid and Flavonoid Compounds. Natural Product Communications 2018, 13, 235–236. [CrossRef]
- Munteanu, F. Antimicrobial Activity of Melampyrum Cristatum, Melampyrum Bihariense and Melampyrum Arvense Tinctures. Afr. J. Pharm. Pharmacol. 2012, 6, 2808–2812. [CrossRef]
- Štajner, D.; Popović, B.M.; Boža, P.; Kapor, A. Antioxidant Capacity of Melampyrum Barbatum – Weed and Medicinal Plant. Phytotherapy Research 2009, 23, 1006–1010. [CrossRef]
- European Pharmacopoeia; 11th ed.; Council of Europe: Strasbourg, 2022;
- Kovalenko, V.N. Compendium 2024. Medicines; MORION: Kyiv, Ukraine, 2024;
- European Medicines Agency. Guideline on Good Agricultural and Collection Practice (GACP) for Starting Materials of Herbal Origin.; EMEA/HMPC/246816/2005; 2006.
- Dobrochaeva, D.N.; Kotov, M.I.; Prokudin, Y.N.; Barbarich, A.I. Key to Higher Plants of Ukraine; Naukova Dumka: Kyiv, Ukraine, 1999;
- Maliuvanchuk, S.; Grytsyk, A.; Popadynets, O.; Kotyk, T.; Raal, A.; Koshovyi, O. Ajuga Reptans L. Herb Extracts: Phytochemical Composition and Pharmacological Activity Screening. Plants 2025, 14, 219. [CrossRef]
- Hordiei, K.; Gontova, T.; Trumbeckaite, S.; Yaremenko, M.; Raudone, L. Phenolic Composition and Antioxidant Activity of Tanacetum Parthenium Cultivated in Different Regions of Ukraine: Insights into the Flavonoids and Hydroxycinnamic Acids Profile. Plants 2023, 12, 2940. [CrossRef]
- Vronska, LV. Chromatographic Profile of Hydroxycinnamic Acids of Dry Extract of Blueberry Shoots. Pharmaceutical journal 2019, 5–18.
- Matiusha, K.; Grytsyk, A.; Hrytsyk, R.; Raal, A.; Koshovyi, O. Phytochemical Research and Screening of Pharmacological Activity in Eryngium Planum L. Herb Extracts. Applied Sciences 2025, 15, 1433. [CrossRef]
- State Pharmacopoeia of Ukraine; 2nd ed.; Ukrainian Scientific Pharmacopoeial Center of Drugs Quality: Kharkiv, Ukraine, 2015;
- Krivoruchko, E.; Markin, A.; Samoilova, V.A.; Ilina, T.; Koshovyi, O. Research in the Chemical Composition of the Bark of Sorbus Aucuparia. Ceska a Slovenska Farmacie 2018, 67, 113–115.
- Sepp, J.; Koshovyi, O.; Jakstas, V.; Žvikas, V.; Botsula, I.; Kireyev, I.; Tsemenko, K.; Kukhtenko, O.; Kogermann, K.; Heinämäki, J.; et al. Phytochemical, Technological, and Pharmacological Study on the Galenic Dry Extracts Prepared from German Chamomile (Matricaria Chamomilla L.) Flowers. Plants 2024, 13, 350. [CrossRef]
- Koshovyi, O.; Sepp, J.; Jakštas, V.; Žvikas, V.; Kireyev, I.; Karpun, Y.; Odyntsova, V.; Heinämäki, J.; Raal, A. German Chamomile (Matricaria Chamomilla L.) Flower Extract, Its Amino Acid Preparations and 3D-Printed Dosage Forms: Phytochemical, Pharmacological, Technological, and Molecular Docking Study. IJMS 2024, 25, 8292. [CrossRef]
- Law of Ukraine No. 3447-IV of 21.02.2006 “On the Protection of Animals from Cruelty” (as amended and supplemented). 2006.
- European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes 1999.
- Stefanov, O.V. Preclinical Studies of Drugs; Avicenna: Kyiv, Ukraine, 2001;
- Herrera-Ru, M.; Rojas-Bibr, M.G.; Nunez, Z.; Dominguez-, B.E.; Aviles-Fol, M.; Fuentes-Ma, M.; Tortoriell, J.; Zamilpa, A. Anti-Inflammatory Extracts and Coumaroyl Ursolic Acid Derivatives from Distictis Buccinatoria. International J. of Pharmacology 2015, 11, 852–857. [CrossRef]
- Hrytsyk, Y.; Koshovyi, O.; Lepiku, M.; Jakštas, V.; Žvikas, V.; Matus, T.; Melnyk, M.; Grytsyk, L.; Raal, A. Phytochemical and Pharmacological Research in Galenic Remedies of Solidago Canadensis L. Herb. Phyton 2024, 93, 2303–2315. [CrossRef]
- Huzio, N.; Grytsyk, A.; Raal, A.; Grytsyk, L.; Koshovyi, O. Phytochemical and Pharmacological Research in Agrimonia Eupatoria L. Herb Extract with Anti-Inflammatory and Hepatoprotective Properties. Plants 2022, 11, 2371. [CrossRef]
- Yakovleva, L.V.; Tkacheva, O.V.; Butko, Ya.O.; Laryanovska, Yu.B. Experimental Study of New Drugs for Local Treatment of Wounds; Publishing House of the National University of Pharmacy: Kharkiv, 2013;
- Kickler, T.S. Dr William W. Duke: Pioneer in Platelet Research. JAMA 2009, 301, 2267. [CrossRef]
- Brinkhous, K.M. W. W. Duke and His Bleeding Time Test: A Commentary on Platelet Function. JAMA 1983, 250, 1210. [CrossRef]
- Watson, S.I.; Gkini, E.; Bishop, J.; Scandrett, K.; Napit, I.; Lilford, R.J. Modelling Wound Area in Studies of Wound Healing Interventions. BMC Med Res Methodol 2024, 24. [CrossRef]
- Danko, G.V. PROVING CHARACTERISTICS OF A MEDICINAL PREPARATION BASED ON MINT THISTLE WITH PLANT SOURCES USED IN THE TREATMENT OF ANIMALS WITH WOUNDS. Scientific Bulletin of the Lviv National University of Veterinary Medicine and Biotechnology named after S.Z. Gzhytsky 2010, 12, 48–53.
- Bergey, D.H. Bergey’s Manual of Determinative Bacteriology; Baltimore, Williams & Wilkins Co, 1957;
- Kutsyk, R. Study of Antimicrobial Activity of Medicinal Plants of the Carpathian Region against Antibiotic-Resistant Clinical Strains of Staphylococci. Galician Medical Herald 2005, 12, 52–58.
- Hrytsyk, R.; Kutsyk, R.; Yurchyshyn, O.; Struk, О.; Kireev, I.; Grytsyk, A. The Investigation of Antimicrobial and Antifungal Activity of Some Artemisia L. Species. Pharmacia 2021, 68, 93–100. [CrossRef]
- Koshovyi, O.; Hrytsyk, Y.; Perekhoda, L.; Suleiman, M.; Jakštas, V.; Žvikas, V.; Grytsyk, L.; Yurchyshyn, O.; Heinämäki, J.; Raal, A. Solidago Canadensis L. Herb Extract, Its Amino Acids Preparations and 3D-Printed Dosage Forms: Phytochemical, Technological, Molecular Docking and Pharmacological Research. Pharmaceutics 2025, 17, 407. [CrossRef]
- Lapach, S.N.; Chubenko, A.V.; Babich, P.N. Statistical Methods in Biomedical Research Using Excel; MORION: Kyiv, 2000;
- Lee Rodgers, J.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. The American Statistician 1988, 42, 59–66. [CrossRef]
- Globally Harmonized System of Classification and Labelling of Chemicals (GHS), Ninth Revised Edition (Rev. 9). 2021.
- Reznik, V.V.; Grytsyk, A.R. STUDY OF ACUTE TOXICITY OF EXTRACTS FROM WOOD COW-WHEAT (MELAMPYRUM NEMOROSUM L.). Pharmaceutical Review 2025, 2.
- Liang, N.; Kitts, D. Role of Chlorogenic Acids in Controlling Oxidative and Inflammatory Stress Conditions. Nutrients 2015, 8, 16. [CrossRef]
- Chao, P.; Hsu, C.; Yin, M. Anti-Inflammatory and Anti-Coagulatory Activities of Caffeic Acid and Ellagic Acid in Cardiac Tissue of Diabetic Mice. Nutr Metab (Lond) 2009, 6. [CrossRef]
- Alam, M.; Ahmed, S.; Elasbali, A.M.; Adnan, M.; Alam, S.; Hassan, Md.I.; Pasupuleti, V.R. Therapeutic Implications of Caffeic Acid in Cancer and Neurological Diseases. Front. Oncol. 2022, 12. [CrossRef]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [CrossRef]
- Zhang, F.; Zhang, Y.; Zhou, J.; Cai, Y.; Li, Z.; Sun, J.; Xie, Z.; Hao, G. Metabolic Effects of Quercetin on Inflammatory and Autoimmune Responses in Rheumatoid Arthritis Are Mediated through the Inhibition of JAK1/STAT3/HIF-1α Signaling. Mol Med 2024, 30. [CrossRef]
- Forouzanfar, F.; Sahranavard, T.; Tsatsakis, A.; Iranshahi, M.; Rezaee, R. Rutin: A Pain-Relieving Flavonoid. Inflammopharmacol 2025, 33, 1289–1301. [CrossRef]
- Lee, G.B.; Kim, Y.; Lee, K.E.; Vinayagam, R.; Singh, M.; Kang, S.G. Anti-Inflammatory Effects of Quercetin, Rutin, and Troxerutin Result From the Inhibition of NO Production and the Reduction of COX-2 Levels in RAW 264.7 Cells Treated with LPS. Appl Biochem Biotechnol 2024, 196, 8431–8452. [CrossRef]
- Stabrauskiene, J.; Kopustinskiene, D.M.; Lazauskas, R.; Bernatoniene, J. Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities. Biomedicines 2022, 10, 1686. [CrossRef]
- Elshahid, Z.A.; Salama, A.; Gouhar, S.A. Assessment of the Synergistic Anti-Inflammatory Effect of Naringin/Sulindac for the Treatment of Osteoarthritis: In Vitro and in Vivo. ADV TRADIT MED (ADTM) 2024, 24, 265–283. [CrossRef]
- Solanki, S.; Vig, H.; Khatri, N.; Singh, B.P.; Khan, M.S.; Devgun, M.; Wal, P.; Wal, A. Naringenin: A Promising Immunomodulator for Anti-Inflammatory, Neuroprotective and Anti-Cancer Applications. AIAAMC 2025, 24, 1–25. [CrossRef]
- Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals 2019, 12, 11. [CrossRef]
- Ginwala, R.; Bhavsar, R.; Chigbu, D.G.I.; Jain, P.; Khan, Z.K. Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin. Antioxidants 2019, 8, 35. [CrossRef]
- Siddiquee, R.; Mahmood, T.; Ansari, V.A.; Ahsan, F.; Bano, S.; Ahmad, S. Apigenin Unveiled: An Encyclopedic Review of Its Preclinical and Clinical Insights. Discov. Plants 2025, 2. [CrossRef]
- Bagdas, D.; Gul, N.Y.; Topal, A.; Tas, S.; Ozyigit, M.O.; Cinkilic, N.; Gul, Z.; Etoz, B.C.; Ziyanok, S.; Inan, S.; et al. Pharmacologic Overview of Systemic Chlorogenic Acid Therapy on Experimental Wound Healing. Naunyn-Schmiedeberg’s Arch Pharmacol 2014, 387, 1101–1116. [CrossRef]
- Romana-Souza, B.; Dos Santos, J.S.; Monte-Alto-Costa, A. Caffeic Acid Phenethyl Ester Promotes Wound Healing of Mice Pressure Ulcers Affecting NF-κB, NOS2 and NRF2 Expression. Life Sciences 2018, 207, 158–165. [CrossRef]
- Song, H.S.; Park, T.W.; Sohn, U.D.; Shin, Y.K.; Choi, B.C.; Kim, C.J.; Sim, S.S. The Effect of Caffeic Acid on Wound Healing in Skin-Incised Mice. Korean J Physiol Pharmacol 2008, 12, 343. [CrossRef]
- Huang, H.; Chen, Y.; Hu, J.; Guo, X.; Zhou, S.; Yang, Q.; Du, Y.; Jin, Y.; Liu, G.; Peng, Y. Quercetin and Its Derivatives for Wound Healing in Rats/Mice: Evidence from Animal Studies and Insight into Molecular Mechanisms. International Wound Journal 2024, 21. [CrossRef]
- Gopalakrishnan, A.; Ram, M.; Kumawat, S.; Tandan, S.; Kumar, D. Quercetin Accelerated Cutaneous Wound Healing in Rats by Increasing Levels of VEGF and TGF-Β1. Indian J Exp Biol 2016, 54, 187–195.
- Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound Healing Properties of Flavonoids: A Systematic Review Highlighting the Mechanisms of Action. Phytomedicine 2021, 90, 153636. [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Medicine and Cellular Longevity 2020, 2020, 1–13. [CrossRef]
- Frenț, O.-D.; Stefan, L.; Morgovan, C.M.; Duteanu, N.; Dejeu, I.L.; Marian, E.; Vicaș, L.; Manole, F. A Systematic Review: Quercetin—Secondary Metabolite of the Flavonol Class, with Multiple Health Benefits and Low Bioavailability. IJMS 2024, 25, 12091. [CrossRef]
- Zawani, M.; Fauzi, M. Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies. Polymers 2021, 13, 3656. [CrossRef]
- Zheng, X.-Q.; Zhang, X.-H.; Gao, H.-Q.; Huang, L.-Y.; Ye, J.-J.; Ye, J.-H.; Lu, J.-L.; Ma, S.-C.; Liang, Y.-R. Green Tea Catechins and Skin Health. Antioxidants 2024, 13, 1506. [CrossRef]
- Tajammal, S.A.; Coffey, A.; Tan, S.P. Green Tea Polyphenols in Wound Healing: Therapeutic Mechanisms, Potential Applications and Challenges in Commercial Use for Diabetic Wound Healing. Processes 2025, 13, 653. [CrossRef]
- Soyocak, A.; Kurt, H.; Cosan, D.T.; Saydam, F.; Calis, I.; Kolac, U.; Koroglu, Z.O.; Degirmenci, I.; Mutlu, F.S.; Gunes, H. Tannic Acid Exhibits Anti-Inflammatory Effects on Formalin-Induced Paw Edema Model of Inflammation in Rats. Hum Exp Toxicol 2019, 38, 1296–1301. [CrossRef]
- Castañeda-Corral, G.; Cedillo-Cortezano, M.; Petricevich, V.L. Parallel In Vitro and In Silico Studies of the Anti-Inflammatory Activity of Bioactive Compounds Found in Different Ethanolic Extracts of Bracts from B. x Buttiana (Var. Rose): A Comparative Analysis. Pharmaceuticals 2025, 18, 821. [CrossRef]
- Lin, W.-C.; Deng, J.-S.; Huang, S.-S.; Wu, S.-H.; Lin, H.-Y.; Huang, G.-J. Evaluation of Antioxidant, Anti-Inflammatory and Anti-Proliferative Activities of Ethanol Extracts from Different Varieties of Sanghuang Species. RSC Adv. 2017, 7, 7780–7788. [CrossRef]
- Xu, J.; Hu, H.; Jiang, H.; Wei, Q.; Zhang, H.; Lu, Q. The Therapeutic Mechanisms of Quercetin on Inflammatory Diseases: An Update. Inflammopharmacol 2025, 33, 3015–3049. [CrossRef]
- Ouyang, X.-L.; Shu, L.-Y.; Qin, X.-Y.; Yang, L. Evaluations of Hemostatic Activity of Ethanol Extract of Euonymus Fortunei Aerial Parts. JPRI 2021, 8–15. [CrossRef]
- Li, H.-F.; Feng, H.; Wang, Y.; Pan, Z.-C.; Yin, L.; Qiu, H.-L.; Qiao, H.; Zhao, J.-Q.; Xia, X.-Y.; Hou, J.-C.; et al. Evaluation of Hemostatic, Anti-Inflammatory, Wound Healing, Skin Irritation and Allergy, and Antimicrobial Properties of Active Fraction from the Ethanol Extract of Chromolaena Odorata (L.) R.M. King & H. Rob. Journal of Ethnopharmacology 2024, 331, 118330. [CrossRef]
- Ghosh, S.; Sarkhel, S.; Ghosh, K.; Dhar, S.; Karar, S.; Roychowdhury, V. Plant-Derived Hemostats. Rev. Bras. Farmacogn. 2023, 33, 259–271. [CrossRef]
- Ebrahimi, F.; Torbati, M.; Mahmoudi, J.; Valizadeh, H. Medicinal Plants as Potential Hemostatic Agents. J Pharm Pharm Sci 2020, 23, 10–23. [CrossRef]
- Zishan, S.A.; Uddin, Md.M.; Mohammad, M.; Asadul Karim Azad, S.M.; Naima, J.; Ibban, S.S.; Saiful Islam Arman, Md. Costus Speciosus Leaf and Seed Extracts for Wound Healing: A Comparative Evaluation Using Mice Excision Wound Models. Clin Phytosci 2024, 10. [CrossRef]
- Sharma, S.; Sharmaa, M.C.; Kohlib, D.V. WOUND HEALING ACTIVITY AND FORMULATION OF ETHER-BENZENE 95% ETHANOL EXTRACT OF HERBAL DRUG MADHUCA LONGIFOLIA LEAVES IN ALBINO RATS. Journal of Optoelectronics and Biomedical Materials 2010, 1, 13–15.
- Sharma, A.; Khanna, S.; Kaur, G.; Singh, I. Medicinal Plants and Their Components for Wound Healing Applications. Futur J Pharm Sci 2021, 7. [CrossRef]
- Vitale, S.; Colanero, S.; Placidi, M.; Di Emidio, G.; Tatone, C.; Amicarelli, F.; D’Alessandro, A.M. Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules 2022, 27, 3566. [CrossRef]

| № | Compound | Content in the dry residue of the extract, µg/g | |
|---|---|---|---|
| MN40 | MN70 | ||
| Phenolic acids | |||
| 1 | Hydroxyphenylacetic acid | 399 ± 28 | 439 ± 31 |
| 2 | Benzoic acid | 9483 ± 558 | 10431 ± 813 |
| Hydroxycinnamic acids | |||
| 3 | Chlorogenic acid | 1492 ± 59 | 1790 ± 121 |
| 4 | Caffeic acid | 1156 ± 54 | 1364 ± 64 |
| 5 | p-Coumaric acid | 5102 ± 336 | 6633 ± 437 |
| 6 | trans-Ferulic acid | 188 ± 16 | 263 ± 22 |
| 7 | trans-Cinnamic acid | 2926 ± 139 | 4291 ± 254 |
| Flavonoids | |||
| 8 | Rutin | 33885 ± 1343 | 40992 ± 1416 |
| 9 | Quercetin-3-O-glucoside | 3899 ± 16 | 4237 ± 26 |
| 10 | Naringin | 6793 ± 294 | 8530 ± 456 |
| 11 | Neohesperidin | 6183 ± 252 | 8 129 ± 254 |
| 12 | Quercetin | 8916 ± 332 | 11 591 ± 431 |
| 13 | Naringenin | 3485 ± 132 | 4879 ± 185 |
| 14 | Apigenin | 1068 ± 56 | 1548 ± 81 |
| 15 | Rhamnetin | 6723 ± 284 | 8403 ± 355 |
| 16 | Kaempferol | 2531 ± 111 | 3392 ± 149 |
| Tannin metabolites | |||
| 17 | Catechin | 1956 ± 103 | 1779 ± 94 |
| 18 | Epicatechin | 4158 ± 209 | 4491 ± 227 |
| 19 | Gallocatechin | 1214 ± 118 | 1578 ± 164 |
| Content of compound groups in the liquid extract, % (spectrophotometry) | |||
| Total polyphenols (%) | 4.73 ± 0.20 | 6.77 ± 0.21 | |
| Flavonoids (%) | 0.86 ± 0.07 | 1,01 ± 0.06 | |
| Group of animals | Dose, mg/kg | Inflammatory response suppression index, % | |||||
|---|---|---|---|---|---|---|---|
| In 1 hour | In 3 hours | In 5 hours | In 1 hour | In 3 hours | In 5 hours | ||
| Group І (MN40) | 100 | 29.45±1.57** | 32.13±3.33* | 29.31±5.92 | 15.89 | 33.47 | 35.36 |
| Group ІІ (MN70) | 100 | 24.95±3.12 | 27.88±1.98* | 24.38±1.46* | 28.82 | 42.25 | 46.24 |
| Group ІІІ (Diclofenac sodium) |
8 | 21.29±2.23* | 20.18±4.51* | 17.82±4.29* | 39.25 | 58.21 | 60.69 |
| Group ІV (Quercetin) | 5 | 24.51±2.20* | 29.15±1.46* | 28.43±2.3* | 30.07 | 39.65 | 37.30 |
| Group V (control animals) |
- | 35.041±4.14 | 48.30±5.86 | 45.35±6.62 | - | - | - |
| Group of animals | Bleeding duration, s, n = 6 | Reduction in bleeding time, relative to the control group, % |
|---|---|---|
| Group І (MN40) | 89.50±13.48* | 38.49 |
| Group ІІ (MN70) | 79.33±9.28* | 45.48 |
| Group ІІІ (Liquid extract of Polygonum hydropiper) | 61.83±3.38* | 57.51 |
| Group IV (control animals) | 145.5±12.24 | - |
| Group of animals | Wound healing area in dynamics (days), % | |||||||
|---|---|---|---|---|---|---|---|---|
| 2 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | |
| Group І (MN40) | 5.93 | 17.78 | 34.44 | 57.04 | 77.04 | 92.96 | 98.89 | 100 |
| Group ІІ (MN70) | 4.81 | 19.26 | 40.37 | 71.85 | 89.63 | 97.78 | 100 | 100 |
| Group ІІ (Rotokan) | 5.19 | 18.52 | 30.37 | 53.17 | 75.93 | 87.78 | 95.93 | 100 |
| Group IV (control animals) | 2.59 | 7.78 | 28.52 | 37.41 | 51.11 | 73.33 | 85.93 | 96.30 |
| Types of microorganisms | Clinical material | Resistance | Diameters of growth inhibition zones, mm | |||
| Ethanol 40% | Ethanol 70% | MN40 | MN70 | |||
| Staphylococci | ||||||
| Staphylococcus аureus | ATCC 25923 | S | 13.00±0.54 | 18.10±1.50 | growth | 22.17±1.15* |
| Staphylococcus aureus | Pharynx | BSSA | growth | 20.35±1.05 | 11.63±0.08* | 32.02±1.60* |
| Staphylococcus аureus | Skin | S | growth | 16.68±0.49 | 10.32±0.60* | 24.71±1.55* |
| Staphylococcus aureus | Wound | BSSA, MLS | growth | 22.06±0.82 | 12.59±0.57* | 33.00±3.67* |
| Staphylococcus aureus | Wound | MRSA | growth | 16.62±0.94 | 10.57±0.50* | 23.99±1.34* |
| Staphylococcus epidermidis | Skin | MLS, Ind+ | growth | 22.75±1.01 | growth | 22.96±0.57 |
| Staphylococcus haemolyticus | Sputum | MRSH | growth | 14.25±0.49 | growth | 22.99±2.17* |
| Enterococci | ||||||
| Enterococcus faecalis | Urethra | Tet, FQin | growth | 11.73 ±0.43 | 11.92±0.64* | 21.12±1.29* |
| Enterococcus faecalis | Urethra | Tet, FQin | growth | growth | 13.99±1.33* | 16.80±0.54* |
| β-Hemolytic streptococci | ||||||
| Streptococcus pyogenes (β Str A) | Pharynx | S | 14.60±2.28 | 16.39±0.82 | growth | 14.73±2.08 |
| Streptococcus pyogenes (β Str A) | Pharynx | S | growth | 10.43±0.42 | growth | 13.45±1.30* |
| Streptococcus dysgalactiae (β Str G) | Pharynx | S | growth | growth | growth | 12.18±1.17* |
| Streptococcus agalactiae (β Str B) | Vaginal mucus | S | growth | 17.45±1.29 | growth | 18.89±2.32* |
| α-Hemolytic streptococci | ||||||
| Streptococcus anginosus | Pharynx | AMO, Tet, MLS | 15.51±1.28 | 13.63±1.20 | growth | 14.59±0.76 |
| Streptococcus gordonii | Oral cavity | S | 11.53±0.98 | 13.04±0.21 | growth | 13.07±0.67 |
| Streptococcus oralis | Oral cavity | S | growth | 14.67±0.56 | 9.67±0.63* | 20.44±1.07* |
| Streptococcus sanguinis | Oral cavity | S | growth | 19.54±0.87 | growth | 20.65±1.02 |
| Streptococcus pneumonia | Sputum | S | growth | growth | growth | growth |
| Streptococcus pneumonia | Sputum | β-Lac, Tet | growth | growth | growth | 17.40±0.21* |
| Enterobacteria | ||||||
| Escherichia coli | Wound | S | growth | 8.70±0.52 | growth | growth |
| Escherichia coli | Wound | S | growth | growth | growth | 12.89±0.56* |
| Escherichia coli | Wound | AMO Tet, FQin | growth | growth | growth | 11.79±0.69* |
| Escherichia coli hly+ | Fecal sample | AMO, MLs | growth | growth | growth | 13.20±0.95* |
| Escherichia fergusonii | Fecal sample | ESbL | growth | growth | growth | growth |
| Providencia rettgeri | Urine sample | ESbL | growth | growth | growth | growth |
| Morganella morganii | Urine sample | ESbL | growth | growth | growth | growth |
| Non-fermenting bacteria | ||||||
| Pseudomonas aureginosa | Wound | ESbL | growth | growth | growth | growth |
| Pseudomonas aureginosa | Pus from the wound | ESbL | growth | growth | growth | growth |
| Acinetobacter baumani | Sputum | ESbL | growth | growth | growth | 10.61±1.03* |
| Bacilli | ||||||
| Bacilus subtilus | АТСС 6051 | S | growth | 11.89±0.40 | growth | 17.75±1.37* |
| Fungi | ||||||
| Candida albicans | Oral cavity | FCZ-R | growth | 16.35±1.3 | growth | 22.22±1.25* |
| Candida albicans | Sputum | FCZ-R | growth | 21.86±1.22 | growth | 31.64±2.24* |
| Candida albicans | Urine sample | FCZ-R | growth | 10.82±0.34 | growth | 15.53±0.64* |
| Candida albicans | Oral cavity | FCZ-S | growth | 11.15±0.58 | growth | 15.24±0.29* |
| Candida tropicalis | Sputum | FCZ-R | growth | 10.02±0.44 | growth | 16.34±0.80* |
| Candida glabrata | FRS 585 | FCZ-S | growth | 19.59±1.89 | growth | 21.29±1.20 |
| Candida lusitaniae | Oral cavity | FCZ-R | growth | 10.13±1.47 | growth | 19.95±0.97* |
| Candida lusitaniae | Oral cavity | FCZ-S | growth | 20.96±1.22 | growth | 26.88±0.55* |
| Candida lipolytica | Oral cavity | FCZ-R | growth | 10.29±0.81 | growth | 15.16±0.60* |
| Candida kefyr | Oral cavity | FCZ-S | 10.59±0.99 | 15.60±0.43 | growth | 26.55±2.30* |
| Aspergillus fumigatus | Sputum | FCZ-R | growth | growth | growth | 17.04±3.20* |
| Rhodotorula mucilaginosa | Pus from the wound | FCZ-S | growth | 25.68±0.99 | growth | 32.32±1.25* |
| Geotrichum candidum | Fecal sample | FCZ-S | growth | 10.73±0.59 | growth | 20.22±0.87* |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
